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SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE
LECTURE

The following concepts/theories were covered/reviewed in the context of
stock price processes evolving on a two-period binomial tree model in discrete
time:

1. Cameron-Girsanov-Martin Theorem (given in class without proof): Sup-
pose Wt is a P−Brownian motion and γt is Ft−adapted process satisfy-

ing the boundedness (or growth) condition EP
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(iii) W̃t = Wt +

∫ t
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γsds is a Q−Brownian motion. Or, Wt = W̃t −∫ t

0

γsds is a Q−Brownian motion with drift −γt at time t.

The CGM theorem is a powerful tool for controlling the drift of any
process.

2. We discussed the solution to this problem: Suppose Xt is a stochas-
tic process with dynamics dXt = µtdt + σtdWt. Is there a measure Q
such that the drift of the process X under Q is vtdt instead of µtdt?
Consequently, we gave justification by invoking CMG why under the
risk-neutral measure Q the drift rate of the geometric Brownian motion
is r instead of µ.

3. To find the corresponding European put price pt, we simply use the
put-call parity given by the relation pt + St = ct + Xe−r(T−t), where



pt, ct, and St are the respective put, call and stock prices at time t;
and X and T − t are the respective strike price and amount of time to
option’s contract maturity. Put-call parity and its proof were covered
in SS 3520.

4. When dividends are involved (assuming that the stock pays a dividend
yield at the rate q), the modified put-call parity is pqt + Ste

−q(T−t) =
cqt + Ke−r(T−t), where pqt and cqt are the respective put and call prices
on a dividend-paying stock. This is due to the fact that the payment
of a dividend yield causes the stock price to drop by an amount of the
dividend. The price cq(t, St) of a European call option on a stock that
pays dividends at rate q is given by

cq(t, St) = Ste
−q(T−t)Φ(dq1)−Ke−r(T−t)Φ(dq2)

where dq1 =
ln St

K
+
(
r − q + σ2

2

)
(T − t)

σ
√
T − t

.

and dq2 =
ln St

K
+
(
r − q − σ2

2

)
(T − t)

σ
√
T − t

= dq1 − σ
√
T − t.

Note that when the stock pays a dividend yield at rate q, we mod-
ify the put-call parity and the Black-Scholes formula by replacing St
by Ste

−q(T−t).

5. Options on currencies (e.g., AUD, GBP, CAD, JPY, CHF & EUR
against USD) are actively traded in both over-the-counter and exchange
markets. Recall from SS 3520 that a foreign currency is analogous to a
stock paying a known dividend yield. The owner of a foreign currency
receives a “dividend yield” equal to the risk-free rate rf , in the foreign
currency. Assuming that the stochastic process for a foreign currency
is the same as that for a stock paying a dividend equal to the foreign
risk-free rate, the corresponding European option price formula and
the put-call parity are obtained by replacing q with rf .
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6. In the risk-neutral world (i.e., under measure Q), individuals/market
agents are risk-neutral. There is no compensation for risk and the ex-
pected return on all securities is the risk-free rate.

7. We discussed certain properties of the Black-Scholes formula:
(i) When the stock price St becomes large, a call option is almost
certain to be exercised and this becomes very similar to a forward con-
tract with a delivery price K. It is expected that the call price will be
St −Ke−r(T−t). We showed that this fact is consistent with the Black-
Scholes formula.

(ii) When the stock price St becomes very large, the price of a Eu-
ropean put option will approach to zero. Again, we showed that this
is consistent with the behaviour of the Black-Scholes formula.

(iii) The case when the volatility σ approaches zero was considered.
This means the stock is virtually riskless and it grows at the risk-free
rate r to Ste

r(T−t) at time T > t. The pay-off of the option is then
max(Ste

r(T−t)−K, 0), where K is the strike price, and the option value
would be max(St−Ke−r(T−t), 0). It was demonstrated that this fact is
consistent with the Black-Scholes-Merton formula.

8. An important parameter in the pricing and hedging of options is delta
(∆). It is the number of units of the stock we should hold for each
option shorted in order to create a riskless hedge. It turns out that this
is the ratio of the change in the price of a stock option to the change
in the price of the underlying stock.

9. The construction of a riskless hedge is referred to as delta hedging. The
delta of a call option is positive whereas the delta of a put is negative.
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Hedging schemes

10. Option traders attempt to make a portfolio immune to small changes
in the price of the underlying asset in the next small time interval. The
so-called delta hedging examines the value delta (∆) of a derivative

security. This value is given by ∆ =
∂f

∂S
where f is the value of the

portfolio and S is the price of the underlying asset. Traders also look
at gamma and vega defined by the following:

Γ (gamma):=rate of change of the value of the portfolio with respect
to delta. That is,

Γ =
∂

∂S

(
∂f

∂S

)
=
∂∆

∂S
=
∂2f

∂S2
.

ϑ (vega):=rate of change of the value of the portfolio with respect
to asset’s volatility, so that

Λ =
∂f

∂σ
.

Other sensitivity parameters that practitioners consider are:

Θ (theta): = the rate of change of the portfolio with respect to the
passage of time. In particular,

Θ =
∂f

∂t
and

ρ (rho):= the rate of change with respect to the risk-free rate r, so
that

ρ =
∂f

∂r
.

Exercise: With the notation used in the Black-Scholes formula, show

that Se−
d21
2 −Ke−r(T−t)−

d22
2 = 0.

11. Using the result of the above exercise and if c is the price of a Euro-
pean call option, we showed that the delta for the call option is given

by ∆ =
∂c

∂S
= Φ(d1). For the put option,

∂p

∂S
= Φ(d1)− 1.
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12. An interesting result relating hedging/sensitivity parameters follows
from the Black-Sholes-Merton PDE and is given by

Θ + rS∆ +
1

2
σ2S2Γ = rc,

where c is the European option price.

13. Monte-Carlo (MC) simulation technique applied to the pric-
ing of a European call option.
Given a stochastic differential equation dSt = µStdt+ σStdWt, its dis-
cretised version is Sk+1 − Sk = µSk∆tk + σSkε

√
∆tk, where ∆tk =

tk+1 − tk, ε ∼ N(0, 1) and the sense of the equality is understood to in
be in law or distribution. Given an initial value S0, this recursion of
the discretised version of the SDE (or its solution) can be employed to
generate sample paths of the stochastic process.
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