Maths 190 Assignment No. 3 (Practice Exercises)

Do as indicated. ENJOY!

1. A company's cash position (in million of dollars) follows a generalised Wiener process with a drift of 0.5 per quarter and variance rate of 4.0 per quarter. How high does the company's initial position have to be for the company to have a less than 5% chance of negative cash position at the end of one year?
2. Variables X_{1} and X_{2} follow generalised Wiener proceses with drift rates μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}, respectively. What process does $X_{1}+X_{2}$ follow if:
a. The changes in X_{1} and X_{2} in any short time interval are uncorrelated?
b. There is a correlation ρ between the changes in X_{1} and X_{2} in any short time interval?
3. Consider a variable S that follows the process $d S_{t}=\mu d t+\sigma d W_{t}$. For the first three years, $\mu=2$ and $\sigma=3$; for the next three years, $\mu=3$ and $\sigma=4$. If the initial value of the variable is 5 , what is the probability distribution of the value of the variable at the end of year 6 ?
4. Suppose that a stock price S_{t} follows a geometric Brownian motion. Show that if $n \in \mathbb{R}$, the process S_{t}^{n} also follows a geometric Brownian motion.
5. Suppose that x_{t} is the yield to maturity with continuous compounding on a zero-coupon bond that pays $\$ 1$ at time T. Assume that x_{t} is stochastic and follows the dynamics

$$
d x_{t}=a\left(x_{0}-x_{t}\right) d t+s x_{t} d W_{t}
$$

where a, x_{0} and s are positive constants and W_{t} is a Brownian motion. Determine the process followed by the bond price.
6. The volatility of a stock price is 30% per annum. What is the standard deviation of the percentage price change in one trading day?
7. Explain the principle of risk-neutral valuation.
8. Using the notation in the lecture, prove that if S_{t} has a lognormal dynamics then a 95% confidence interval for S_{T} is

$$
\left(S_{t} e^{\left(\mu-\frac{\sigma^{2}}{2}\right)(T-t)-1.96 \sigma \sqrt{T-t}}, S_{t} e^{\left(\mu-\frac{\sigma^{2}}{2}\right)(T-t)+1.96 \sigma \sqrt{T-t}}\right) .
$$

9. Consider a derivative that pays off S_{T}^{n} at time T, where S_{T} is the stock price at that time. When the stock price follows a geometric Brownian motion, it can be shown that its price at time $t(t \leq T)$ has the form $h(t, T) S^{n}$ where S is the stock price at time t and h is a function only of t and T.
a. By substituting into the Black-Scholes partial differential equation, derive an ordinary differential equation satisfied by $h(t, T)$.
b. What is the boundary condition for the differential equation for $h(t, T)$?
c. Show that $h(t, T)=\exp \left[0.5 \sigma^{2} n(n-1)+r(n-1)(T-t)\right]$ where r is the risk-free interest rate and σ is the stock price volatility.
10. "Once we know how to value options on a stock paying a dividend yield, we know how to value options on stock indices, currencies and futures." Explain this statement.
11. Show that if S_{t} is a geometric Brownian motion, i.e., $d S_{t}=\mu S_{t} d t+$ $\sigma S_{t} d W_{t}$ then $S_{t}=S_{0} e^{\left(\mu-\sigma^{2} / 2\right) d t+\sigma W_{t}}$.
12. In the previous lecture, we show that if μ and σ are the respective drift and volatility of a stock price process following a geometric Brownian motion then the forward price evolves according to the stochastic dynamics $d F_{t}=(\mu-r) F_{t} d t+\sigma F_{t} d W_{t}$, where r is the risk-free rate. Prove or disprove that the discounted forward price process is a martingale?
Hint: Note that a driftless process is a martingale.
13. Show that the Black-Scholes formulae for call and put options satisfy the put-call parity.
14. Show that the probability that a European call option will be exercised in a risk-neutral world, with the notation introduced in the lecture, is $\Phi\left(d_{2}\right)$. What is the expression for the value of a derivative that pays off $\$ 100$ if the price of a stock at time T is greater than K ?
15. The price of a European call that expires six months and has a strike price of $\$ 30$ is $\$ 2$. The underlying stock price is $\$ 29$ and a dividend yield of $\$ 0.50$ and is expected in two months and again five months. The term structure is flat, with all risk-free interest rates being 10%. What is the price of a European put that expires in six months and has a strike price of $\$ 30$?
$\sim \sim \sim \operatorname{END} \sim \sim \sim$
