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CHAPTER 17
CONSTRUCTING TRANSFER FUNCTION-NOISE MODELS

17.1 INTRODUCTION

Hydrologists and other types of natural scientists often require a stochastic model which
realistically describes the dynamic relationships connecting a single output series with one or
more input series. For example, a stochastic model can be developed for formally modelling the
mathematical linkage of a single output or response series such as seasonal riverflows to one or
more input or covariate series such as precipitation and temperature. When inputs are incor-
porated into a stochastic model, the manner in which the input dynamically affects the output
over time is mathematically modelled. For this reason, stochastic models which possess inputs
are often referred to as dynamic models. Because the dynamic characteristics of the physical sys-
tem being modelled are incorporated into the overall stochastic or dynamic model, this allows
for more accurate forecasts to be made (see Chapter 18) and for more realistic values to be gen-
erated in simulation studies. Consequently, the main purpose of this chapter is to describe a
flexible dynamic model which can be applied to many kinds of environmental problems where
the data can be either nonseasonal or seasonal. The particular kind of dynamic model which is
studied is called a transfer function-noise model where the acronym TFN is used for denoting
transfer function-noise.

Throughout the chapter, practical applications are employed for clearly explaining how
TFN models can be easily constructed by following the identification, estimation and diagnostic
check stages of model construction. In particular, for model identification it is clearly pointed
out how both a sound physical understanding of the problem being studied and comprehensive
statistical procedures can be employed for designing an appropriate dynamic model to fit to a
given set of time series. When designing a suitable dynamic model, usually it is most instructive
and convenient to consider simpler models and to gradually increase the complexity of the
model until a reasonable model is built. Accordingly, TFN models with a single input are enter-
tained in the next section. The ways in which the residual CCF from Section 16.2.2, as well as
two other techniques, can be used in model identification are thoroughly explained in Section
17.3 along with other model building techniques. For the application in Section 17.4.2 for a
dynamic model having a single input, a TFN model is developed for relating average monthly
upstream riverflows to downstream flows. Also, because the causality studies in Chapter 16
indicate that the average August temperature significantly affect the average annual flows of the
Gota River, a dynamic model is constructed in Section 17.4.3 for rigorously describing this rela-
tionship.

For the situation where there is more than one input series, the efficacy of the model build-
ing techniques is clearly demonstrated in Section 17.5.4 by designing a TFN model to describe
the dynamic relationships connecting a monthly river flow series in Canada to precipitation and
temperature covariate series. In the process of selecting the most appropriate model to fit to the
series, a number of useful modelling procedures are suggested. Often there are more than one
precipitation and temperature series and a statistical procedure is presented for creating a single
sequence to represent the precipitation or temperature series. This approach can be utilized in



574 Chapter 17

place of the rather ad hoc methods such as the Isohyetal and Thiessen polygon techniques (see
Viessman et al. (1977) for a description of the Isohyetal and Thiessen polygon methods). To
decide upon which series to include in the dynamic model and also design the form of the
transfer function connecting a covariate series to the output, cross-correlation analyses of the
residuals of models fitted to the series can be employed. The TFN model which is ultimately
chosen by following contemporary modelling procedures can be used for applications such as
forecasting and simulation and also providing insights into the physical characteristics of the
phenomena being examined. '

A TFN model is ideally designed for reflecting the physical characteristics of many natural
systems. In a watershed, for example, the two basic equations that govern flow are the con-
tinuity equation or conservation of mass and the conservation of momentum. Delleur (1986)
demonstrates that a TFN model can represent the discrete-time version of the continuous-time
differential equation that is derived from the above two conservation principles. Because a TFN
model can be readily calibrated by following the three stages of model construction given in this
chapter and also the model reflects the physical characteristics of the system being described, the
TFN model is ideally suited for real-world applications in hydrology and other sciences. For a
discussion of the physical justification of ARMA models, the reader may wish to refer to Section
3.6.

Besides the TFN modelling applications presented in Sections 17.4.2, 17.4.3 and 17.5.4,
other case studies are presented in Chapter 18 with the forecasting experiments. The interven-
tion model, which in reality constitutes a special class of TFN models for modelling the affects
of external interventions upon the mean level of the output series, can also handle multiple
covariate series. Applications of intervention modelling for which there are input series are
presented in Sections 19.5.4 and 22.4.2. Because TFN models work so well in practice, there are
many published case studies of TFN in water resources, environmental engineering as well as
other fields. Some of the many TFN modelling applications in the physical sciences include
contributions in hydrology (Anselmo and Ubertini, 1979; Baracos et al., 1981; Hipel et al., 1992;
Chow et al., 1983; Thompstone et al., 1983; Snorrason et al., 1984; Hipel et al., 1985; Maidment
et al., 1985; Olason and Watt, 1986; Fay et al., 1987; Gurnell and Fenn, 1984; Lemke, 1990,
1991), dendroclimatology (Li, 1981, Ch. 8), modelling wastewater treatment plants (Capodaglio
et al., 1992), and fish population studies (Noakes et al., 1987; Campbell et al., 1991; Welch and
Noakes, 1991). Finally, a stochastic model closely related to the TFN model is defined and
evaluated in Section 17.6.

17.2 TRANSFER FUNCTION-NOISE MODELS WITH A SINGLE INPUT

17.2.1 Introduction

For many natural systems it is known a priori if one variable, or set of variables, causes
another. Lake levels, for instance, are obviously affected by precipitation. In situations where it
is uncertain if one physical phenomenon causes another, the residual CCF discussed in Section
16.2.2 can be employed. For example, one may wish to find out if sunspots cause riverflows, as
is done in Section 16.3.3. Whatever the case, subsequent to establishing the existence and direc-
tion of causality between two phenomena, a TFN model can be built to model mathematically
the dynamical characteristics of the physical system.
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Consider the situation where a variable X causes a variable Y. Let the set of observations
for the variables X and Y be represented by the series X, and Y, , respectively, for

t=0,12,...,n. The X, and Y, series may be transformed using a transformation such as the
Box-Cox transformation in [3.4.30] to form the x, and y, series, respectively. When the data are

seasonal, the seasonality in each series may be removed using the deseasonalization techniques
presented in Section 13.2.2. No matter what kinds of transformations are performed before fit-
ting the dynamic model, x, and y, will always be used to represent the transformed series.

Qualitatively, a TFN model can be written as
output = dynamic component + noise

The manner in which the input, x, , dynamically affects the output, y,, is modelled by the

dynamic component. However, usually influences other than the input variable X will also
affect Y. The accumulative effect of other such influences is called the noise or disturbance
where the noise is usually correlated and may be modelled by an ARMA or ARIMA model. The
dynamic and noise components are now discussed separately.

17.2.2 Dynamic Component
The dynamic relationship between X and Y can be modelled by a transfer function model

Ye=VoX + VX +VaX, o+ - -
= Vv(B)x,

where V(B) = vo+ V;B + Vv,B% + - - - , is referred to as the transfer function and the coefficients,
Vo,V1sVa, - . . , are called the impulse response function or impulse response weights. When there
are nonzero means p, and i, for the y, and x, series, respectively, the transfer function model
can be written in terms of deviations from the mean level as

Y= By =V(B)(x, — 1)

The deterministic transfer function models how present and past values of X affect the current
value of Y. The x, series is often referred to as the input, covariate or exogenous series, while

the y, series is called the output, response or endogenous series.

