
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Company Cost of Capital

- A firm's value can be stated as the sum of the value of its various assets
- "The value-additivity principle"

Firm value $=P V(A B)=P V(A)+P V(B)$

Company Cost of Capital

- A company's cost of capital can be compared to the CAPM required return

Company Cost of Capital

$$
r_{\text {assets }}=\mathrm{COC}=r_{\text {debt }}\left(\frac{D}{V}\right)+r_{\text {equity }}\left(\frac{E}{V}\right)
$$

$V=D+E$
$D=$ market value of debt
$E=$ market value of equity

$$
\begin{array}{|l|}
r_{\text {debt }}=\text { YTM on bonds } \\
r_{\text {equity }}=r_{f}+B\left(r_{m}-r_{f}\right)
\end{array}
$$

\qquad

Capital Structure and Equity Cost

Capital structure - the mix of debt \& equity within a company

Expand CAPM to include capital structure:

$$
r=r_{f}+\beta\left(r_{m}-r_{f}\right)
$$

This becomes:

$$
r_{\text {equity }}=r_{f}+\beta\left(r_{m}-r_{f}\right)
$$

- The SML shows the relationship between return and risk
- CAPM uses beta as a proxy for risk
- Other methods can be employed to determine the slope of the SML and thus beta
- Regression analysis can be used to find beta
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measuring Betas

\qquad

10 (High betas)	35	Years Later Later
9	18	54
8	16	45
7	13	41
6	14	39
5	14	42
4	13	40
3	16	45
2	21	61
1 (Low betas)	40	62
Source: Sharpe and Cooper (1972)		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Company cost of capital (COC) is based on the average
The average beta of the assets is based on the \% of funds in each asset

$$
\begin{aligned}
& \text { Assets }=\text { debt }+ \text { equity } \\
& \beta_{\text {assets }}=\beta_{\text {debt }} \times\left(\frac{D}{V}\right)+\beta_{\text {equity }} \times\left(\frac{E}{V}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad

Capital Structure and COC

Expected returns and betas prior to refinancing

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Company Cost of Capital: Simple Approach

Company cost of capital (COC) is based on the average beta of the assets

The average beta of the assets is based on the \% of funds in each asset

Example

$1 / 3$ New ventures $\beta=2.0$
$1 / 3$ Expand existing business $\beta=1.3$
$1 / 3$ Plant efficiency $\beta=0.6$

Average β of assets $=1.3$
Category
Discount Rate
Speculative ventures
New products
Expansion of existing busines
Cost improvement, known technology

15.0%
8.0%
2.0%

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
\beta_{\text {revenue }}= & \beta_{\text {fixed cost }} \frac{\mathrm{PV}(\text { fixed cost })}{\mathrm{PV}(\text { revenue })}+ \\
& +\beta_{\text {variablecost }} \frac{\mathrm{PV}(\text { variable cost })}{\mathrm{PV}(\text { revenue })}+\beta_{\text {asset }} \frac{\mathrm{PV}(\text { asset })}{\mathrm{PV}(\text { revenue })}
\end{aligned}
$$

\qquad
\qquad

Asset Betas

$$
\begin{aligned}
\beta_{\text {asset }} & =\beta_{\text {revenue }} \frac{\mathrm{PV}(\text { revenue })-\mathrm{PV}(\text { variable cost })}{\mathrm{PV}(\text { asset })} \\
& =\beta_{\text {reverne }}\left[1+\frac{\mathrm{PV}(\text { fixed cost })}{\mathrm{PV} \text { (asset) }}\right]
\end{aligned}
$$

Allowing for Possible Bad Outcomes

Example

Project Z will produce just one cash flow, forecasted at $\$ 1$ million at year 1. It is regarded as average risk, suitable for discounting at a 10% company cost of capital:

$$
\mathrm{PV}=\frac{C_{1}}{1+r}=\frac{1,000,000}{1.1}=\$ 909,100
$$

Allowing for Possible Bad Outcomes

Example- continued

But now you discover that the company's engineers are behind schedule in developing the technology required for the project. They are confident it will work, but they admit to a small chance that it will not. You still see the most likely outcome as \$1 million, but you also see some chance that project Z will generate zero cash flow next year.

| Possible
 Cash Flow | Probability | Probability-Weighted
 Cash Flow |
| :---: | :---: | :---: | | Unbiased |
| :---: |
| Forecast |

\qquad

Allowing for Possible Bad Outcomes

Example-continued

This might describe the initial prospects of project Z. But if technological uncertainty introduces a 10% chance of a zero cash flow, the unbiased forecast could drop to \$900,000.

Possible Cash Flow	Probability	Probability-Weighted Cash Flow	Unbiased Forecast
1.2	0.225	${ }_{0} .27$	0.90, or 5900,000
1.0	0.45	0.45	
0.8	0.225	0.18	
0	0.10	0.0	
	$\mathrm{PV}=\frac{900,000}{1.1}=\$ 818,000$		

\qquad
\qquad
\qquad

Risk, DCF, and CEQ

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6\%, a market premium of 8%, and beta of .75 , what is the $P V$ of the project?

$$
\begin{aligned}
r & =r_{f}+\beta\left(r_{m}-r_{f}\right) \\
& =6+.75(8) \\
& =12 \%
\end{aligned}
$$

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the $P V$ of the project?

	Project A		
	Year	Cash Flow	PV @ 12\%
$r_{f}+\beta\left(r_{m}-r_{f}\right)$	1	100	89.3
$=6+.75(8)$	2	100	79.7
$=12 \%$	3	100	71.2
		Total PV	240.2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the $P V$ of the project?

Project A		
Year	Cash Flow	PV @ 12\%
1	100	89.3
2	100	79.7
3	100	71.2
	Total PV	240.2

Now assume that the cash flows change, but are RISK FREE. What is the new PV?
$r=r_{f}+\beta\left(r_{m}-r_{f}\right)$
$=6+.75(8)$
= 12%

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Project A		
Year	Cash Flow	PV @ 12\%
1	100	89.3
2	100	79.7
3	100	71.2
	Total PV	240.2

Project B		
Year	Cash Flow	PV @ 6\%
1	94.6	89.3
2	89.6	79.7
3	84.8	71.2
	Total PV	240.2

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Project B		
Year	Cash Flow	PV @ 6\%
1	94.6	89.3
2	89.6	79.7
3	84.8	71.2
	Toutal PV	240.2

Since the 94.6 is risk free, we call it a certainty equivalent of the 100.

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project? DEDUCTION FOR RISK.

Year	Cash Flow	CEQ	Deduction for Risk
1	100	94.6	5.4
2	100	89.6	10.4
3	100	84.8	15.2

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

The difference between the 100 and the certainty equivalent (94.6) is 5.4%...this \% can be considered the annual premium on a risky cash flow

$$
\frac{\text { Risky cash flow }}{1.054}=\text { certainty equivalent cash flow }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Risk, DCF, and CEQ

Example

Project A is expected to produce $C F=\$ 100$ mil for each of three
years. Given a risk free rate of 6%, a market premium of 8%, and
beta of.75, what is the PV of the project? Now assume that the
cash flows change, but are RISK FREE. What is the new PV?

$$
\begin{aligned}
& \text { Year } 1=\frac{100}{1.054}=94.6 \\
& \text { Year } 2=\frac{100}{1.054^{2}}=89.6 \\
& \text { Year } 3=\frac{100}{1.054^{3}}=84.8
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

