Lecture 3

1. What is parallel computing and why is it useful in statistical computing?

2. How do we set up or utilize a parallel computer/cluster

3. Introduce some parallel R packages and use parallel apply functions to do so-called "embarrassingly

parallel

What is parallel computing and why is it useful in statistical computing?

e Parallel computing is a form of computation in which many calculations are carried
out , operating on the principle that large problems can be divided into
smaller ones

e In parallel (parallelism): smallers jobs are running concurrently

e Simply, a task can be broken into many small tasks that can be executed



If a task needs 10 hours of CPU time to finish, it still needs 10 hours of CPU time to
finish whether it is running in parallel or not

If the above task can be broken into 10 small tasks, each small task needs at least 1
hour of CPU time to finish

If all small tasks are executed .~ then the above task finishes about 1
hour of real time

Except in rare circumstances, the above task should take over 1 hour of real time to
finish after counting the overheads of splitting tasks and network communications

Why do we need parallelism?

R itself is written for serial computation. lts computation speed was determined by
frequency scaling of a CPU until 2004

However, increasing power consumption and heating by a CPU chip lead to the end
of frequency scaling as the dominant computer architecture paradigm

Moor's law (refer to CPU speed) is no longer true from serial computation point of
view. Instead it is measured with multi-core chip and parallelism in mind

To speed up R jobs, we need parallelism to utilize multi-core CPUs or cluster of
computers



e Question: More CPUs, more speed-up?
Answer: Speed-up follows Amdahl's law (and Gustafson's law)

Let o be the fraction of running time a sequential program spends on non-parallelizable
parts, then

Maximum Speedup = —
«



20.00

18.00

16.00

14.00

12.00

10.00

Speedup

8.00

6.00

4.00

2.00

0.00

Amdahl’s Law

Number of Processors

——
]
/
d .
/ Parallel Portion
/ 500/0
/ — 75%
90%
/ —— 95%
/
/
"
/ A
/ //
V/
]
]
<t o] O Al <t [e0) (o) (q\] <t o] (o] Al <t (o 0]
— (48] © Al Te] — Al < (@] (0] (o 6] O
— Al o o o o - (ap) N~

65536



e Some parallel terminologies

Embarrassingly parallel

+ A task can be divided into many stand alone small tasks

« Each small task can be executed independently one another

x No communications between small tasks

Embarrassingly parallel applications are considered the easiest to parallelize

Many statistical modeling and simulation can be done in embarrassingly parallel

+x Monte Carlo simulation

« (Double) bootstrap

+ Finance mathematics

+ Permutation tests

Implicit parallelism: Jobs are automatically parallelized without users interferences
+x Some R packages can do it: pnmath, multicore, etc

x There are many restrictions: portability, scalability?

Explicit parallelism: Allow or force the programmer to annotate his/per program
indicate which parts should be executed as independent parallel tasks

+ R packages in this category: parallel, Rmpi, snow, and many others



+ Advantages: portability and scalability

e Other statistical computing can be done in parallel

Data mining
Graph or image analysis
Spatial stochastic modeling

How do we set up or utilize a parallel computer/cluster?

e Multi-core PC (Windows, Mac OS X, Linux) is a parallel computer

No need to set up as far as hardware concerns unless multiple PCs are linked through
network

Multi-core: 2 cores, 4 cores, 6 cores, ...

A workstation with 32 cores with 1 TB RAM

Do need proper software to support parallel programming/computing

e Beowulf Clusters
A collection of computers linked with high speed network



A computer can have one CPU or multiple CPUs

A computer can have either INTEL, AMD, or other vendors's CPUs

Most used OS: Linux or other unix

OS can be Windows or Mac OS X

Advantages of using Linux

x OS is free

x Most parallel software is free and is properly configured

+ Very reliable; uptime can be many months

Beowulf clusters are particularly well suited to implement process-level parallelism






]
=
=
=
3







SHARCNET (Shared Hierarchical Academic Research Computing Network)
« http://www.sharcnet.ca

« One of the largest cluster in Canada

« Parallel R jobs can be submitted by using Rmpi

e Depending on budget, a cluster can be setup with relative short time

e Now we need software

Introduce some parallel R packages and use parallel apply functions to do
so-called ” embarrassingly parallel”

e Many parallel packages in R can be found through
“CRAN Task View: High-Performance and Parallel Computing with R”
http://cran.r-project.org/web/views/HighPerformanceComputing.html

e Rmpi and snow are two core parallel packages in R
e Many functions in snow are implemented in the parallel package

e The parallel package
R 2.14.0 or newer includes the parallel package as default


http://cran.r-project.org/web/views/HighPerformanceComputing.html

It includes several parallel versions of apply functions
It also comes a function to setup parallel RNG
Limitations:

Runs only on shared memory systems;

Implement embarrassing parallel only

e Usages of parallel package

Find the number of cores: detectCores()

Create a cluster (a collection of workers)

cl= makeCluster(detectCores())

Parallel lapply, sapply

parLapply(cl, rep(1000000, 400), function(n)mean(rnorm(n)))
parSapply(cl, rep(1000000, 400), function(n)mean(rnorm(n)))
Use clusterExport to export all necessary R objects (data, functions) to workers
Enable parallel RNG

clusterSetRNGStream(cl)

Enable parallel RNG with a specific seed
clusterSetRNGStream(cl, iseed=123)

Stop the cluster: stopCluster(cl)



e Adapt your codes (Monte Carlo) to use the parallel package
Write your codes into multiple functions: f1,f2, ..., final_fun
Index the final_fun:
final_fun = function(i, datal=datal, data2=data?2,...)
Make sure the function final_fun is running properly
Export all necessary functions and data
clusterExport(cl, c("funl”,” fun2"))
clusterExport(cl, c("datal”," data2"))

Use one of parallel functions

parSapply(cl, 1:N, final_fun)

If the output of final_fun is a vector, then parSapply returns a matrix. Otherwise a
list is return

e Make sure to activate parallel RNG with all Monte Carlo simulation

e Don't forget to shutdown the cluster: stopCluster(cl)