Recall from [3.4.18], that for an ARMA model, the infinite MA operator is written in terms
of two finite operators as

0(B)

¥YB)=———

@) ¢(B)

where W(B) is the infinite MA operator, 8(B) is the MA operator of order ¢ and ¢(B) is the AR
operators of order p. In practical applications, only a small number of AR and MA parameters
are required to model a given series. Hence, the infinite MA operator ¥(B) can be parsimoni-
6(B)
¢(B)

ously represented by . In a similar fashion, the transfer function, v(B) , can be economi-

cally written as
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WB) _ Qo= 0B - @B’ - - - @,B"
5B) ~ 1-08 -8B - ~5,8

v(B) =

where oXB) is the operator of order m in the numerator of the transfer function and
©g,®p, * * * ,(y,, are the parameters of W(B) ; and 8(B) is the operator of order r in the denomina-

tor of the transfer function and §,,5,, . . . , §,, are the parameters of &B) .

If a system is stable, a finite incremental change in the input results in a finite incremental
change in the output. In other words, a bounded change in the covariate variable causes a
bounded change in the response. For the case of the transfer function model, this implies that the
infinite series vo+ v,B + v,B? + ..., converges for IBI S 1. Because the convergence of v(B) is

controlled by the operator &B) whxch is in the denominator of V(B) , the requirement of stability
is that the roots of the characteristic equation &B8) = 0 lie outside the unit circle (Box and Jen-
kins, 1976, Ch. 10). Notice that the requirement of stability for a discrete transfer function
model is analogous to the stationarity requirement for an ARMA model in Section 3.4.2 where
the roots of $(B) = 0 must lie outside the unit circle.

In some situations, there may be a delay time before X affects Y. For instance, when an
organic pollutant is discharged into a river, there may be a delay time before certain biological
processes take place and the dissolved oxygen level of the river drops. If this delay time is
denoted by b, where b is a positive integer for use in a model using evenly spaced discrete time
points, the transfer function model can be written as

= VB, - ) = ‘g((B)) 9B) pbix, — ) [17.2.1]

When the parameters for the (B) and &(B) operators are known, as is the case when they
are estimated from the given data, the v, coefficients can be determined by equating coefficients

of BX in
8(8)v(B) = (B)B®
The v, weights can be more conveniently determined by expressing the above equation as

&(B)Vy,p =—, fork=12,. [17.2.2]

where B operates on the subscript in the v, coefficient and therefore Biviy = Vitb—j s Vb =W
andv,=0fork <b;w,=0fork <Oandk >m.

As an example of how to use [17.2.2], consider the situation where v(B) = -lo—_)g.% anditis
1

necessary to determine the impulse response function where @ and 5, are given. For this
transfer function, [17.2.2] becomes

(1-8;B)Vpyy =~

Because there is a delay factor of one, Vo =0and v; = @y . When k=1 in the above equation
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(1-8,B)v,=-w; =0
or

vy =8;v; =0
Therefore,

V2 =8;v; =8,y
For k=2

(1-8,B)v3=-,=0

v3=08,v,=0

v =8,V = 8wy
In general,

v =8y

Because the v, weights are calculated in a similar fashion to the y, coefficients in the infinite

MA operator for an ARMA model, the reader can refer to Section 3.4.3 for further examples of
how to determine the impulse response weights.
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Figure 17.2.1. Impulse response function for w, =2 and §; = 0.6.
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When the calculated impulse response function is plotted for the case where wy=2 and
8;=0.6 , the impulse response function is as shown in Figure 17.2.1. Notice that v =0 due to

the delay factor of one in the transfer function v(B) = and that the impulse response

(1-9,B)
function attenuates from lag 2 onwards because of the operator (1-5,B) in the denominator of

the transfer function. The general form of the transfer function, especially the operator 8(B) in
the denominator of the transfer function, allows for great flexibility in the design of a transfer
function for ascertaining the effects of the input upon the output. For example, when a variable
X affects Y after a delay factor of one and the magnitude of the effect upon y, of each x,

decreases more and more for ¢ =1t+1,t+42¢+3,..., then a transfer function of the form

v(B) = may be appropriate.

_9B
(1-5,B)

If the input, x, , in [17.2.1] is indefinitely held at some fixed value for a stable system, the
output, y, , will eventually reach an equilibrium point which is called the steady state level.
Using the form of the transfer function model in [17.2.1], the steady state relationship is

3 /] _uy=g(xt _ux)

where g is called the steady state gain when x, is held indefinitely at a fixed level. Suppose that
(x; = K,) , which is the deviation of the input from the mean level, is kept at a value of +1. Then

)’x"l‘ly=81
=(Vp+V;B + VB2 + )1
=Vo+Vi+Vat -

Consequently, for a stable system, the steady state gain is

=yv, =20
8=2Vi=50y [17.2.3]

For the case where

v(B) = =o(1+8,B +52B%+ ---)B

(1-5,B)
in [17.2.1], the steady state gain is simply

=%
E=1-%,

by substituting B = 1 into the equation.
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17.2.3 Noise Term

In practice, a physical system cannot be realistically modelled by using only the deter-
ministic transfer function model in [17.2.1]. As shown qualitatively below, usually there is noise
left in the system after the deterministic dynamic effects of the input upon the output have been
accounted for.

output —~ dynamic component = noise

Because the noise term, which is denoted by N, , is often autocorrelated and not white, it can be
conveniently modelled using the ARMA model in [3.4.4], as

¢(B)N, = 6(B)a, [17.2.4]
or
_ 6(B)
Ne=0e)

where ¢(B) and 6(B) are the AR and MA operators of orders p and q, respectively, and g, is the
white noise which is IlD(O,caz). Although the g, series can be assumed to be IlD(O,oaz) from a
theoretical viewpoint, for practical reasons the a, must be assumed to follow a given distribution
in order to be able to obtain estimates for the model parameters. Consequently, the a, are
assumed to be NID (0,0’3) and, as demonstrated by practical applications, this assumption does
not restrict the flexibility of the TFN model in any way. In fact, if the g, series were not

assumed to be normally distributed, it would be virtually impossible to obtain efficient estimates
for the model parameters. As shown by the examples in this chapter and also Chapters 18, 19
and 22, for most environmental applications the noise term is stationary and therefore can be
modelled using an ARMA model. Nevertheless, if the noise were nonstationary and differencing
were required, it could be modelled using an ARIMA model.

17.2.4 Transfer Function-Noise Model

By combining [17.2.4] and [17.2.1], an overall TFN model for simultaneously modelling
both the dynamic characteristics and noise contained in the system is formed as

Y = Ky =V(B)(x, = K,) + N,

= 9B po(p )+ 8B), [17.2.5]

&B) oB)
Because the above model possesses both dynamic and stochastic or noise components, it could
perhaps be referred to as a stochastic dynamic model. However, since all of the models dis-
cussed in this text are stochastic in nature, usually this TFN model is simply referred to as a
dynamic model. Also, because the noise term models what the dynamic component cannot
account for, it is assumed that N, is independent of x, in [17.2.5). Since N, is generated by a, and

x, is generated by u, in [16.2.3], this in turn means that the g, series in [17.2.5] is independent of
the u, series in [16.2.3].
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As noted by authors such as Abraham and Ledolter (1983, p. 338) and Vandacle (1983, pp.
263-264), the TFN model can be thought of as a generalization of the usual regression model for
various reasons. Firstly, the model in [17.2.5] allows for the noise term to be correlated whereas
the error term in a regression model is assumed to be white. Secondly, due to the flexible
manner in which the transfer function in [17.2.5] is designed with an operator in both the denom-
inator and numerator, the dynamic relationships between the output and input are more realisti-
cally modelled with a TFN model. As pointed out by Young (1984, p. 104), linear regression
models are primarily utilized in the evaluation of static relationships among variables and are not
generally suitable for use in dynamic systems analysis. Finally, as is also the case with regres-
sion analysis, one or more input series can be incorporated into a TFN model.

