FM9561B - 03 - 07 February 2014

SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE LECTURE

The following concepts/theories were covered/reviewed:

- 1. We define a *risk-neutral measure* as any probability measure equivalent to the market measure P, which makes all discounted asset prices martingales.
- 2. We also showed that under Q, the risky asset S and the bank account have the same rate of return.
- 3. A contingent claim h in a contract with exercise date T is an \mathcal{F}_T -measurable RV. Some examples were given in class.
- 4. An arbitrage is a strategy such that the wealth process Z_t satisfies $Z(t,\omega) = x \leq 0$ a.s., $Z(T,\omega) \geq 0$ a.s. and $P(Z(T,\omega) > 0) > 0$ for t < T.
- 5. We considered the problem: what should we pay at time 0 for a contingent claim h payable at time T? Here, we assume that there is a hedging process $\Delta(t)$ and a corresponding wealth process Z_t such that $Z_T = h(\omega)$. It will be shown that the correct price at time 0 for the contingent claim h is given by $E^Q \left[\frac{h}{\beta(T)}\right] = Z_0$.

6. The pricing formula $E^{Q}\left[\frac{h}{\beta(T)}\right] = Z_{0}$ depends on the existence of the hedging rule $\Delta(t)$; this existence is guaranteed by the Martingale Representation Theorem, which shall be discussed after the Reading Week.

- 7. Martingale Representation Theorem (MRT): Let M be an (\mathcal{F}_t, P) martingale. Then there is a process H_t such that $M_t = M_0 + \int_0^t H_u dW_u$.
- 8. It was shown that the dynamics of $d\tilde{Z}_t = d\left(\frac{Z_t}{\beta(t)}\right) = \frac{\Delta(t)}{\beta(t)}\sigma_t S_t dW_t^Q$ and hence \tilde{Z}_t is a martingale under the measure Q. It is therefore clear from the statement of the MRT that $\Delta(t) = \frac{\beta(t)H_t}{\sigma_t S_t}$. We emphasise that the MRT guarantees the existence of a hedging portfolio. It does not however tell us how to compute it. The important point to remember is that it does justify the risk-neutral pricing.
- 9. We specify a portfolio in terms of (θ_t^0, θ_t^1) where $\theta_t^i :=$ no. of units of S_t^i held at time t. The vector (θ_t^0, θ_t^1) can be viewed as a portfolio process or hedging strategy. We previously worked with the wealth process Z_t , $\theta_t^1 = \Delta(t)$, and $S_t^0 = \beta(t) = \exp\left(\int_0^t r_u du\right)$.
- 10. The strategy (θ_t^0, θ_t^1) is **self-financing** if the only changes in the corresponding wealth process Z_t come from changes in S_t^0 and S_t^1 , that is, $dZ_t = \theta_t^0 dS_t^0 + \theta_t^1 dS_t^1$, where S_t^0 and S_t^1 refer to the risky and riskless assets, respectively.
- 11. In terms of the new $(\theta_{t^1}, \theta_{t^2})$ notation, the discounted wealth process

under the risk-neutral measure Q has dynamics given by $d\left(\frac{Z_t}{S_t^0}\right) = \theta_t^1 \sigma_t \frac{S_t^1}{S_t^0} dW_t^Q$ and hence it is a martingale.

From the MRT, the hedging strategy is justified by the existence of the process H_u such that $\frac{Z_t}{S_t^0} := M_t = M_0 + \int_0^t H_u dW_u^Q$. By matching volatility, we find that $\theta_t^1 = \frac{H_t S_t^0}{S_t^1 \sigma_t}$ and $\theta_t^0 = \frac{Z_t}{S_t^0} - \theta_t^1 \frac{S_t^1}{S_t^0}$.

- 12. So, for any contingent claim h with exercise time T, $\frac{Z_T}{S_T^0} = E^Q \left[\frac{h}{S_T^0} \middle| \mathcal{F}_T \right]$. Also, $Z_T = \theta_T^0 S_T^0 + \theta_T^1 S_T^1 = h$; such property of Z is called **self-replicating**. This implies that Z_t is the rational price at time t for the claim h and $Z_t = E^Q \left[\exp\left(-\int_t^T r_u du\right) h \middle| \mathcal{F}_t \right]$.
- 13. A zero-coupon bond with maturity T is a claim which pays \$1 at time T, i.e., $h(\omega) = 1$. From the risk-neutral valuation, the rational price at time t, $0 \le t \le T$ for such a default-free zero is $B(t,T) := E^{Q} \left[\exp \left(-\int_{t}^{T} r_{u} du \right) \middle| \mathcal{F}_{t} \right]$.
- 14. A **numéraire** is a positive process. It was demonstrated in the lecture that other assets can be priced in terms of the numéraire. Certain examples were presented in class.