Statistical Sciences 3520B

SOLUTIONS TO THE UNFINISHED EXAMPLE 07 March 2014 Lecture

Consider a 2-step trinomial non-recombining lattice tree model. For each step, there are three possibilities for the stock price: an up movement (u), a down movement (d) or no movement (n).
(a) Write down the set or sample space, Ω, containing all possible outcomes for this 2 -step trinomial tree. If we consider the collection of all subsets of Ω, how many subsets are there in this collection?
(b) Suppose the respective probabilities of events $\{u\}$ and $\{d\}$ are $3 / 7$ and $2 / 7$. Define or construct the probability measure for each individual element $\omega \in \Omega$.
(c) Write down the σ-algebra or σ-field $\left\{\mathfrak{I}_{i}\right\}$ keeping track the outcomes for each time step $i=0,1,2$.
(d) Consider the Ω given in (a). Under the trinomial asset pricing model suppose $S_{0}=50, d=10 / 11$ and $u=12 / 11$; clearly, $\left\{S_{i}\right\}$ is a stochastic process, i.e., S_{i} 's are random variables for $i=0,1,2$. Find $S_{1}(\bar{\sigma})$, i.e., what is the function $S_{1}(\varpi)$?
(e) Consider the interval $B=\left[2 \pi^{\mathrm{e}}-1,2 \mathrm{e}^{\pi}+1\right]$. What is $S_{1}^{-1}(B)$? Recall that S_{1} is a random variable and by definition it maps Ω into \Re.

Answer:

(a) All possible outcomes of tossing a coin three times can be described by the set $\Omega=\{u u, u n, u d, n u, n n, n d, d u, d n, d d\}$. Since there are 9 elements in Ω, there would be $2^{9}=512$ subsets of Ω contained in the collection.
(b) For the individual elements of Ω, we have

$$
\begin{array}{cl}
P(u u)=(3 / 7)^{2}= & 9 / 49 \\
P(u n)=(3 / 7)(2 / 7)=6 / 49 & P(n n)=(2 / 7)^{2}=4 / 49 \\
P(u d)=(3 / 7)(2 / 7)=6 / 49 & P(d u)=(2 / 7)(3 / 7)=6 / 49 \\
P(n u)=(2 / 7)(3 / 7)=6 / 69 & P(d n)=(2 / 7)^{2}=4 / 49 \\
P(d d)=(2 / 7)^{2}=4 / 49
\end{array}
$$

Note that $\sum_{\omega \in \Omega} P\{\omega\}=1$.
(c) $\mathfrak{I}_{0}=\{\phi, \Omega\}$ signifying we do not know anything yet and we note that $\phi^{c}=\Omega \in \mathfrak{I}_{0}$ since \mathfrak{I} is closed under set complementation.
$\mathfrak{I}_{1}=\left\{\begin{array}{l}\phi, \Omega,\{u u, u n, u d\},\{n u, n n, n d\},\{d u, d n, d d\}, \text { and all sets which } \\ \text { can be built by taking unions and set complementation (i.e., intersections) of these }\end{array}\right\}$ which signifies that we have either u, n or d on the first-time step.
$\mathfrak{I}_{2}=\mathfrak{I}=$ The collection of all subsets of Ω.
(d) For S_{1}, we have

$$
\begin{aligned}
& S_{1}(u u)=S_{1}(u n)=S_{1}(u d)=50(12 / 11)=54.55 \\
& S_{1}(n u)=S_{1}(n n)=S_{1}(n d)=50(1)(1)=50.00 \\
& S_{1}(d u)=S_{1}(d n)=S_{1}(d d)=50(10 / 11)=45.45
\end{aligned}
$$

Therefore, $\quad S_{2}(\omega)=\left\{\begin{array}{ccc}54.55 & \text { if } & \omega \text { is uu or un or ud } \\ 50 & \text { if } & \omega \text { is nu or nn or nd } \\ 45.45 & \text { if } & \omega \text { is du or dn or dd }\end{array}\right.$
(e) We consider the interval $\left[2 \pi^{\mathrm{e}}-1,2 \mathrm{e}^{\pi}+1\right]=[43.9183,47.2814]$. The pre-image under S_{1} of the interval [43.9183., 47.2814] is defined to be $\left\{\omega \in \Omega: S_{1}(\omega) \in[43.9183,47.2814]\right\}=\left\{\omega \in \Omega: 43.9183 \leq S_{1} \leq 47.2814\right\}=\{d u$, $d n, d d\}$.

