How to speed up your R computation by vectorization and parallel programming

Lecture 1

1. Introduction

- 2. Knowing R data objects/structures and functions
- 3. Some examples
- 4. Monte Carlo simulation and apply functions

Introduction

- The main purpose of this workshop is to introduce you how to speed up your R computation by vectorization, interfacing and coding in C/C++ level, and parallel programming
- The first improvement of your R codes, also easiest to implement, is to vectorize the codes as much as possible (Lecture 1)

- For some computations such as recursive looping in time series, MCMC, etc, porting R codes into C/C++ level can speed up dramatically (Lecture 2)
- With the above improvements, if the computation time still requires weeks or months to finish, you need to work with parallel programming:
 a big computation job must be broken down into many small parts with which they can be run concurrently
- Possible reasons for large computation: data are too big or/and models/methods are too complicated
- Do you have any other reasons?
- Lecture 3 will introduce you to parallel programming environment, terminologies, hardware and software, and how to run embarrassing parallel on a single PC with multi-cores
- Lecture 4 will introduce you to MPI and some basic MPI operations and how to use R package Rmpi to run R codes in a supercomputer such as SHARCNET
- Is parallel programming hard, and if so, what can you do about it?
 - * Added complexity: Computation must be broken down into many small parts
 - * Parallel programming is error-prone which makes debugging much hard

- \star Too little knowledge of new, innovative parallel cluster systems
- * ...
- Facts: parallel programming was hard when it was implemented at C or Fortran level
- R, an interpreted language, shows its advantage in parallel programming
 - ★ R has advanced data structure and management
 - $\star\,$ It is relatively easy to move data among computation jobs in R
 - \star No compiling is required to run parallel computing in R

Knowing R data objects/structures and functions

- Vectors
 - ★ Three basic vectors: integer, double, and character vectors
 - ★ They are the simplest data objects
 - Vectorization: Treat vectors as the smallest objects and carry out all computations as though they are like single numbers (without any explicit looping)
 - ★ A simple example:
 - > y=sin(x)

- ★ Looping way
 - > y=double(length(x))
 - > for (in in 1:length(x)) y[i]=sin(x[i])
- Other data objects
 - ★ Matrix and data.frame: ordered set of vectors with equal length
 - ★ List: a collection of objects; useful for outputs rather than inputs
- Logical expressions of vectors

$$\star$$
 ==,!=, $<,>,<=,>=$,|, &, all, any

- ★ TRUE (=1), FALSE (=0)
- * Extremely useful to work with subsets of vectors (matrices, data.frames, etc)
- \star An example: x a vector of p values, calculate rejection rate of 0.05 level

> mean(x > 0.05)

- \star Another example: remove all missing values in a vector x
 - > x=x[!is.na(x)]

- Some useful functions with vectors as inputs
 - ★ Creating vectors: c, rep, :, seq
 - ★ Find attributes of a vector: length, mode, class, names
 - ★ Other functions:
 - * as.integer, as.double, is.integer, is.double, ...
 - * mean, sum, abs, rank, order, ...
- Structure of R functions
 - * new_function_name = function(arguments){

```
+ Function body (R expressions)
```

- + Return values, Side Effects
- }
- It is crucial to prepare arguments=inputs well in advance and put all required data objects into arguments
- * Avoiding accessing global data objects in function body by all means
 - * Global objects: Any objects that are created outside a function are global objects related to this function
 - * Local objects: Any objects created in a function are temporary and will be lost after exiting the function

- Programming Style
 - ★ Modularize your codes
 - ★ Comment your codes
 - ★ Document your codes
 - ★ Use proper indent
 - ★ Use existing functions
 - ★ Use parentheses to make grouping explicitly
 - ⋆ Avoid unnecessary looping

Some examples

- Rejection method
 - \star density of interest: $f(x), a \leq x \leq b$
 - \star a known function: $M(x) \geq f(x), a \leq x \leq b$
 - * algorithm: let m(x)=M(x)/(integral of M over [a,b])
 - \star step1: Generate T with the density function m(x)
 - ★ step2: Generate U of Unif[0, 1]. If $M(T) * U \leq f(T)$ then X = T else go step1

- \star R codes
 - * Assume: a, b finite, m(x)— unif[a,b]
 - * Simulate one observation
 - * Create a vector
 - Vectorized method
- Simulate mixture distributions
 - ★ Mixture distribution:

$$M(x) = \alpha_1 F_1(x) + \dots + \alpha_k F_k(x),$$

where $\alpha_i > 0$, $\alpha_1 + \cdots + \alpha_k = 1$, and $F_i(x)$ is a CDF for $i = 1, \ldots, k$

- ★ Algorithm:
 - 1. Generate U following Binomial $(\alpha_1, \ldots, \alpha_k)$ or generate U = i with probability $\alpha_i, i = 1, \ldots, k$
 - 2. If U = i, generate M according to the distribution $F_i(x)$
- Simulate a mixture of normals (normal with outliers)

```
95%normal(mu, sigma<sup>2</sup>)+5%normal(mu, (k*sigma)<sup>2</sup>)
```

- ★ Simulate a mixture of 4 distributions
 - * A loop will work but is not efficient
 - * Using replicate results no much improvement
 - * Vectorized way is much more efficient
- Find a MLE in parameter estimation
 - * density: f(x,theta)
 - \star data x
 - * log likelihood l(theta,x)=sum of log f(x, theta)
 - \star vectorization: f(x, theta) can take vector x rather than f(x[i],theta)
- Work with ecdf function
 - \star ecdf takes a vector as input and outputs as a function
 - ★ ecdf's output can take a vector as input
 - ★ Vectorization can be done
- Summary: Vectorization is not difficult to implement as long as computation can be carried in "parallel" way

Monte Carlo simulation and apply functions

- A typical simulation procedures
 - $\star\,$ DGP (data generating process): need to produce data x
 - ★ Modeling: a specific model under consideration
 - \star Estimation: use model data to estimate θ (pretend it is unknown)
 - ★ Start the loop: Carry out the real simulation
 - * Need to choose sample sizes
 - * Need to choose simulation sizes
 - * Proper use of replicate function or apply function
 - ★ Analyze simulation results
- Before starting the loop, it is very important to implement one simulation as efficient as possible
- Use R's apply functions: apply, lapply, sapply, replicate, etc to start the loop
 - * replicate(10000, one.simulation(n, theta))
 - * sapply(rep(n, 10000), one.simulation, theta=theta)
- If simulation takes much long time, you may try to use parallel versions of apply functions