

stimated Betas			
			9-1
	Beta	Standard Error	
Canadian Pacific	1.34	0.19	
CSX	1.34	0.14	
Kansas City Southern	1.27	0.20	
Genesee & Wyoming	1.34	0.19	
Norfolk Southern	1.16	0.16	
Union Pacific	0.98	0.12	
Industry portfolio	1.24	0.12	

Beta Stability

9-13

Risk Class	% in Same Class 5 Years Later	% within One Class 5 Years Later				
10 (High betas)	35	69				
9	18	54				
8	16	45				
7	13	41				
6	14	39				
5	14	42				
4	13	40				
3	16	45				
2	21	61				
1 (Low betas)	40	62				
Source: Sharpe and Cooper (1972)						

Company Cost of Capital

Category	Discount Rate
Speculative ventures	15.0%
New products	8.0%
Expansion of existing business	3.8% (Company COC)
Cost improvement, known technology	2.0%

Allowing for Possible Bad Outcomes

Example- continued

But now you discover that the company's engineers are behind schedule in developing the technology required for the project. They are confident it will work, but they admit to a small chance that it will not. You still see the most likely outcome as \$1 million, but you also see some chance that project Z will generate zero cash flow next year.

Possible Cash Flow	Probability	Probability-Weighted Cash Flow	Unbiased Forecast
1.2	0.25	0.3	
1.0	0.50	0.5	1.0, or \$1 million
0.8	0.25	0.2	

Allowing for Possible Bad Outcomes

Example- continued

This might describe the initial prospects of project *Z*. But if technological uncertainty introduces a 10% chance of a zero cash flow, the unbiased forecast could drop to \$900,000.

Possible Cash Flow	Probability	Probability-Weighted Cash Flow	Unbiased Forecast
1.2	0.225	0.27	
1.0	0.45	0.45	0.90, or \$900,000
0.8	0.225	0.18	
0	0.10	0.0	

1.1

Correcting for Optimistic Forecasts

9-23

Year:	1	2	3	4	5	 10	 15
1. Original cash-flow forecast	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	 \$1,000.00	 \$1,000.00
2. PV at 12%	\$ 892.90	\$ 797.20	\$ 711.80	\$ 635.50	\$ 567.40	 \$ 322.00	 \$ 182.70
3. Corrected cash-flow forecast	\$ 900.00	\$ 900.00	\$ 900.00	\$ 900.00	\$ 900.00	 \$ 900.00	 \$ 900.00
4. PV at 12%	\$ 803.60	\$ 717.50	\$ 640.60	\$ 572.00	\$ 510.70	 \$ 289.80	 \$ 164.40
5. PV correction	- 10.0%	- 10.0%	- 10.0%	- 10.0%	- 10.0%	 - 10.0%	 - 10.0%
 Original forecast discounted at 22% 	\$ 819.70	\$ 671.90	\$ 550.70	\$ 451.40	\$ 370.00	 \$ 136.90	 \$ 50.70
7. PV "correction" at 22% discount rate	- 8.2%	- 15.7%	- 22.6%	- 29.0%	- 34.8%	 - 57.5%	 - 72.3%

Risk, DCF, and CEQ

Example

Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project?

$$r = r_f + \beta(r_m - r_f)$$
$$= 6 + .75(8)$$
$$= 12\%$$

Risk, DCF, and CEQ					
9-27 <u>Example</u> Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project?					
	Project A				
$r - r + \beta(r - r)$	$r = r_f + \beta(r_m - r_f) \qquad \frac{\text{Year Cash Flow PV @ 12\%}}{1 100 89.3}$				
$r - r_f + p(r_m - r_f)$					
= 6 + .75(8) 2 100 79.7					
=12% 3 100 71.2					
Total PV 240.2					

Risk, DCF, and CEQ

Example

Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project?

	Project A	
Year	Cash Flow	PV @ 12%
1	100	89.3
2	100	79.7
3	100	71.2
	Total PV	240.2

Now assume that the cash flows change, but are RISK FREE. What is the new PV?

$$r = r_f + \beta(r_m - r_f)$$
$$= 6 + .75(8)$$
$$= 12\%$$

Risk, DCF, and CEQ

Example

Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

	Project A	
Year	Cash Flow	PV @ 12%
1	100	89.3
2	100	79.7
3	100	71.2
	Total PV	240.2

	Project B	
Year	Cash Flow	PV @ 6%
1	94.6	89.3
2	89.6	79.7
3	84.8	71.2
	Total PV	240.2

Risk, DCF, and CEQ 9-31 Example Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project? DEDUCTION FOR RISK. Deduction Cash Flow CEQ Year for Risk 100 94.6 5.4 1 2 100 89.6 10.4 100 3 84.8 15.2

<section-header><section-header><text><text><text><text>

Risk, DCF, and CEQ

Example

Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Year
$$1 = \frac{100}{1.054} = 94.6$$

Year $2 = \frac{100}{1.054^2} = 89.6$
Year $3 = \frac{100}{1.054^3} = 84.8$