17.3 MODEL CONSTRUCTION FOR TRANSFER FUNCTION-NOISE MODELS WITH
ONE INPUT

17.3.1 Model Identification

No matter what type of model is being fitted to a given data set it is recommended to fol-
low the identification, estimation and diagnostic check stages of model development. As is the
case for most of the models in this book, the three stages of model construction for a TFN model
closely parallel those already described for models such as the ARMA model (see Chapters 5 to
7) and the seasonal models (Part VI). Nevertheless, some additional model building techniques
are required, especially for model identification. When designing a TFN model, the number of
parameters required in each of the operators contained in the dynamic and noise transfer func-
tions in [17.2.5] must be identified. The three procedures for model identification described in
this chapter are the empirical approach that has been used when modelling hydrological time
series (Hipel et al., 1977, 1982, 1985), the technique of Haugh and Box (1977) which uses the
residual CCF of Section 16.2.2, and the method of Box and Jenkins (1976) which is based upon
suggestions by Bartlett (1935). The latter two methodologies rely heavily upon the results of
cross-correlation studies and often the first procedure can be used in conjunction with either the
second or third approaches. Subsequent to a description of the identification and other model
building procedures, two practical applications are employed in Section 17.4 for demonstrating
how they work in practice. These and other practical applications show that the empirical iden-
tification approach is usually the simplest to use in practice.

Empirical Identification Approach

The two major steps involved in model identification by the empirical method are as fol-
lows:

(i) Based upon an understanding of the physical phenomena that generated the time series and
also the mathematical properties of the TFN model, identify the transfer function v(B) in
[17.2.5). For example, when modelling a monthly time series where the input is a precipi-
tation time series and the output is a riverflow sequence, it may be known from the physical
characteristics of the watershed that the rainfall for the current month only causes direct
runoff during the present time period and one month into the future. Therefore, it may be
appropriate to employ in [17.2.5] a transfer function of the form
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(i)

V(B) =g - B =vo+V,B

When the present value of the covariate series causes an immediate change in the output,
:» where this change attenuates as time progresses, a suitable transfer function may be

Wy

0 2p2, ...
155 w1+ 8B +d{B“+ --*)

v(B) =

=vo+V;B +V;B>+ ---

The v; coefficients decrease in value for increasing lag since 18,1 < 1 in order for the root
of (1-38,B)=0 to lie outside the unit circle. Hipel et al. (1977, 1982, 1985) present a
numbser of practical applications where a physical understanding of the process in conjunc-
tion with some simple graphical identification techniques are utilized to design transfer
functions for covariate series and also intervention series which are needed when the effects
of external interventions upon the response series must be incorporated into the model (see
Chapters 19 and 22).

After deciding upon the form of v(B) , identify the parameters needed in the noise term in
[17.2.5]. To accomplish this, first fit the model in [17.2.5] to the series where it is assumed
that the noise term is white and consequently the TFN model has the form

Yi =Ry =VB)x; — KBy +ay
In practice, the noise term is usually correlated. Therefore, after obtaining the estimated

residual series, d; , for the above model, the type of ARMA model to fit to the calculated

noise series can be ascertained by following the usual procedures of model development for
a single series described in Chapters 5 to 7. By using the identified form of N, for the noise
term along with the previously designed dynamic component, the TFN model in [17.2.5] is
now completely specified.

Haugh and Box Identification Method

It seems logical that a model similar to the one in [17.2.5] that relates the x, and y, series,

could be developed for connecting their innovation series given as |, and v,, respectively.
Recall from Section 16.2.2 that the p, disturbances are for the ARMA model fitted to the x,
series as

6. (B)(x;—4,) = 6By,

in [16.2.3). Likewise, the v, innovations are formed by prewhitening the y, series using the
ARMA model written as

¢y(B)(yl - p’y) = ey(B )Vg

in {16.2.4]. As shown by Haugh and Box (1977), a TFN model for the residual series can be
written as
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v, =V (B, +N', [17.3.1]
where V(B) = %’%—))- is the transfer function which has the same form as the transfer function in
[17.2.5] except that a prime symbol is assigned to each parameter; N = 9B) a, is the ARMA

T Y@
noise term where the MA operator, ©'(B) , and the AR operator, ¢’(B) , arc designed in the same
fashion as their counterparts in [3.4.4], [16.2.3] or [16.2.4]. In their paper, Haugh and Box
(1977) derive the relationships between the transfer functions in [17.2.5] and [17.3.1] as

wB) _ 4B w'@) %6
38)  ¢,() §(B) 8,(B)

v(B) = [17.3.2]

and

eB) _ 9,B) ¢'B)
oB) ¢,B) ¢'B)
By knowing the form of the operators on the right hand sides of [17.3.2] and [17.3.3], the param-
eters needed for the model in [17.2.5] can be identified. The detailed steps required for execut-
ing this identification process are as follows, where the first two steps follow the development of
the residual CCF described in Section 16.2.2:
(i) Determine the most appropriate ARMA models to fit to the x, and also the y, series by

adhering to the three stages of model construction. In addition to the ARMA model param-
eters, estimates are also obtained for the innovation series in [16.2.3] and [16.2.4] at the
estimation stage of model development. The estimated innovation or residual series, i, and

v, , are formed from the process of prewhitening the given x, and y, series in [16.2.3] and
[16.2.4], respectively using the calibrated ARMA models.

(i) By utilizing [16.2.6], calculate the residual CCF for the 4, and v series, along with the 95%
confidence limits.

(iii) Based upon the characteristics of the residual CCF identify the parameters needed in the
transfer function V'(B) in [17.3.1]. As demonstrated by Haugh and Box (1977, p. 126), the
theoretical CCF for u, and v, is directly proportional to the impulse response function given

by Vig.V'1,V'2, - * * » here

[17.3.3]

V'(B)=-(-g;’(%3)-=v'o+v'18 +VBY+ -

is the transfer function in [17.3.1]. In particular, the kth parameter in Vv'(B) is related to the
theoretical CCF by the equation

V;=0,0,p,K), k=012, [17.3.4]

where 6, and O, arc the theoretical standard deviations for W, and v,, respectively, while
P (k) is the theoretical residual CCF in [16.2.5]. Therefore, the form of the transfer func-

tion can be identified from the residual CCF and when the quantities on the right hand side
of [17.3.4] are replaced by their estimates in [16.2.6], an initial estimate can be obtained for
V', . If, for example, the residual CCF possesses values which are significantly different
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(@iv)

W)

from zero only at lags 0, 1, and 2, the transfer function may be identified as
V/(B) = - ' \B - B> =V + V' B + VB2

When the value of the residual CCF at lag 0 is significantly different from zero, the values
attenuate for increasing positive lags, and the residual CCF values at negative lags are not
significant, then the impulse response function must be designed to mimic this behaviour.
Accordingly, an appropriate transfer function may be

’

V(B) = e — = wy(1+ 8,8 + 578 +..)
(l -SIIB) 0 l l b

=Vo+ VB +V,B2+ -

The above transfer function is suitable because 18’j1 <1 in order for the root of
(1-§&,B) =0 to lic outside the unit circle and this in tum means that (1 - §,B)™! causes
the V'; coefficients to decrease in absolute magnitude with increasing positive lags. A
cyclic pattern in the residual CCF may indicate that 8'(B) should be at least second order in
B.

