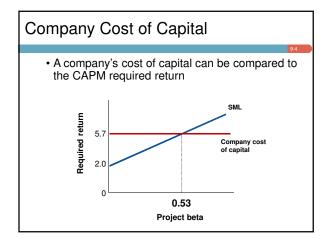
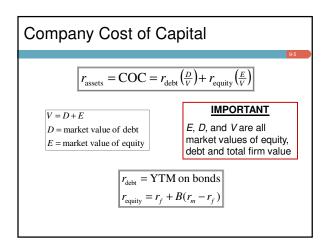
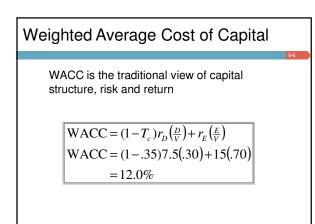
RISK AND THE COST OF


Topics Covered

- Company and Project Costs of Capital
- Measuring the Cost of Equity
- Analyzing Project Risk
- Certainty Equivalents Another Way to Adjust for Risk


Company Cost of Capital

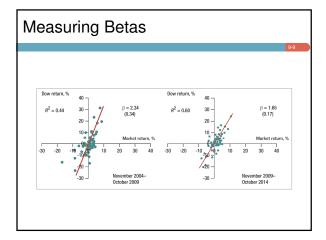

- A firm's value can be stated as the sum of the value of its various assets
- "The value-additivity principle"

Firm value = PV(AB) = PV(A) + PV(B)

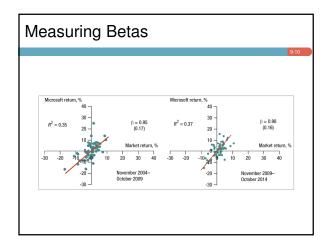
Capital Structure and Equity Cost

Capital structure - the mix of debt & equity within a company

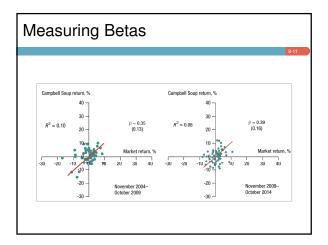
Expand CAPM to include capital structure:

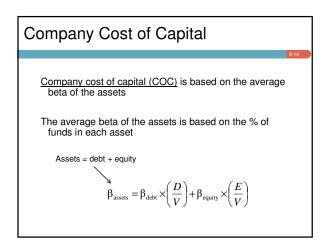

$$r = r_f + \beta(r_m - r_f)$$

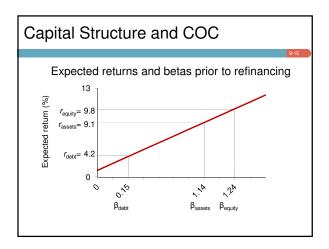
This becomes:


 $r_{\text{equity}} = r_f + \beta(r_m - r_f)$

Measuring Betas


- The SML shows the relationship between return and risk
- CAPM uses beta as a proxy for risk
- Other methods can be employed to determine the slope of the SML and thus beta
- Regression analysis can be used to find beta



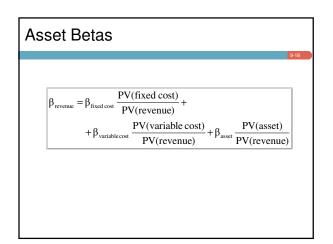


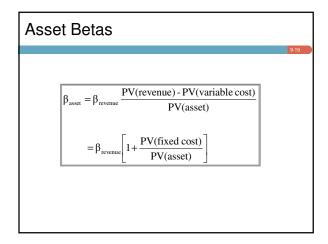
	Beta	Standard Error
Canadian Pacific	1.34	0.19
CSX	1.34	0.14
Kansas City Southern	1.27	0.20
Genesee & Wyoming	1.34	0.19
Norfolk Southern	1.16	0.16
Union Pacific	0.98	0.12
Industry portfolio	1.24	0.12

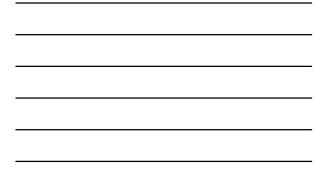
Beta Sta	ability			
	Risk Class	% in Same Class 5 Years Later	% within One Class 5 Years Later	
	10 (High betas)	35	69	
	9	18	54	
	8	16	45	
	7	13	41	
	6	14	39	
	5	14	42	
	4	13	40	
	3	16	45	
	2	21	61	
	1 (Low betas)	40	62	
	Source: Sharpe and Coope	er (1972)		

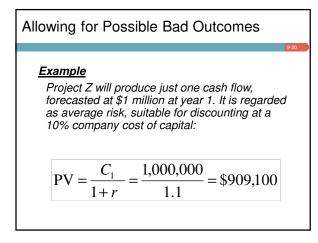
Company Cost of Capital: Simple Approach

Company cost of capital (COC) is based on the average beta of the assets

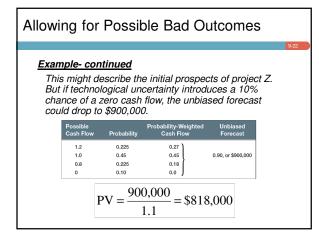

The average beta of the assets is based on the % of funds in each asset

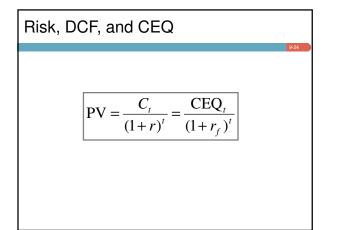

Example

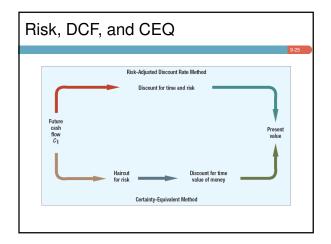

1/3 New ventures β = 2.0 1/3 Expand existing business β = 1.3 1/3 Plant efficiency β = 0.6

