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Abstract

• Many test statistics under null hypothesis don’t have closed forms of finite-sample distributions and
hence must reply on asymptotic distributions to find critical values or p-values. This often leads to
inaccurate assessment of the hypothesis tests when sample sizes are relative small.

• One solution is to use response surface regression (RSR) technique. It requires mass simulation to
estimate quantiles of the finite-sample distribution or asymptotic approximation with replications for
each of different sample sizes.

• We use R package Rmpi to implement RSR. Rmpi is a wrapper to MPI, the most used parallel comput-
ing tool. Rmpi has its own interactive master and slaves environment. It can be run under Windows,
Mac OS X, and various Linux platforms.

• Jarque-Bera normality test statistic is used as an example.

Objectives

• Introduce RSR.

• Introduce Rmpi and its various parallel apply functions.

• Implement general procedures of RSR with Rmpi.

• Find RSR for Jarque-Bera normality test.

Background on RSR

• Let T (X) be a statistic of estimating a unknown parameter θ, with sample X = (X1, . . . , Xn). Ex-
cept some simple cases, we don’t have the closed distribution form of T (X). Often we reply on its
asymptotic result for proper inference

an(T (X) − θ)
D−→ W,

where an > 0 and an → 0.

• Under a null hypothesis of interest, we use W to find critical values and/or p-values. This leads to
inaccurate assessment of the hypothesis test when sample sizes are small.

• MacKinnon (2002) proposed to use RSR simulation technique to find quantiles of T (X) under the null
hypothesis.

• Simulation steps in RSR. We assume that X can be simulated under a null hypothesis repeatedly.

– Choose a proper set of sample sizes, say, n = 10, 20, . . . , 90, 100, 200, . . . , 900, 1000, . . . , 5000.

– Choose a proper set of probabilities, say, probs = 0.90, 0.95, 0.99.

– For each sample size n, compute N replications of T (X) and find its corresponding quantiles at
probs. Repeat the same procedure M times in order to find local variations of those quantiles.

• Estimating RSR steps.

– For each probs and sample size n, compute sample mean and variance of quantiles, denote them as
q̄(n, probs) and ¯var(n, probs).

– Set up the regression line

q̄(n, probs) = k0 + k1n
−1/2 + k2n

−1 + k3n
−3/2 + k4n

−2 + error.

– Use R’s lm to find RSR with weights = 1/ ¯var(n, probs) (weighted least squares).

• In order to estimate quantiles reliably, N should be at least 10,000 (prefer 100,000). For the same
reason, M should be at least 100 (prefer 200). With N = 100, 000 and M = 200, total simulations at
each simple size is N ∗ M = 20, 000, 000.

• Regression terms in RSR may differ for different types of statistics. For example, for unit root test,
regression terms n−1, n−2, n−3 are preferred.

• Significance checking of regression terms can be carried out in lm and should be uniformly selected for
all different quantiles.

• When simulation is carried out on a parallel cluster, it is important to choose and activate a proper
parallel random number generator.

Rmpi package for R

• There are many parallel computational tools. Among them, Message Passing Interface (MPI) is the
most widely used framework for parallel computing.

• MPI is not a new programming language; rather it is a collection of over 200 functions in either C(++)
or Fortran.

• Rmpi (Yu, 2002) is an R interface (wrapper) to MPI.

• Rmpi is one of two core packages used for R’s High-Performance Computing (HPC).

• Rmpi can be run under Windows, Mac OS X, and various Linux platforms though it does take a
considerable time to setup initially.

• Additional information of parallel packages used for R’s HPC can be found at http://probability.
ca/cran/web/views/HighPerformanceComputing.html.

• Rmpi implements a set of MPI API extensions specifically designed for R or R slave environments.

– MPI C-level functions are ported as R functions.

– Rmpi loads MPI environment automatically.

– Each running R (master or slave) is a stand alone process with MPI capabilities.

– Rmpi is capable of exchanging complicated datasets.

