FM9561B - 06 - 10 January 2014

SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE LECTURE

The following concepts/theories were covered/reviewed:

- 1. Probability space
- 2. Random variable
- 3. Stochastic process and its sample path
- 4. Filtration
- 5. Variation of a function g on [0, T], which measures the total amount of up and down motion of the paths.
- 6. Bounded variation: We note that functions of bounded variation on [0, T] are those functions for which the total variation on [0, T] is finite.
- 7. Quadratic variation of a function g denoted by $QV_g([0, T])$: We proved the result that if g is differentiable then $QV_g([0, T])=0$.

- 8. The contrapositive of the result highlighted in #7 says that "If $QV_g([0, T])$ is not zero then the function g is not differentiable". This result was employed to show that the sample path of a Brownian motion (BM) is not differentiable.
- 9. Definition of a BM: Given a stochastic basis $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$, the stochastic process $W(t, \omega)$: $[0, \infty] \times \Omega \to I\!\!R$ is a Brownian motion if it satisfies the following properties: (i) $W_0 = 0$, technically $P(\omega : W(0, \omega) = 0) =$ 1; (ii) $W_t(\omega)$ is a continuous function of t; (iii) if $0 = t_0 \leq t_1 \leq$ $t_2 \leq \ldots \leq t_n = t$ then the increments $W_{t_1} - W_{t_0}, \ldots, W_{t_n} - W_{t_{n-1}}$ are independent normals with

$$E[W_{t_{i+1}} - W_{t_i}] = 0$$
 and $E[(W_{t_{i+1}} - W_{t_i})^2] = t_{i+1} - t_i.$

- 10. A brief historical development of BM was re-visited:
 - In 1828-29, *Robert Brown* observed pollen particles under a microscope that were in constant irregular motion. This phenomenon (called Brownian motion) was named after him.

• In 1900, *Louis Bachelier* used BM for the first time to model stock prices and analysed its implication in option pricing. This is contained in his PhD thesis "Theorie de la Spéculation".

• Albert Einstein employed BM in 1905 as a model for particles in suspension and utilised it to calculate Avogadro's number.

• In 1923, Norbert Wiener defined and constructed BM rigorously.

• *Paul Samuelson* won the Nobel Prize in Economic Sciences in 1970 for popularising quantitative methods in economics and the use of BM.

11. We showed (heuristically) that the quadratic variation of a Brownian motion on [0, T], denoted by $\langle W \rangle (\omega, T)$, is given by $\langle W \rangle (\omega, T) = T a.s.$ Thus, BM's sample paths are not differentiable from #8.

- 12. The distinction between Riemann integral or Riemann-Stieltjes integral (i.e., integral with respect to a differentiable and monotonic function) and Itô integral was discussed. In particular, we wish to construct integrals of the form $I(t) = \int_0^t g(s, \omega) dW(s, \omega)$. The integrator is a Brownian motion with associated filtration $\{\mathcal{F}_t\}$. The integrand is $g(s), s \ge 0$, where (i) g(s) is \mathcal{F}_s -measurable $\forall s$ and (ii) g is square-integrable, i.e., $E\left[\int_0^t g^2(s) ds\right] < \infty, \ \forall t \ge 0$.
- 13. We constructed the Itô integral of an elementary integrand. We defined an elementary/simple process. If g(t) is constant on each subinterval $[t_i, t_{i+1})$ given a partition of [0, T], then g is called an *elementary pro*cess.
- 14. The Itô integral of an elementary integrand was defined. If g(t) is constant on each subinterval $[t_i, t_{i+1})$ given a partition of [0, T], then g is called an *elementary process*. We have seen that the Itô integral can be viewed as the "gain from trading" at time t.
- 15. Properties of the Itô integral of elementary processes: Adaptedness, linearity, martingale property and Itô isometry. Adaptedness: For every t, I(t) is \mathcal{F}_t -measurable. Linearity: If $I(t) = \int_0^t g(s)dW_s$ and $J(t) = \int_0^t h(s)dW_s$ then for constants α and β , $\alpha I(t) \pm \beta J(t) = \alpha \int_0^t g(s)dW_s \pm \beta \int_0^t h(s)dW_s$.

The last remaining properties (martingale property and Itô isometry) will be demonstrated in the succeeding lectures.

16. We established in class that, in general, if g is an elementary process and $t_i \leq t \leq t_{i+1}$ then I(t) takes the form

$$I(t) = \sum_{j=0}^{i-1} g(t_j) \left(W_{t_{j+1}} - W_{t_i} \right) + g(t_i) (W_t - W_{t_i}).$$