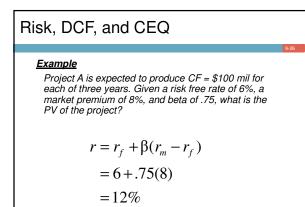

Average β of assets = 1.3

Category	Discount Rate
Speculative ventures	15.0%
New products	8.0%
Expansion of existing business	3.8% (Company COC)
Cost improvement, known technology	2.0%




Allowi	ng for	Possib	le Bad Out	comes	
					9-21
Exa	mple- con	tinued			
are rec bui see see	e behind so quired for t t they adm e the most	chedule in he project. it to a sma likely outo ance that p	hat the company developing the They are confic II chance that it come as \$1 milli project Z will gel	technology dent it will w will not. You on, but you	vork, u still also
	Possible Cash Flow	Probability	Probability-Weighted Cash Flow	Unbiased Forecast	
	1.2 1.0 0.8	0.25 0.50 0.25	0.3 0.5 0.2	1.0, or \$1 million	

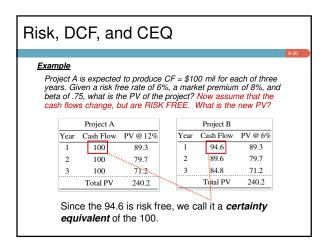




Correctin	g foi	r Op	timi	stic	For	ec	ast	s	
									9-23
Year:	1	2	3	4	5		10		15
1. Original cash-flow forecast	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00		\$1,000.00		\$1,000.00
2. PV at 12%	\$ 892.90	\$ 797.20	\$ 711.80	\$ 635.50	\$ 567.40		\$ 322.00		\$ 182.70
3. Corrected cash-flow forecast	\$ 900.00	\$ 900.00	\$ 900.00	\$ 900.00	\$ 900.00		\$ 900.00		\$ 900.00
4. PV at 12%	\$ 803.60	\$ 717.50	\$ 640.60	\$ 572.00	\$ 510.70		\$ 289.80		\$ 164.40
5. PV correction	- 10.0%	- 10.0%	- 10.0%	- 10.0%	- 10.0%		- 10.0%		- 10.0%
 Original forecast discounted at 22% 	\$ 819.70	\$ 671.90	\$ 550.70	\$ 451.40	\$ 370.00		\$ 136.90	••••	\$ 50.70
 PV "correction" at 22% discount rate 	- 8.2%	- 15.7%	- 22.6%	- 29.0%	- 34.8%		- 57.5%		- 72.3%



Risk, DCF, and CEQ						
				9-27		
Example Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project?						
		Project A				
$r = r + \beta(r - r)$	Year	Cash Flow	PV @ 12%			
$r = r_f + \beta(r_m - r_f)$	1	100	89.3			
=6+.75(8)	=6+.75(8) 2 100 79.7					
=12% 3 100 71.2						
		Total PV	240.2			



Risk	k, DCF	, and C	CEQ
Pi ye	ears. Given a	risk free rate	928 duce CF = \$100 mil for each of three of 6%, a market premium of 8%, and of the project?
Year 1 2 3	Project A Cash Flow 100 100 Total PV	PV @ 12% 89.3 79.7 71.2 240.2	Now assume that the cash flows change, but are RISK FREE. What is the new PV? $r = r_f + \beta(r_m - r_f)$ $= 6 + .75(8)$ $= 12\%$

sk,	DCF, a	and CEC	ב		
Exam	ple				
		k free rate of 6% is the PV of the	project?	Now assume	that the
	n flows chang	e, but are RISK	FREE. V		w PV?
		e, but are RISK	FREE. V	Project B	w PV?
cash	n flows chang	e, but are RISK PV @ 12%	FREE. V		PV @ 6%
cash	Project A			Project B	
	Project A Cash Flow	PV @ 12%	Year	Project B Cash Flow	PV @ 6%
Cash Year 1	Project A Cash Flow 100	PV @ 12% 89.3	$\frac{\text{Year}}{1}$	Project B Cash Flow 94.6	PV @ 6% 89.3

Risk, D	DCF,	and CE	Q		
					9-31
years. (A is expe Given a ri	isk free rate of 6%	%, a mark	0 mil for each of three et premium of 8%, and DEDUCTION FOR	I
	Year	Cash Flow	CEQ	Deduction for Risk	
	1	100	94.6	5.4	
	2	100	89.6	10.4	
	3	100	84.8	15.2	

-

Risk, DCF, and CEQ

Example

Project A is expected to produce CF = \$100 mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75, what is the PV of the project? Now assume that the cash flows change, but are RISK FREE. What is the new PV?

The difference between the 100 and the certainty equivalent (94.6) is 5.4%...this % can be considered the annual premium on a risky cash flow

 $\frac{\text{Risky cash flow}}{1.054} = \text{certainty equivalent cash flow}$

Risk, DCF, a	and CEQ	
		9-33
years. Given a risk beta of .75, what is	ted to produce CF = \$100 mil for each of three three rate of 6%, a market premium of 8%, and is the PV of the project? Now assume that the but are RISK FREE. What is the new PV? Year $1 = \frac{100}{1.054} = 94.6$ Year $2 = \frac{100}{1.054^2} = 89.6$	
	Year $3 = \frac{100}{1.054^3} = 84.8$	