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Problem 1. Let q : [0, 1]2 → [0, 1] be a non-decreasing in both arguments and Lipschitz continuous
function, such that q(0, x) = q(x, 0) = 0 and q(x, 1) = q(1, x) = x for all x ∈ [0, 1]. Given any rectangle
R := [x1, x2]× [y1, y2] ⊆ [0, 1]2, its q-volume is defined by

Vq(R) = q(x2, y2)− q(x2, y1)− q(x1, y2) + q(x1, y1). (1)

Prove that irrespective of q and R, q-volume (1) is always in the interval [−1/3, 1]. Are the end-points
of the interval [−1/3, 1] attainable for some q andR? Can there be a negative q-volume?

Problem 2. Given a probability space (Ω,F ,P) and a random variable X : Ω→ R, the Value-at-Risk
of X at level α ∈ (0, 1) is defined by Varα(X) = inf

{
m ∈ R : P(X + m < 0) ≤ α

}
. If X ∈ L1,

then its Expected Shortfall at level α ∈ (0, 1] is defined by ESα(X) = 1
α

∫ α
0

Varβ(X)dβ. Show that if
random variables Xn ∈ L1, n ∈ N, and X ∈ L1 are such that Xn

a.s.−→ X when n→∞, then

ESα(X) ≤ lim inf
n

ESα(Xn) (2)

whenever a ∈ (0, 1). Construct a probability space (Ω,F ,P) and random variables Xn ∈ L1, n ∈ N,
and X ∈ L1 satisfying Xn

a.s.−→ X such that statement (2) fails when α = 1.

Problem 3. Let (Ω,F ,P) be a probability space, and let X : Ω → R and Y : Ω → R be two random
variables. Denote their probability laws byLX andLY , and let F andG denote the respective distribution
functions. When holds, the integration by parts formula (equation) is∫

(a,b]

G(x)LX(dx) = F (b)G(b)− F (a)G(a)−
∫
(a,b]

F (x)LY (dx). (3)

Prove that equation (3) holds when F and G have no common points of discontinuity in the interval
(a, b] ⊆ R, and argue whether or not the condition of having no common points of discontinuity in
(a, b] is necessary for the validity of equation (3). Furthermore, argue whether or not the semi-closed
integration interval (a, b] can be replaced by the closed interval [a, b] in equation (3).
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