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SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE
LECTURE

The following concepts/theories were covered/reviewed:

1. We have two approaches in term structure modelling: short rate ap-
proach and HJM or forward rate approach. Under the short rate ap-
proach, we start with an SDE for a short rate process rt and then obtain
the bond price. From the bond price, we can obtain both the yield rate
and forward rate.

On the other hand, under the HJM methodology, we start with the
dynamics of the forward rate process. Then we obtain the bond price
from which we can derive the yield rate.

To recover r(t) from f(t, T ), we evaluate f(t, T ) at T = t.

The above summary of 2 modelling approaches was given in the lecture.
Previously, a term-structure data compiled by the Bank of Canada
plotted as a surface (being a function of time, maturity and yield) was
highlighted as the financial variable, whose evolution and dynamics are
what the term structure theory aims to accurately and efficiently cap-
ture.

2. A list of common one-factor and two-factor short rate models was given
in the lecture. Majority of the models proposed in the literature are
special cases of the parametric form of the generalised model presented
in the class.

3. The characterisation of the exponential affine models was presented in
the lecture:



Duffie and Kan (1996): The zero-coupon bond price is exponential affine
iff the short rate dynamics, i.e., drift and variance rate, must be of lin-
ear/Gaussian or square root/affine form.
Elliott and van der Hoek (2001): If the short rate dynamics are of lin-
ear Gaussian or square root affine form, then the bond price is expo-
nential affine. This statement was proved using the forward measure
approach, which is a different technique from the one used in Duffie
and Kan (1996).

4. When one cannot solve an SDE explicitly, it is possible to simulate its
trajectories through an Euler discretisation scheme. Consider the SDE
dXt(ω) = f(Xt(ω))dt+ σ(Xt(ω))dWt. Integrate this equation between
s and s+ ∆s:

Xs+∆s(ω) = Xs(ω) +

∫ s+∆s

s

f(Xt(ω))dt+

∫ s+∆s

s

σ(Xt(ω))dWt(ω).

The Euler scheme consists of approximating this integral equation by

X̄s+∆s(ω) = X̄s(ω) + f(X̄s(ω))∆s+ σ(X̄s(ω))(Ws+∆(ω)−Ws(ω))

with X̄0(ω) = x0. If we apply this formula iteratively for a given set of
s’s say s = s1, s2, . . . , sm, s1 = 0 and sm = T , we obtain a discretised
approximation X̄ of the solution of X for the above SDE.

5. A more refined scheme is called Milstein scheme. This will not be re-
viewed here. We, however, hint at the fact that when the diffusion co-
efficient is deterministic, i.e., σ(Xt, ω)) = σ(t), a deterministic function
of time, the Euler and Milstein schemes coincide. When possible, apply
the Euler scheme to SDEs with deterministic diffusion coefficients since
this ensures the same convergence with that of the Milstein scheme.

6. The Euler discretisation scheme can be useful for Monte Carlo simula-
tion. Suppose we need to compute the expected value of a function of
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the solution X of the SDE in #4, say for simplicity,

EQ [φ(Xs1(ω), . . . , Xsm(ω))] , s1 = 0, sm = T.

The evaluation of the above SDE is typical in pricing path-dependent
pay-offs in quantitative finance.

Assume that the times s are close to each other. We compute an
approximation of this expectation as follows:

(i) Select the number N of scenarios for the Monte Carlo method.
(ii) Set the initial value to X̄j

0 = x0 for all scenarios, j = 1, . . . , N.
(iii) Set k = 1.
(iv) Set s = sk and ∆s = sk+1 − sk so that s+ ∆s = sk+1.
(v) Generate N new realisations ∆W j, j = 1, . . . , N of a standard
Gaussian distribution N(0,1) multiplied by

√
∆s, thus simulating the

distribution of Ws+∆s(ω)−Ws(ω).
(vi) Apply the approximation formula in #4 for each scenario j =
1, . . . , N with the generated shocks:

X̄j
s+∆s = X̄j

s + f(X̄j
s )∆s+ σ(X̄j

s )∆W
j.

(vii) Store X̄j
s+∆s for all j.

(viii) If s + ∆s = sm then stop, otherwise increase k by one and start
again from point (iv).

(ix) Approximate the expected value by

∑N
j=1 φ(Xs1(ω), . . . , Xsm(ω))

N
.

7. For the Vasiček model drt = a(b− rt)dt + σdWt, one can simulate the
paths of the interest rate process in two ways:
Doing it naively by using

rti+1
= rti − a(b− rti)∆ti+1 + σ

√
∆ti+1εi+1

or doing it properly using

rti+1
= e−a(ti+1−ti)rti + b

(
1− e−a(ti+1−ti)

)
+σ

√
1

2a
(1− e−2a(ti+1−ti))εi+1,
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where the second discretisation is based on the analytic solution of rt
and εi+1 ∼ N(0, 1).

Remark: We showed that the Euler scheme for the “naive” discreti-
sation assumes the approximation ex ≈ 1 + x.

Similarly, for the geometric Brownian motion dSt = µStdt + σStdWt,
one has the choice to employ the discretisation Sk+1 − Sk = µSk∆tk +

σ
√

∆tk+1εk+1 or Sk+1 = Sk exp
[(
µ− σ2

2

)
∆tk + σ

√
∆tkεtk+1

]
. The sec-

ond equation will be a better choice since it is based on the closed-form
solution of St.

8. The Cholesky’s decomposition, which was discussed in the lecture, must
be applied when correlated samples are needed in the simulation of
Brownian motion sample paths.
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