or  Google Search
Department of Statistical and Actuarial Sciences
Center of Actuarial Excellence (CAE)
People

Associate Professor

Dr. Kristina Sendova (Graduate Chair)
Office WSC 223
Phone519-661-2111 ext 88232
Emailkpavlova@uwo.ca

Ph.D. University of Waterloo, 2004
Publications
  • Li, Z.*, Sendova, K. P. and Yang, C.* (2016). On a perturbed dual risk model with dependence between inter-gain times and gain sizes. Communications in Statistics – Theory and Methods, to appear.
  • Li, Z.* and Sendova, K. P. (2015). On a ruin model with both interclaim times and premiums depending on claim sizes. Scandinavian Actuarial Journal, 3 245-265.
  • Yang, C.* and Sendova, K. P. (2014). The ruin time under the Sparre-Andersen dual model. Insurance: Mathematics and Economics , 54 28-40.
  • Yang, C.* and Sendova, K. P. (2014). The discounted moments of the surplus after the last innovation before ruin under the dual risk model. Stochastic Models, 30(1) 99-124.
  • Li, S. and Sendova, K. P. (2013). The finite-time ruin probability under the compound binomial risk model. European Actuarial Journal, 3(1) 249-271.
  • Zitikis, R. and Sendova, K. P. (2012). The order statistic claim process with dependent claim frequencies and severities. Journal of Statistical Theory and Practice, 6 597-620.
  • Labbé, C., Sendov, H. S. and Sendova, K. P. (2011). The Gerber-Shiu function and the generalized Cramér-Lundberg model. Applied Mathematics and Computation, 218 3035-3056.
  • Landriault, D. and Sendova, K. P. (2011). A direct approach to a first-passage problem with applications in risk theory. Stochastic Models, 27 (3) 388-406.
  • Mitric, I. -. .* and Sendova, K. P. (2011). On a multi-threshold compound Poisson model with interest. Scandinavian Actuarial Journal, (2) 75-95.
  • Zhang, Y.* and Sendova, K. P. (2010). Interest bearing surplus model with liquid reserves. Journal of Insurance Issues, 33 (2) 178-196.
  • Mitric, I. -. .*, Tsai, C. C. -. . and Sendova, K. P. (2010). On a multi-threshold compound Poisson process perturbed by diffusion. Statistics and Probability Letters, 80 366-375.