Statistical Sciences 3520B

SOLUTIONS TO THE UNFINISHED EXAMPLE 07 March 2014 Lecture

Consider a 2-step trinomial non-recombining lattice tree model. For each step, there are three possibilities for the stock price: an up movement (n), a down movement (d) or no movement (n).

(a) Write down the set or sample space, Ω , containing all possible outcomes for this 2-step trinomial tree. If we consider the collection of all subsets of Ω , how many subsets are there in this collection?

(b) Suppose the respective probabilities of events $\{u\}$ and $\{d\}$ are 3/7 and 2/7. Define or construct the probability measure for each individual element $\omega \in \Omega$.

(c) Write down the σ -algebra or σ -field { \Im_i } keeping track the outcomes for each time step i = 0, 1, 2.

(d) Consider the Ω given in (a). Under the trinomial asset pricing model suppose $S_0 = 50, d = 10/11$ and u = 12/11; clearly, $\{S_i\}$ is a stochastic process, i.e., S_i 's are random variables for i = 0, 1, 2. Find $S_i(\boldsymbol{\sigma})$, i.e., what is the function $S_i(\boldsymbol{\sigma})$?

(e) Consider the interval $B = [2\pi^e - 1, 2e^{\pi} + 1]$. What is $S_1^{-1}(B)$? Recall that S_1 is a random variable and by definition it maps Ω into \Re .

Answer:

(a) All possible outcomes of tossing a coin three times can be described by the set $\Omega = \{uu, un, ud, nu, nn, nd, du, dn, dd\}$. Since there are 9 elements in Ω , there would be $2^9 = 512$ subsets of Ω contained in the collection.

(b) For the individual elements of Ω , we have

 $P(nu) = (3/7)^2 = 9/49 \qquad P(nn) = (2/7)^2 = 4/49$ $P(nn) = (3/7)(2/7) = 6/49 \qquad P(nd) = (2/7)^2 = 4/49$ $P(nd) = (3/7)(2/7) = 6/49 \qquad P(du) = (2/7)(3/7) = 6/49$ $P(nu) = (2/7)(3/7) = 6/69 \qquad P(dn) = (2/7)^2 = 4/49$ $P(dd) = (2/7)^2 = 4/49$

Note that $\sum_{\omega \in \Omega} P\{\omega\} = 1$.

(c) $\mathfrak{I}_0 = \{\phi, \Omega\}$ signifying we do not know anything yet and we note that $\phi^c = \Omega \in \mathfrak{I}_0$ since \mathfrak{I} is closed under set complementation.

 $\mathfrak{S}_{1} = \begin{cases} \phi, \Omega, \{uu, un, ud\}, \{nu, nn, nd\}, \{du, dn, dd\}, \text{ and all sets which} \\ \text{can be built by taking unions and set complementation (i.e., intersections) of these} \end{cases}$ which signifies that we have either *u*, *n* or *d* on the first-time step.

 $\mathfrak{I}_2 = \mathfrak{I} =$ The collection of all subsets of Ω .

(d) For S_1 , we have $S_1(uu) = S_1(un) = S_1(ud) = 50(12/11) = 54.55$ $S_1(nu) = S_1(nn) = S_1(nd) = 50(1)(1) = 50.00$ $S_1(du) = S_1(dn) = S_1(dd) = 50(10/11) = 45.45$

Therefore, $S_2(\omega) = \begin{cases} 54.55 & \text{if } \omega \text{ is uu or un or ud} \\ 50 & \text{if } \omega \text{ is nu or nn or nd} \\ 45.45 & \text{if } \omega \text{ is du or dn or dd} \end{cases}$

(e) We consider the interval $[2\pi^{e}-1, 2e^{\pi}+1] = [43.9183, 47.2814]$. The pre-image under S_{1} of the interval [43.9183., 47.2814] is defined to be $\{\omega \in \Omega : S_{1}(\omega) \in [43.9183, 47.2814]\} = \{\omega \in \Omega : 43.9183 \leq S_{1} \leq 47.2814\} = \{du, dn, dd\}.$