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SUMMARY OF IMPORTANT POINTS DISCUSSED IN THE
LECTURE

The following concepts/theories were covered/reviewed:

1. To find the hedging strategy, we shall look at the PDE satisfied by
v(t, x, y). That is, we consider a function v(t, x, y) such that

v(t, S(t), Y (t)) = V (t) = E

[
e−r(T−t)

(
1

T
Y (T )−X

)+
∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T.

where E is a risk-neutral expectation, S(t) is the stock price following

GBM dynamics and Y (t) =

∫ t

0

S(u)du.

The function v satisfies the terminal condition v(T, x, y) =
( y
T
−X

)+
for all x and y.

2. We consider the dynamics of the discounted option value e−rtv(t, S(t), Y (t))
using Itō’s lemma. We note that this discounted option value is a
martingale, and therefore the dt component of the dynamics must be
identically zero. This gives the PDE satisfied by the European Asian
(Eurasian) call option price as

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y),

0 ≤ t < T, x > 0, y ∈ IR

v(T, x, y) =
( y
T
−X

)+
, x ≥ 0, y ∈ IR.

Remark: In the derivation of the above PDE, note that S(t) and Y (t)
were replaced by the dummy variables x and y, respectively.



The above PDE is similar to the PDE satisfied by the price of a regular
European option except for the term xvy(t, x, y), which is coming from
the Y variable (average value).

3. When the dt term of the dynamics of the discounted Asian option value
is set to 0, we obtain

d(e−rtv(t, S(t), Y (t))) = e−rtσS(t)vx(t, S(t), Y (t))dW (t). (1)

But we note that (the self-financing and replicating portfolio Π for the
Asian option value, recall SS 3520B or AM 3613), has dynamics

d(e−rtΠ(t)) = e−rtσS(t)∆(t)dW (t), (2)

where ∆ is the number of shares in the stock investment, and the rest
of the replicating portfolio is invested in the bond (or risk-free asset).
Thus, by matching equations (1) and (2), we obtain the hedging for-
mula ∆(t) = vx(t, S(t), Y (t)).

4. It is important to realise that when considering the dt part of the
discounted option value, we obtain the pricing equation whilst consid-
ering the dWt component gives us the hedging formula.

Interest Rate Modelling

5. The stochastic modelling of interest rates is motivated by the pricing
and risk management of products with long-term maturities. So far,
in the valuation of derivative securities previously discussed, interest
rates are treated as constants. This is not a realistic assumption and
can have significant impact in the pricing of contingent claims.

6. We consider the term-structure models, which describe the evolution
of zero-coupon bonds. We shall focus in the modelling of the short rate
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rt and then look at its implications to zero-coupon bond pricing and
yield-curve modelling. The rate rt is the rate of lending or borrowing
applicable to an infinitesimally short period of time at time t.

7. In general, if fT is the pay-off of a derivative security at time T > t,
the fair price of the derivative at time t is given by

EQ
[
e−

∫ T
t rudufT

∣∣∣Ft

]
,

where Q is a risk-neutral measure.

8. Let B(t, T ) be the price of a zero-coupon bond at time t for a maturity
value of 1 at time T . So, from the risk-neutral valuation formula with
fT = 1, we have

EQ
[
e−

∫ T
t rudu1

∣∣∣Ft

]
.

Typically, rt is Markov to make the calculation of B(t, T ) tractable.
Thus,

EQ
[
e−

∫ T
t rudufT

∣∣∣ rt = r
]
.

9. Suppose Y (t, T ) is the continuously compounded interest rate at time
t for a term T − t; Y (t, T ) is the yield rate and

B(t, T ) = e−Y (t,T )(T−t).

Consequently,

Y (t, T ) = − 1

T − t
lnB(t, T ) (3)

= − 1

T − t
lnEQ

[
e−

∫ T
t ru(r)du

]
(4)

The respective equations in (3) and (4) show that the term structure
of interest rates (i.e., evolution of yield rates) can be obtained from the
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bond price (theoretical or observed) and from the short rate rt.

