
1

How to speed up your R computation by vectorization and parallel
programming

Lecture 3

1. What is parallel computing and why is it useful in statistical computing?

2. How do we set up or utilize a parallel computer/cluster

3. Introduce some parallel R packages and use parallel apply functions to do so-called ”embarrassingly

parallel

What is parallel computing and why is it useful in statistical computing?

• Parallel computing is a form of computation in which many calculations are carried

out simultaneously, operating on the principle that large problems can be divided into

smaller ones

• In parallel (parallelism): smallers jobs are running concurrently

• Simply, a task can be broken into many small tasks that can be executed simultaneously



2

• If a task needs 10 hours of CPU time to finish, it still needs 10 hours of CPU time to

finish whether it is running in parallel or not

• If the above task can be broken into 10 small tasks, each small task needs at least 1

hour of CPU time to finish

• If all small tasks are executed simultaneously, then the above task finishes about 1

hour of real time

• Except in rare circumstances, the above task should take over 1 hour of real time to

finish after counting the overheads of splitting tasks and network communications

• Why do we need parallelism?

? R itself is written for serial computation. Its computation speed was determined by

frequency scaling of a CPU until 2004

? However, increasing power consumption and heating by a CPU chip lead to the end

of frequency scaling as the dominant computer architecture paradigm

? Moor’s law (refer to CPU speed) is no longer true from serial computation point of

view. Instead it is measured with multi-core chip and parallelism in mind

? To speed up R jobs, we need parallelism to utilize multi-core CPUs or cluster of

computers



3

• Question: More CPUs, more speed-up?

Answer: Speed-up follows Amdahl’s law (and Gustafson’s law)

Let α be the fraction of running time a sequential program spends on non-parallelizable

parts, then

Maximum Speedup =
1

α



4



5

• Some parallel terminologies

? Embarrassingly parallel

∗ A task can be divided into many stand alone small tasks

∗ Each small task can be executed independently one another

∗ No communications between small tasks

? Embarrassingly parallel applications are considered the easiest to parallelize

? Many statistical modeling and simulation can be done in embarrassingly parallel

∗ Monte Carlo simulation

∗ (Double) bootstrap

∗ Finance mathematics

∗ Permutation tests

∗ ...

? Implicit parallelism: Jobs are automatically parallelized without users interferences

∗ Some R packages can do it: pnmath, multicore, etc

∗ There are many restrictions: portability, scalability?

? Explicit parallelism: Allow or force the programmer to annotate his/per program

indicate which parts should be executed as independent parallel tasks

∗ R packages in this category: parallel, Rmpi, snow, and many others



6

∗ Advantages: portability and scalability

• Other statistical computing can be done in parallel

? Data mining

? Graph or image analysis

? Spatial stochastic modeling

? ...

How do we set up or utilize a parallel computer/cluster?

• Multi-core PC (Windows, Mac OS X, Linux) is a parallel computer

? No need to set up as far as hardware concerns unless multiple PCs are linked through

network

? Multi-core: 2 cores, 4 cores, 6 cores, ...

? A workstation with 32 cores with 1 TB RAM

? Do need proper software to support parallel programming/computing

• Beowulf Clusters

? A collection of computers linked with high speed network



7

? A computer can have one CPU or multiple CPUs

? A computer can have either INTEL, AMD, or other vendors’s CPUs

? Most used OS: Linux or other unix

? OS can be Windows or Mac OS X

? Advantages of using Linux

∗ OS is free

∗ Most parallel software is free and is properly configured

∗ Very reliable; uptime can be many months

? Beowulf clusters are particularly well suited to implement process-level parallelism



8



9



10



11

? SHARCNET (Shared Hierarchical Academic Research Computing Network)

∗ http://www.sharcnet.ca

∗ One of the largest cluster in Canada

∗ Parallel R jobs can be submitted by using Rmpi

• Depending on budget, a cluster can be setup with relative short time

• Now we need software

Introduce some parallel R packages and use parallel apply functions to do
so-called ”embarrassingly parallel”

• Many parallel packages in R can be found through

“CRAN Task View: High-Performance and Parallel Computing with R”

http://cran.r-project.org/web/views/HighPerformanceComputing.html

• Rmpi and snow are two core parallel packages in R

• Many functions in snow are implemented in the parallel package

• The parallel package

? R 2.14.0 or newer includes the parallel package as default

http://cran.r-project.org/web/views/HighPerformanceComputing.html


12

? It includes several parallel versions of apply functions

? It also comes a function to setup parallel RNG

? Limitations:

Runs only on shared memory systems;

Implement embarrassing parallel only

• Usages of parallel package

? Find the number of cores: detectCores()

? Create a cluster (a collection of workers)

cl= makeCluster(detectCores())

? Parallel lapply, sapply

parLapply(cl, rep(1000000, 400), function(n)mean(rnorm(n)))

parSapply(cl, rep(1000000, 400), function(n)mean(rnorm(n)))

? Use clusterExport to export all necessary R objects (data, functions) to workers

? Enable parallel RNG

clusterSetRNGStream(cl)

? Enable parallel RNG with a specific seed

clusterSetRNGStream(cl, iseed=123)

? Stop the cluster: stopCluster(cl)



13

• Adapt your codes (Monte Carlo) to use the parallel package

? Write your codes into multiple functions: f1,f2, ..., final fun

? Index the final fun:

final fun = function(i, data1=data1, data2=data2,...)

? Make sure the function final fun is running properly

? Export all necessary functions and data

clusterExport(cl, c(”fun1”,”fun2”))

clusterExport(cl, c(”data1”,”data2”))

? Use one of parallel functions

parSapply(cl, 1:N, final fun)

? If the output of final fun is a vector, then parSapply returns a matrix. Otherwise a

list is return

• Make sure to activate parallel RNG with all Monte Carlo simulation

• Don’t forget to shutdown the cluster: stopCluster(cl)