8'8)
¢'B)
[17.3.1]. As shown by Haugh and Box (1977), ¢'(B) = &'(B) and 6'(B) should be at most of
the order of 8(B) or w’(B) .

The results from steps (i) and (iii) can be substituted into [17.3.2] to obtain the gorm of

B)
¢(B)
[17.3.3). The transfer function-noise model in [17.2.5] has now been completely identified.

in

The residual CCF from step (ii) can also be employed to ascertain the form of

in

v(B) . Likewise, the information from stages (i) and (iv) can be employed to get

Box and Jenkins Identification Procedure

By following the procedure of Box and Jenkins (1976) the model in [17.2.5] can be

designed according to the following steps.

®

(ii)

(iii)

Ascertain the most appropriate ARMA model in [16.2.3] to fit to the x, series by utilizing

the three stages of model construction presented in Part III. At the estimation stage, esti-
mates are obtained for the ARMA model parameters and also the innovation series.

0,(8)

Using the ARMA filter, T{-EE , from step (i), transform the y, series by employing
X

1

6.8 |
B=|——| » [17.3.5]

0:(B)

where the ﬁ, sequence is usually not white noise since the filter in [16.2.4] is not used in
[17.3.5].

After replacing the v, series by the ﬁ, sequence, use [16.2.6] to calculate the residual CCF
for the i, and f, series.
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(iv) Based upon the behaviour of the residual CCF from step (iii), identify the parameters
required in the transfer function, v(B) , in [17.2.5]. As shown by Box and Jenkins (1976, p.
380), the theoretical CCF between the prewhitened input, %, , and the correspondingly
transformed output, B, , is directly proportional to the impulse response function defined in
Section 17.2.2. Consequently, the behaviour of the residual CCF can be utilized to identify
the form of the transfer function in [17.2.5]. If, for instance, the residual CCF values are
not significantly different from zero for negative lags, the estimated CCF at lag zero is sig-
nificant, and the values attenuate for increasing positive lags, then the impulse response
function must also follow this general behaviour. Therefore, an appropriate transfer func-
tion may be

v(B) = =wy(l + 5,8 +5,B%+..)

Wo
1-6,8
=Vo+ VB + VB2 + -+

since the v; weights decrease in absolute magnitude with increasing positive lags due to the
operator, (1 -8;B) , with I§;1 < 1, in the denominator. A cyclic pattern in the residual
CCF may imply that 8(B) should be at least second order in B. When the residual CCF

possesses values which are significantly different from zero only at lags 0 and 1, the
transfer function may be identified as

V(B)=wg— B =vy+Vv,B

(v) Subsequent to ascertaining the form of v(B) , determine the parameters needed in the noise
term in [17.2.5]. Upon obtaining moment estimates for the parameters in v(B) , calculate
the noise series from [17.2.5] by using

N, =, -5 - VB)(x, - %)

where y and X are the sample means for p, and y, , respectively. By examining graphs
such as the sample ACF and the sample PACF of 1\7, , identify the ARMA model needed to

fit to the noise series (sce Section 5.3). Box and Jenkins (1976, pp. 384-385) also give a
second procedure for identifying N, where the sample CCF for #, and ﬁ, , must first be cal-

culated. The entire TFN model has now been tentatively designed.
Comparison of Identification Methods

The foregoing three identification procedures possess different inherent assets and liabili-
ties. Although the empirical approach is straightforward and simple to apply, experience and
understanding are required in order to properly identify the parameters needed in v(B) at step (i).
Because the empirical approach does not consider cross-correlation information in the first step,
either the method of Haugh and Box or else Box and Jenkins could be utilized to check that v(B)
is properly designed. An advantage of the Haugh and Box method is that the residual CCF
results that are employed for detecting causal relationships in Section 16.2.2 are also used for
model identification. However, due to the relationships given in [17.3.2] and [17.3.3], the pro-
cedure is rather complicated and care should be taken that the model is not over-specified by
having too many parameters. If this problem is not found at the identification stage, it may be
detected at the estimation stage where some of the parameters may not be significantly different
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from zero. Common factors that appear in both the numerator and denominator of a transfer
function should, of course, be left out of the model.

When using the Box and Jenkins approach, the form of v(B) is identified directly from the
CCF for the 4, and B, series. However, in most cases ﬁ, will not be white noise and therefore the

estimated values of the CCF are correlated with one another (Bartlett, 1935). Consequently, cau-
tion should be exercised when examining the estimated CCF for &, and ﬁ, .

In addition to the three identification methods presented in this section, other techniques
are also available. For instance, Liu and Hanssens (1982) propose a procedure for identifying
the transfer function parameters needed in v(B) in [17.2.1] based upon least squares estimates of
the transfer function weights using the original or filtered series. The comer method of Beguin
et al. (1980) is then used to identify the order of the &(B) and 8(B) operators. An advantage of
the technique of Liu and Hanssens (1982) is that it is specifically designed for handling the situa-
tion where there are multiple input series to the TFN model as in [17.5.3]. A drawback of their
technique is that it is fairly complicated to use in practice and, therefore, is not as convenient to
employ as the empirical approach.

All of the identification techniques discussed in this chapter are designed for use in the time
domain. An alternative approach to transfer function identification in the time domain is to iden-
tify a transfer function using frequency domain or spectral methods such as those suggested by
Box and Jenkins (1976) and Priestley (1971). However, as noted by Liu and Hanssens (1982),
spectral techniques are difficult to apply to practical problems.

When designing a TFN model, it is not necessary to adhere strictly to a given identification
procedure. In certain situations, it may be advantageous to combine various steps from two or
three of the three aforementioned identification methods which were discussed in detail. For
example, cither the method of Haugh and Box (1977) or the technique of Box and Jenkins (1976)
could be employed to identify v(B) in [17.2.5]. Step (ii) in the empirical approach could then be
utilized to determine the form of N, . In general, no matter what identification method is being
utilized it is advantageous to begin with a fairly simple model, since the presence of too many
parameters may cause the estimation procedure to become unstable. Because the results of the
identification procedure can often be rather ambiguous, usually two or three possible models are
suggested. If a suitable model is not included within the set of identified models, this will be
detected at the estimation or diagnostic check stages of model construction. Either a more com-
plicated model will be needed or further simplification will be possible due to having too many
parameters.

17.3.2 Parameter Estimation

Following the identification of one or more plausible TFN models, efficient estimates must
be simultaneously obtained for all of the model parameters along with their standard errors
(SE’s) of estimation. Because the g,’s are assumed to be normally, independently distributed,
MLE’s can be conveniently calculated for the model parameters along with their SE’s. Appen-
dix A17.1 explains how MLE’s can be determined for the TFN model in [17.2.5]. As explained
in that appendix, because the noise term in the TFN follows an ARMA process, one can expand
an estimator developed for ARMA models for use in obtaining MLE’s of the parameters in a
TEN model. Moreover, an estimation procedure developed for use with a TFN model can also
be employed with the intervention model of Chapters 19 and 22.
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Often more than one tentative TFN model are initially identified. Subsequent to estimating
the model parameters separately for each model, automatic selection criteria such as the AIC in
[6.3.1] and the BIC in [6.3.5] can be utilized to assist in selecting the most appropriate model.
Figure 6.3.1 outlines how the AIC or another appropriate automatic selection criterion can be
incorporated into the three stages of model selection. If a suitable range of models is considered,
it has been found in practice that the model possessing the minimum AIC value usually satisfies
diagnostic tests of the model residuals. Nevertheless, the model or set of models that are thought
to be most suitable should be thoroughly checked in order to ascertain if any further model
improvements can be made.

