FM9561B - 20 - 24 January 2014

SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE LECTURE

The following concepts/theories were covered/reviewed:

1. For the GBM $S_{t}=S_{0}+\int_{0}^{t} \mu_{u} S_{u} d u+\int_{0}^{t} \sigma_{u} S_{u} d W_{u}$, its quadratic variation is given by $\langle S\rangle_{t}=\int_{0}^{t} \sigma_{u}^{2} S_{u}^{2} d u$.
2. We considered a model for the wealth process of an investor who has investment in a risky asset evolving as GBM and in a money market (or bank account). We set up (and determine the dynamics) of the replicating portfolio that will synthesise the price of a European contingent claim.
3. We examined an Itō process X_{t} which has the general form:

$$
X_{t}=X_{0}+\int_{0}^{t} H_{s} d s+\int_{0}^{t} K_{s} d W_{s}
$$

where H_{s} and K_{s} are stochastic processes such that $E\left[\int_{0}^{t} H_{s}^{2} d s\right]<\infty$ and $E\left[\int_{0}^{t} K_{s}^{2} d s\right]<\infty$.
4. The generalised Ito's lemma in integral form was formulated for the one-dimensional case.

Using the dynamics of X_{t} in no. 2, Ito's lemma states that if f : $[0, \infty] \times \mathbb{R} \rightarrow \mathbb{R}$ is $C^{1,2}$ then $f\left(t, X_{t}\right)$ is an Itô process with dynamics

$$
\begin{aligned}
f\left(t, X_{t}\right)= & f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial}{\partial s} f\left(s, X_{s}\right) d s+\int_{0}^{t} \frac{\partial}{\partial x} f\left(s, X_{s}\right) d X_{s} \\
& +\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} f\left(s, X_{s}\right) d\langle X\rangle_{s} \\
= & f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial}{\partial s} f\left(s, X_{s}\right) d s+\int_{0}^{t} \frac{\partial}{\partial x} f\left(s, X_{s}\right)\left(H_{s} d s+K_{s} d W_{s}\right) \\
& +\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} f\left(s, X_{s}\right) K_{s}^{2} d s
\end{aligned}
$$

5. In an attempt to price an option, we constructed a replicating portfolio that duplicates the price of an option. Suppose at time 0 , the price of the risky asset is S_{0}. The investor can start at time 0 with initial wealth $Z_{0}:=V\left(0, S_{0}\right)$. We showed that the investor should hedge by buying $\Delta(t)=V_{S}(t, S)$ units of S_{t}. At time T his wealth will be $Z_{T}=V\left(T, S_{T}\right)=h\left(S_{T}\right)$, where in general $h(\cdot)$ is the pay-off of the contingent claim at time T. Therefore, the value of the option at time t is $Z_{t}=V\left(t, S_{t}\right)$.
6. It was shown in class that if V denotes the price of a contingent claim $h\left(S_{T}\right)$ in the Black-Scholes framework then it satisfies the PDE $V_{t}+r S V_{S}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}=r V$ with terminal condition $V\left(T, S_{T}\right)=h\left(S_{T}\right)$. Prices of financial instruments can be calculated by solving this PDE with respect to a boundary condition that describes the pay-off of the instrument at time T.

Remark: It was pointed out that the above PDE has a probabilistic solution in terms of a conditional expectation. The link between PDEs and conditional expectations is contained in the Feynman-Kac's theorem.
7. The Feynman-Kac's theorem provides a probabilistic solution to a certain class of PDEs. Suppose the PDE $V_{t}+\mu(t, x) V_{x}+\frac{1}{2} \sigma(t, x)^{2} V_{x x}-$ $r(t, x) V=0$ has a boundary condition $H(T, x)$. Then the solution of this PDE is $E\left[\exp \left(-\int_{t}^{T} r(u, x) d u\right) H(T, x) \mid \mathcal{F}_{t}\right]$ where the expectation is taken with respect to the measure which defines the process X, i.e., $d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}$.

Note that this conditional expectation also gives the risk-neutral valuation formula for a contingent claim H.
8. In the lecture, we also discussed the problem of solving the mean and variance of a stochastic process without having to solve explicitly the SDE satisfied by this given stochastic process. The technique was illustrated using the Cox-Ingersoll-Ross interest rate model. In this technique we liberally use the martingale property of an Itô integral. A linear ODE arises in the solution of this problem.
9. (d-dimensional BM:) A d-dimensional BM is a process $\mathbf{W}_{t}=\left(W_{t}^{1}, W_{t}^{2}, \ldots, W_{t}^{d}\right)$ with the following properties:
(i) Each W_{t}^{j} is a one-dimensional BM.
(ii) If $i \neq j$ then the process W_{t}^{i} and W_{t}^{j} are independent.