– Rmpi can call either rlecuyer or rsprng package to activate parallel random number generator.

– Rmpi allows lower level programming or interacts with other non R processes.

• Rmpi has a set of parallel apply functions that can be used without excessive MPI codes.

– mpi.parApply used as apply.

– mpi.parLapply used as lapply.

– mpi.parRapply used as rapply.

– mpi.parSapply used as sapply.

– mpi.parReplicate used as replicate.

• An example of using mpi.parReplicate. Assume that myfun() will be run repeatedly n times.

mpi.setup.rngstream() #activiate random number generator

mpi.bcast.Robj2slave(myfun) #send myfun object to slaves

mpi.parReplicate(n, myfun()) #repeat myfun() n times

This will send myfun() to all available R slaves with jobs equally divided among slaves. A useful option
is job.num (≥ total number of slaves). It splits n jobs into job.num junks. This allows faster slaves to
do more jobs (load balancing).

Rmpi implementation of RSR

• Implementation of RSR involves many N replications (jobs) which can be run independently on any
of available R slaves. This is a typical “embarrassing parallel” job which is common for many Monte
Carlo simulations.

• R master and slaves must coordinate with each other to avoid any deadlocks or race conditions.

• From R master point of view, jobs can be carried out through “push” them to slaves or “pull” them
from salves. “push” is used to implement RSR.

• When R master pushes jobs to slaves, load balancing must be considered. To achieve load balancing
for RSR, master will push jobs with largest sample sizes first to slaves.

• Functions used in implementing RSR.

– mpi.rsr is the main function used by end users.

– slaves.rsr is used by all slaves.

– mpi.bcast.Robj2slave is used to send all necessary R objects to slaves.

• Flow charts of the function mpi.rsr

– Tell slaves to run the function slave.rsr.

– Send all necessary R objects to slaves.

– Send first round of jobs with the largest sample sizes to slaves.

– Have a while loop sending jobs to slaves. During a loop, collect a result and send out a new job with
first come first reply policy (load balancing).

– Collect final round of results and send signals to terminate each slave.

– Return computed results.

• Sketch of the function slave.rsr.

slave.rsr= function(){

... #codes to collect R objects sent by master

#get the sample size for the first job

loop = mpi.recv(integer(1), type=1, source=0, tag=88)

while (loop > 0) {

out=try(replicate(N, do.call(".tmp.statistic",

c(list(do.call(".tmp.rand.gen",

c(list(n[loop]), rand.arg))), stat.arg))))

out2=try(apply(out,1, quantile, probs=probs))

mpi.send.Robj(out2, dest=0, tag=loop)

loop = mpi.recv(integer(1), type=1, source=0, tag=88)

}

}

• Rmpi codes for RSR can be obtained at www.stats.uwo.ca/faculty/yu/Rmpi.

Jarque-Bera normality test

• In econometrics, Jarque-Bera normality test is commonly used to test if data are from normal distri-
bution population.

• Let X1, . . . , Xn be iid with d.f. F . Then sample skewness and kurtosis are defined as

γ̂n =

∑n
t=1(Xt − X̄)3/n

σ3
n

and κ̂n =

∑n
t=1(Xt − X̄)4/n

σ4
n

,

where X̄ =
∑n

t=1 Xt/n and σ2
n =

∑n
t=1(Xt − X̄)2/n.

• Then Jarque-Bera statistic is defined as

JB =
n

6
γ̂2
n +

n

24
(κ̂n − 3)2.

• Under H0 : F =normal, JB → χ2(2) in distribution as n → ∞.

• On a cluster with 56 CPUs (Intel Xeon E5345 2.33GHz), it took about 4 hours to compute RSR for
JB. Total CPU hours = 4*56 = 224 hours ≈ 9 days.

• 95% quantile RSR for JB

q(n, .95) = 6.01755 − 1.42389/
√

n − 50.25321/n + 54.359752/n3/2.
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