17.3.3 Diagnostic Checking
The innovation sequence, a, , is assumed to be independently distributed and a recom-

mended procedure for checking the whiteness assumption is to examine a plot of the RACF
(residual autocorrelation function) along with confidence limits. The RACF, r;;(k) , can be cal-

culated by replacing both &, and v, by d, in [16.2.6] or else using [7.3.1]. Since r (k) is sym-

metric about lag zero, the RACEF is only plotted against lags for k = 1 to k = n/4, along with the
95% confidence limits explained in Section 7.3.2. Although a plot of the RACF is the best
whiteness test to use, other tests which can be employed include the cumulative periodogram in
[2.6.2] and the modified Portmanteau test.

Three versions of the Portmanteau test for whiteness of the d, residuals are given in Section
7.3.3in[7.3.4] to [7.3.6]. In particular, the Portmanteau test in [7.3.6] is written as

L
0, =n¥rigy+ LLED [17.3.6]

k=1 2n
where n is the number of data, r;,(k) is the residual CCF from [16.2.6] (replace both the 4, and
v, series by the d, series in [16.2.6]), and L is a suitably chosen lag such that after L time periods
a, and a,_; would not be expected to be correlated. For instance, when deseasonalized monthly

data are being used in a TFN model, L should be chosen at least as large as lag 12 to make sure
that there is no correlation between residuals which are separated by one year. Because Q; is

distributed as xz(L -=p —q), where p and ¢ are the orders of the AR and MA operators, respec-
tively in the ARMA model for N, , significance testing can be done to see if significant correla-

tion of the model residuals is present.

If the residuals are correlated, this suggests some type of model inadequacy is present in
the noise term or the transfer function, or both of these components. To ascertain the source of
the error in the model, the CCF for the 4, and d, sequences can be studied (leave &, as 4, and

replace v, by d; in [16.2.6] to estimate r,.(k) ). Because the 4, and a, series are assumed to be
independent of one another, the estimated values of r;;(k) should not be significantly different

from zero where one standard error is approximately n~2 when the CCF is normally distributed.
When a plot of r;.(k) from k =-n/4 to k = n/4 along with chosen confidence limits indicate

whiteness while significant correlations are present in r,(k) , the model inadequacy is probably
in the noise term, 1\7, . The form of the RACF for th; d, series could suggest appropriate
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modifications to the noise structure. However, if both r;;(k) and r;;(k) possess one or more sig-
nificant values, where r,(k) only has large values at non-negative lags, this could mean that the

transfer function for the input series is incorrect and the noise term may or may not be suitable.
When feedback is indicated by significant values of r;(k) at negative lags, a multivariate model

(see Part VII) should be considered rather than a TFN model.
Even though it is probably most informative to examine a plot of r;;(k) along with the 95%

confidence limits, modified Portmanteau tests can also be employed to check if there are prob-
lems with the TFN model. To see whether or not r,(k) has significantly large values at non-

negative lags, the following modified Portmanteau statistic can be calculated.

0, =n? )'f, rL@)(n - k) (17.3.7]
k=0

where Q, is distributed as xz(L —r-m), and r and m are the orders of the 8(B) and &(B)
operators, respectively, in the transfer function for X, in [17.2.5]). If the calculated Q) statistic is
greater than the value of %*(L - r —m) from the tables at the chosen significance level, this
could mean that the transfer function is incorrect and the noise term may or may not be suitable.
By choosing more appropriate values of r and m, a model which passes this test can usually be
found.

To check if (k) has significantly large values at negative lags, the modified Portmanteau

statistic can be determined using
-L
Qr=n*Y ri)(n+k) [17.3.8]
k=-1
where Q; is distributed as xz(L). If significance testing indicates that there are values of r (k)

which are significantly different from zero at negative lags, this implies feedback and a mul-
tivariate model should be used (see Part IX) instead of a TFN model. Because r (k) =r, i K)s

equation [17.3.8] can be equivalently written as

0, = n’f:r,,?,,-(k)/(n - k) (17.39]
k=1

Besides being independently distributed, the a, sequence is assumed to follow a normal dis-
tribution and possess a constant variance (homoscedasticity). In Sections 7.4 and 7.5, tests are
presented for checking the normality and homoscedastic suppositions, respectively. As noted in
Section 3.4.5 as well as other parts of the book, in practice it has been found that a suitable Box-
Cox transformation of the ¥, and/or X, series can often correct non-normality and heteroscedasti-

city in the residuals.

Whenever problems arise in the model building process, suitable model modifications can
be made from information at the diagnostic check and identification stages. Subsequent to
estimating the model parameters for the new model, the modelling assumptions should be
checked to see if further changes are necessary. :
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17.4 HYDROLOGICAL APPLICATIONS OF TRANSFER FUNCTION-NOISE
MODELS WITH A SINGLE INPUT

17.4.1 Introduction

Two hydrological applications are presented for clearly explaining how TFN models are
constructed in practice. In the first application, the residual CCF described in Section 16.2.2, is
employed for determining the statistical relationship between monthly flows in the tributary of a
river and the flows downstream in the main river. By using each of the three identification
methods described in Section 17.3.1, tentative TFN models are designed for modelling the two
monthly riverflow series and the most appropriate model is verified by diagnostic checking.

In the second application, a TFN model is designed for formally modelling one of the
causal relationships discovered using the residual CCF in Section 16.2.3. The residual CCF stu-
dies from Chapter 16 can be considered as part of the exploratory data analysis stage where sim-
ple graphical and statistical tools are employed for detecting important statistical characteristics
of the data (Tukey, 1977). At the confirmatory data analysis step, the TFN model in [17.2.5]
can be utilized to formally model and confirm the mathematical relationships which are
discovered at the exploratory data analysis stage. Accordingly, a dynamic model is developed
for formally describing the connections between the annual Gota River flows and monthly tem-

peratures.

17.4.2 Dynamic Model for the Average Monthly Flows of the Red Deer and South
Saskatchewan Rivers

Identification

The South Saskatchewan (abbreviated as S.Sask.) River originates in the Rocky Mountains
and flows eastward on the Canadian Prairies across the province of Alberta to Saskatchewan,
where it joins the North Saskatchewan River northwest of the city of Saskatoon. These two
rivers form the Saskatchewan River which flows into Lake Winnipeg in Manitoba, which in turn
drains via the Nelson River into Hudson Bay. A major tributary of the S.Sask. River is the Red
Deer River which connects to the S.Sask. River near the Alberta-Saskatchewan border. Average
monthly flows in m3/s are available from Environment Canada (1979a,b) for the Red Deer River
near the city of Red Deer, Alberta and also for the S.Sask. River near Saskatoon, Saskatchewan.
Saskatoon is located approximately 800 km downstream from the city of Red Deer and the area
of the basin drained by the S.Sask. River at Saskatoon is 139,600 km?, whereas an area of 11,450
km?i, is drained by the Red Deer River at Red Deer.

Because the Red Deer River flows into the S.Sask. River it is obvious that the Red Deer
River contributes to the overall flow of the S.Sask. River. However, even though the direction of
causality can be easily physically justified a priori without a cross-correlation study, the results
from a cross-correlation analysis can be employed to validate statistically the known causal rela-
tionship and also to design a TFN model that mathematically describes the dynamic connection
between the input flows from the Red Deer River and output flows in the S.Sask. River.