Note: Clearly, the modelling of the bond price provides the entire
yield curve.

10. As the bond price relies on rt, we specify a model for rt, calculate
B(t, T ) and obtain Y (t, T ).

11. There are two types of models for rt : (i) equilibrium models and (ii)
no-arbitrage models.

Equilibrium models start from assumptions about economic variables
and produce a process for rt. This modelling approach then explores
the implications to prices of bond, options and other term-structure
derivatives. Examples are the Cox-Ingersoll-Ross (CIR, 1985) and the
Vasiček (1977) models.

On the other hand, no -arbitrage models are designed to be consistent
with today’s term structure of interest rates. Examples include the Ho-
Lee (1986), Hull-White (1990) and Black-Karasinski (1990) models.

12. The Vasiček (1977) model for rt is given by the SDE drt = a(b−rt)dt+
σdWt, where a, b and σ are positive constants. Here, b is the mean-
reverting level, a is the speed of mean reversion, and σ is the volatility.
Vasiček model is a version of the so-called Ornstein-Uhlenbeck (OU)
process.

The simplicity of this model is its attractive feature along with its
tractable (analytic) solution to the bond pricing problem.

The drawback of this model though is that rt is normally distributed.
Hence, rt has a positive probability of hitting 0 or negative values. One
may choose appropriate model parameters to minimise of this event
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happening.

13. An important feature of interest-rate dynamics is mean-reversion. This
is a result (to some extent) of the intervention of the regulatory author-
ity such as the Feds or Central Bank. When rates are high, economy
tends to slow down and there is low demand for funds from the bor-
rowers. So rates decline.

On the other hand, when rates are low, there tends to be high de-
mand for funds on the part of the borrowers and rates tend to rise.

14. The CIR (1986) model is given by the SDE drt = a(b−rt)dt+σ
√
rtdWt.

This model was proposed to rectify the deficiency (negative rates) of
the Vasiček model. The volatility component contains

√
rt, which does

not permit negative values for rt. This model still has mean-reversion,
but the density is a non-central chi square.

In particular, the CIR model is derived from the sum of squares of
OU processes. That is, r2t := (X1

t )2 + . . . + (Xn
t )2, where each X i

t has

dynamics dX i
t = −α

2
X i

tdt +
σ

2
dW i

t with α and σ being positive con-

stants and X i
0 is known.

15. The Ho-Lee (1984) model is specified by the SDE drt = θ(t)dt+σdWt.
The function θ(t) is chosen in such a way that the model fits the initial
term structure. It may be shown that the function θ(t) can be calcu-
lated from the initial term structure through the forward rate.

16. The Hull-White (1990) model is an extended Vasiček model. It is a
Vasiček model with time-varying parameters, i.e.,

drt = a(t)(b(t)− rt)dt+ σ(t)dWt.
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It offers more flexibility being able to fit more shapes of the yield curve
compared to the capability of the usual Vasiček model.

17. The Vasiček, Ho-Lee, Hull-White and CIR models have analytic bond
price solution. Their bond pricing solutions fall under the category of
exponential affine forms in rt. This means that under these models
B(t, T ) = exp(−rtA(t, T ) +C(t, T )), where A(t, T ) and C(t, T ) are de-
terministic functions of t, T and the specified model parameters.

18. The Black-Karasinski (1990) model attempts to rectify the weakness
of both Vasiček and Ho-Lee models, which is the possibility of getting
negative or zero rates. Under this model, d ln rt = (θ(t)−a(t) ln rt)dt+
σ(t)dWt. That is, the value of rt is log-normal. There is no analytic
solution for the bond price under this model setting.

19. The Black-Derman-Toy (1990) model has the same rt specification as
that of the Black-Karasinski model (i.e., log-normal rt) but with the

condition that a(t) = −σ
′(t)

σ(t)
. Here, a(t) is the mean-reversion rate,

which is only positive if volatility of the short rate is a decreasing
function of time.

6