Before obtaining the residual CCF, the flows must be prewhitened. When prewhitening a
series it may be necessary to transform the data using the Box-Cox transformation given in
[3.4.30). Previously, hydrologists found by experience that a natural logarithmic transformation
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(i.e. A=0in [3.4.30] and c = 0 when there are no zero flows) can preclude problems with
heteroscedasticity and non-normality in the model residuals. Accordingly, for the time period
from January, 1941, until December, 1962, the 264 values of the monthly flows for both the Red
Deer and S.Sask. Rivers are transformed using natural logarithms. Subsequent to this, by using
the deseasonalization procedure in [13.2.3], each time series is deseasonalized by subtracting out
the monthly mean and dividing this by the monthly standard deviation for each data point in the
logarithmic transformed data. The year 1962 is selected as the final year for which data are used
because a large dam came into operation on the S.Sask. River after that time. By following the
three stages of model construction given in Chapters 5 to 7, the most appropriate models from
[16.2.3] and [16.2.4] to fit to the x, and y, series, respectively, are found to be ARMA(1,1)

models. In Table 17.4.1, the MLE’s and corresponding SE’s for the model parameters are
presented where the x, series refers to the Red Deer flows and the y, sequence represents the

S.Sask. flows after taking natural logarithms and deseasonalizing the data.

Table 17.4.1. Parameter estimates for the Red Deer River
and S.Sask. River ARMA(1,1) models.

RIVERS | PARAMETERS | MLE'S | SE’S

01 0.845 | 0.045

Red Deer G 0.292 | 0.080
X, o2 0.482

0.1 0.819 | 0.050

S.Sask. 8.1 0.253 | 0.084
Y o2 0.507

The estimated white noise series, #, and Vv, , for the x, and y, series, respectively, are
automatically calculated at the estimation stage. By utilizing [16.2.6], the residual CCF in Fig-
ure 17.4.1 is calculated along with approximate 95% confidence limits. The large values at lags
0 and 1 statistically confirm the known physical fact that the Red Deer River causes flows in the
S.Sask. River and not vice versa. As outlined in Table 16.2.1, because the residual CCF contains
values which are only significantly different from zero at non-negative lags, there is unidirec-
tional causality from X to Y. In Figure 17.4.1, the value of the residual CCF at lag -4 which just
crosses the 95% confidence limits, can be attributed to chance.

As demonstrated by Figure 17.4.2, when the CCF for the x, and y, series are plotted the
kind of causality cannot be statistically ascertained (note that the approximate 95% confidence
limits in Figure 17.4.2 are derived for independent series). The large values at negative, zero and
positive lags hide the known reality that the Red Deer River is a tributary of the S.Sask. River.
Consequently, practitioners are urged to examine cautiously any CCF study where proper statist-
ical procedures have not been followed.
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Figure 17.4.2. CCF for the deseasonalized logarithmic flows of the
Red Deer and S.Sask. Rivers.
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To explain how to design a TFN model for the x, and y, series for the Red Deer and S.Sask.
Rivers, respectively, each of the three identification methods described in Section 17.3.1 is
explained separately.

Empirical Identification Approach: Because monthly flows are being considered and also
Saskatoon is about 800 km downstream from the city of Red Deer, from a physical point of view
it would be expected that current Red Deer riverflows would affect the riverflows at Saskatoon
during the present month and perhaps one month into the future. Consequently, a suitable
transfer function may be

v(B)=wy- B

Assuming that the noise term in [17.2.5] is white noise, a TFN model is fitted to the x, and
y, sequences, where the entries of the noise series are estimated along with the other model
parameters. Using the standard model building procedures presented in Chapters 5 to 7, this
series is found to be best described by an ARMA (1,1) model.

Haugh and Box Identification Method: Due to the large values at lags 0 and 1 of the residual
CCF in Figure 17.4.1, the transfer function v'(B) in [17.3.1] is identified to be

V(B) = 'y - 'y(B)

By employing [17.3.2] and also the results in Table 17.4.1, the transfer function in [17.2.5]
which links x, and y, is calculated to be

_ (1-0.253B)

- (1 -0.845B)
(1-0.819B)

v (1-0.292B)

(w'y—';B)
= m'o—' (I)’IB =W~ (DIB

where the AR and MA operators can be dropped because 9,(8) =0,(B) and ¢,(B) = ¢,(B) when
the relative magnitudes of the standard errors are considered. Note that if it had been advanta-
geous to get moment estimates for @'y and @’y , [17.3.4] could have been utilized.

Since ¢’(B) = &'(B) , the order of the operator ¢’(B) is zero. The order of 6’(B) should be at
most of the order of &'(B) or @’(B) and, therefore, should be zero or one. Consequently, from
[17.3.3] the noise term in [17.2.5] should be either ARMA (1,1) or else ARMA (1,2).

Box and Jenkins Procedure: By using [17.3.5], the ﬁ, sequence is determined. The residual

CCF for the 4, and ﬁ, series is very similar to the plot in Figure 17.4.1 where there are large

values only at lags 0 and 1. Accordingly, an appropriate transfer function for use in [17.2.5) is
V(B) =y - w,B

Employing the same procedure used with the empirical identification method, the noise term is
identified to be ARMA (1,1).
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Parameter Estimation
The MLE’s for the dynamic model linking x, and y, are listed in Table 17.4.2 where it is

assumed that «(B) is first order, 8(B) is of order zero, and the noise term is ARMA (1,1). The

difference equation form of this model is written as

(1 -0.494B) a

(1-0.8568) '

When the noise term is considered to be ARMA (1,2) the second MA parameter is not signifi-
cantly different from zero and the value of the AIC is increased. Consequently, the simpler
model in [17.4.1] is justified.

Table 17.4.2. Parameter estimates for the Red Deer-S.Sask. TFN model.

¥, =(0.572 + 0.238B)x, + [17.4.1]

Parameters | MLE's | SE’s
Wy 0.572 | 0.049
o, 0.238 | 0.049
o, 0.856 | 0.051
0, 0.494 | 0.085
c? 0.310

Diagnostic Checking

The model in [17.4.1] satisfies the main modelling assumptions. In particular, the plot in
Figure 17.4.3 of the RACF for the estimated g, sequence along with 95% confidence limits
reveals that the d, series is white noise. The sample CCF and 95% confidence limits for the &,
and d, sequences are displayed in Figure 17.4.4. Because the estimated values of the CCF and
also the RACF in Figure 17.4.3 are not significantly different from zero, the transfer function
and noise term are properly designed. Other diagnostic checks indicate that the d, sequence is

homoscedastic (see Section 7.5) and approximately normally distributed (see Section 7.4).
Furthermore, the residual variance of 0.507 for the S.Sask. model in Table 17.4.1 is reduced by
39% to a value of 0.310 for the dynamic model in Table 17.4.2.

Concluding Remarks

Besides describing the dynamic relationship between the Red Deer and S.Sask. River, the
model in [17.4.1] can be employed for applications such as forecasting and simulation. In fact,
because the TFN model in Table 17.4.2 has a smaller residual variance than the ARMA (1,1)

model in Table 17.4.1 for the S.Sask. River, it should produce more accurate forecasts. Fore-
casting with TFN models is explained and illustrated in Chapter 18.

17.4.3 Dynamic Model for the August Temperatures and Annual Flows of the Gota River

As presented in Table 16.3.3 for the causality studies of Section 16.3.3, the monthly tem-
perature series are correlated with various annual riverflow series and the Beveridge wheat price
index. The causality relationships which are found using the residual CCF as an exploratory data
analysis tool can be further substantiated by developing a TFN model as a confirmatory data
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analysis tool. For illustrative purposes, one of the causal relationships in Table 16.3.3 is for-
mally modelled here using a TFN model.

From Table 16.3.3, it can be seen that there are significant values of the residual CCF at lag
zero between the flows of the Gota River and each of four monthly temperature series. This
relationship is displayed graphically in Figure 16.3.3 for the case of the residual CCF for the
August temperatures and the Gota riverflows. By following the model construction phases out-
lined in Section 17.3, an appropriate dynamic model can be developed (Hipel et al., 1985).
When all four temperature series are used as covariate series in a TFN model, the transfer func-
tion parameter estimates for June, July and September are not significantly different from zero
and can therefore be left out of the model. Whereas the residual CCF can only be used for pair-
wise comparisons, the TFN model can be employed to ascertain the most meaningful relation-
ship when there are multiple covariate series and a single response or output series. For the case
where only the August temperatures are used as a covariate series, the parameter estimates and
SE’s errors are listed in Table 17.4.3 while the difference equation for the model which follows
the format of [17.2.5] is written as

Y, - 535.464 = —23.869(X, — 15.451) + (1 — 0.672B +0.329B%)!q, (17.4.2]

where Y, represents the annual flows of the Gota River and X, stands for the monthly tempera-

tures. Besides portraying the dynamic relationship between the Gota River flows and August
temperatures, the model in [17.4.2] can, of course, be employed for forecasting and simulation.

17.5 TRANSFER FUNCTION-NOISE MODELS WITH MULTIPLE INPUTS

17.5.1 Introduction

In many situations, more than one input series is available for use in a TFN model and by
incorporating all the relevant covariate series into the TFN model a dynamic model can be
developed for producing more accurate forecasts and more realistic simulated values. For exam-
ple, for the hydrometeorological application presented in Section 17.5.4, a flexible TFN model is
constructed, where the average monthly precipitation and temperature series constitute the
covariate series which affect the output or response consisting of average monthly riverflows.
As demonstrated by this application, an inherent advantage of TFN modelling is that a TFN
model with multiple inputs can be designed almost as easily as a model with a single input. In
fact, the model building tools of Section 17.3 can easily be extended for use with a TFN model
having multiple inputs.

In addition to using the most comprehensive statistical tools for use in model construction,
the practitioner should exercise a lot of common sense and good judgement. As is the case for
the other kinds of models considered in this text, TFN model building is in essence both an art
and a science. The art of model building comes into play when the modeller uses his or her
knowledge about the physical aspects of the problem to decide upon which covariate series
should be incorporated into the TFN model and the general manner in which this should be done.
For instance, for the application in Section 17.5.4, a suitable TFN model is developed by first
considering simpler models which provide guidance as to how a more complex TFN model can
be constructed. In the process of doing this, a simple procedure is suggested for creating a single
input series which more than one precipitation or temperature series are available. By employ-
ing appropriate statistical and stochastic methods, the efficacy of the decisions made in the art of
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Table 17.4.3. Parameter estimates for the August temperature -
Gota River flow transfer function-noise model.

PARAMETERS | MLE'S | SE'S
Wy -23.869 | 4.285
') 0.672 | 0.077
Y 0329 | 0.077
c, 571x10° | -

model building can be rigorously checked using the science of model construction. Conse-
quently, there is interactive feedback when using both art and science for building TFN models,
or for that matter, any other type of stochastic model.

17.5.2 Model Description
Qualitatively, the TFN model can be written as

output = dynamic component + noise

The dynamic component consists of a transfer function for each covariate series which describes
how each input dynamically affects the output. As is also the case for a TFN model with one
input in [17.2.5], the autocorrelated noise can be modelled using an ARMA model.

More precisely, a TFN model with multiple inputs can be written in the form
01 =1 =f&x0)+N, [17.5.1)

where t is discrete time, y, is the output or response variable, p, is the mean of the y, series, N, is

the stochastic noise term which may be autocorrelated, and f(k,x,¢t) is the dynamic component of
¥; . The dynamic component includes a set of parameters k and a group of covariate serics X .

When required, both the response variable and one or more of the input variables may be
transformed using a suitable Box-Cox transformation from [3.4.30]. As noted earlier, the rea-
sons for transforming the series include stabilizing the variance and improving the normality
assumption of the white noise series which is included in &, . It should be pointed out that the
same Box-Cox transformation need not be applied to all of the series. If the series are seasonal,
subsequent to invoking appropriate Box-Cox transformations each series can be deseasonalized
separately by employing the procedures of Section 13.2.2. Following this, identification pro-
cedures can be utilized to see which parameters should be included in the model in [17.5.1].

Included in the dynamic coniponcnt of the model are the effects of all the input series upon
the output. In general, if there are I input covariate series the dynamic component of the model
is given by

I
F&x1) = TViB)x; — b)) [17.5.2]

i=1
where x,; is the ith input series which may be suitably transformed and p,; is the mean of x;; .
The ith transfer function which reflects the manner in which the ith input series, x;; , affects y; ,
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is written as
0),'(3) b;
viB)= 5.8) B
(0)0, - (DUB - n)ZiBz- P, mm"_Bmi)Bbi
(1—8“3 —82‘~82— e _sr‘B’i)

where m; and r; are the orders of the operators w;(B) and 5;(8) , respectively, and b; is the delay
time required before x,; affects y, . Notice that the ith transfer function in [17.5.2] is identical to
the one utilized in [17.2.1] and [17.2.5], except that the subscript i has been added to indicate
that v;(B) is the transfer function for the ith input series x;; .

In practice, usually only a few parameters are required in each transfer function and there-
fore m; and r; are 0 or 1 (sec the applications in this chapter as well as Chapters 18, 19 and 22).
Given the parameters for the ©;(B) and §;(B) operators, it may be required to estimate the
Vi, j=012,..., coefficients in the operator

v;(B) = (vo; + V1;B +v2‘-32+ cen)

_ w,(B)B”
G

These coefficients can be calculated in exactly the same manner as they are in Section 17.2.2 for
the parameters of v(B) which is the transfer function used for a TFN model with one input.

The noise component of the TFN model having multiple inputs is defined by
N, =y, - f(kX,)

That is, the noise term of the model is simply the difference between the response variable, y, ,
and the dynamic component. The form of the noise term, N, , is not restricted to any particular

form, but usually it is assumed to be an ARMA process as in {17.2.4]). Furthermore, as noted in
Section 17.2.3, the white noise component of the ARMA model is usually assumed to be
NID (0,0',2) . Finally, because the noise term models the portion of y, which is not explained by

the dynamic component, N, is independent of each x;; series. Equivalently, since the g, distur-
bances drive N, and each x,; serics can be thought of as being generated by its own residual
series, the a, sequence is independent of the white noise scries for a given input series which can
be formed by prewhitening the x,; sequence (see Section 16.2.2 for a discussion of prewhiten-
ing). Finally, the x,; series or their residuals formed by prewhitening are not assumed to be
independent of one another in a TFN model.

In summary, by combining the dynamic and noisc components, the overall TFN model
with [ inputs can be written as
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O —uy) =f&x1) +N, [17.5.3]
_Jo®B) o, 68(8)
“ZE@ " SR
17.5.3 Model Construction

When developing a TFN model with multiple inputs, the parameters required in each
transfer function within the overall dynamic component plus the orders of the operators in the
noise term, must be identified. Subsequent to this, MLE’s can be obtained for the model param-
eters and the validity of the model verified by invoking appropriate diagnostic checks. Because
the TFN model with multiple inputs in [17.5.3] is a straightforward extension of the single input
model in [17.2.5], most of the construction tools presented in Section 17.3 for a TFN having one
input can be used for the multiple input case. The purpose of this section is to clearly point out
what special problems can arise when building a TFN model with more than one input and how a
modeller should cautiously use the identification tools of Section 17.3.1 for the multiple input
case.

In Section 17.3.1, the following three identification procedures are explained in detail for
the case of a TFN model with a single input:

(i) the empirical identification approach,
(ii) the Haugh and Box identification method, and
(iii) the Box and Jenkins identification procedure.

All three methods were specially developed under the assumption that only one input series is
present in the model and the input series only affects the output. In fact, this assumption is
theoretically embedded into the latter two procedures. When there is more than one input series,
the obvious way to use each identification procedure is to investigate, pairwise, the relationship
between each x,; series and the y, in order to design the form of the transfer function v;(B) .

However, in a TFN model with more than one covariate series, two or more covariates may not
be independent of one another and may therefore affect each other in addition to driving the
response variable. If there is not too much interaction among the x,; series, fairly correct transfer

functions may be identified using the pairwise identification procedure. Whatever the case, the
assumption that the x,; ’s are independent of one another is not assumed for the TFN model itself

in [17.5.3]. Therefore, if required, a number of tentative models can be fitted to the series. After
also identifying the noise term, different discrimination techniques can be used to isolate the
most appropriate model or set of models. For example, one can select the model having the
lowest value of the AIC in [6.3.1] or the BIC in [6.3.5]. One can also remove any parameter from
a model whose estimated value is not significantly different from zero. Finally, one should also
insure that this model passes diagnostic checks, especially the tests for determining the white-
ness of the estimated a, series.

When designing the transfer function, the most suitable approach is probably to use the
empirical approach in conjunction with the method of Haugh and Box. Although it may be com-
plicated to use in practice, another procedure for identifying transfer functions is to employ the
method of Liu and Hanssens (1982) which is specifically designed for identifying TFN models
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with multiple inputs. However, when deciding upon the parameters needed in the noise term, N,,
it is recommended for most applications that the empirical technique be used. Recall from Sec-
tion 17.3.1 for the empirical approach, that after designing the transfer functions, the model in
[17.5.3] is fitted to the set of series where it is initially assumed the noise term is white, even
though it is probably not. Next, by following the model development phases of Chapters 5 to 7
for a single series, the best ARMA model is selected for modelling the estimated noise sequence
form the previous step. Keep in mind, that because the noise term is assumed to be independent
of the dynamic component, this is a theoretically valid procedure. Finally, the identified noise
term can be used in [17.5.3] and then all of the model parameters can be simultaneously
estimated for the completely identified TFN model.

Because the a,’s are assumed to be NID (0,62) , MLE’s can be efficiently calculated using
the method of McLeod (1977) or another appropriate estimate such as one of those listed in Sec-
tion 6.2.3. Not only are the MLE's obtained using McLeod’s method almost exact MLE’s, but
the computation time required is much lower than that needed by other available exact MLE pro-
cedures. The estimation procedure described in Appendix A17.1 for a TFN with one input, can
casily be expanded for use with a TFN model having multiple inputs.

At the model validation stage, the key assumption to check is that the residuals, d; , which
are estimated along with the model parameters, are white. As explained in Section 17.3.3, this
can be accomplished by investigating a plot of r ;;(k) from [16.2.6] or [7.3.1] along with the 95%

confidence limits. If there are problems, the form of the significantly large autocorrelations
present in r,(k) may indicate what type of model modifications should be made to either N, ,

the dynamic component, or both. Investigating the form of the residual CCF between each
prewhitened x,; series and d; may also assist in detecting where the sources of the problems are

located and how they should be rectified. However, if the x,; series were not previously prewhi-

tened for use in a causality study (see Section 16.2.2) or some other purpose, obtaining the resi-
dual CCF pairwise for each prewhitened x;; series and 4, may be quite time consuming. Further-
more, the alterations suggested by each individual residual CCF may not necessarily hold for the
overall TFN model in [17.5.3] because of possible interactions among the x;; series themselves.

Fortunately, the authors have found in practice that when the empirical identification approach is
utilized in conjunction with a sound understanding of the physical realities of the problem being
studied, usually problems with the design of the TFN model can be circumvented.

17.5.4 Hydrometeorological Application

Introduction

The general procedure in many modelling problems is to start with a simple model and then
increase the model complexity until an acceptable description of the phenomenon is achieved or
until further improvements in the model cannot be obtained by increasing the model complexity.
This is especially true in TFN modelling where there is a single response variable and multiple
input series. However, the question arises as to how one can conveniently construct the most
effective model for describing the dynamic relationships between the output and input series.
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The purpose of the hydrometeorological application in this section is to demonstrate the art
and science of building a suitable TFN model. As will be shown, a range of different TFN
models are developed and the most appropriate model is systematically found. The output for
each TFN model always represents the deseasonalized average monthly logarithmic flows of the
Saugeen River at Walkerton, Ontario, Canada, while the covariate series consist of either
transformed precipitation or temperature data sets, or both types of series. The types, lengths
and locations of measurement for the data sets entertained are shown in Table 7.5.1 for the single
riverflow sequence, the two precipitation and the two temperature series. The riverflow data are
obtained from Environment Canada (1980a) and the precipitation and temperature data are pro-
vided by the Atmospheric Environment Service in Downsview Ontario (Environment Canada,
1980b).

Table 17.5.1. Available monthly data.

Type Location Period
Riverflows Saugeen River at 1963-1979
Walkerton, Ontario

Precipitation | Paisley, Ontario 1963-1979
Precipitation | Lucknow, Ontario 1950-1979
Temperature | Paisley, Ontario 1963-1979
Temperature | Lucknow, Ontario 1950-1979

When the data are used in the upcoming application as series in the CCF analyses or as
input or output series in the TFN models, the time series are only employed for the time period
during which all the series overlap. However, when estimating missing observations within a
single time series, the entire time series is used (see Section 19.3). For a further discussion and
the original presentation of this application, the reader may wish to refer to the paper of Hipel et
al. (1982).

Missing Data

Prior to constructing a TFN model, any missing data in the covariate series must be
estimated. The only missing data in this study are ten precipitation and corresponding tempera-
ture data points for the Lucknow station where the dates of these missing data are given in Table
16.5.2. As is explained in detail in Section 19.3 in the chapter on intervention analysis, a special
type of intervention model can be designed for obtaining good estimates of the missing data
points. An inherent advantage of the intervention analysis approach for estimating missing data
points is that the correlation structure of the series is automatically taken into account when
obtaining the estimates for the missing observations. When the intervention model in {19.3.7],
developed in Section 19.3.6 for the entire deseasonalized Lucknow temperature data, is
employed for data filling, the estimates and SE’s given in the third column of Table 17.5.2 are
obtained for the original series. The estimates for the missing observations can be compared to
their respective monthly means in the second column of Table 17.5.2. For this particular appli-
cation, the difference between each estimate and its monthly mean is always less than its SE.
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Table 17.5.2. Estimates of missing temperature data at Lucknow.

Dates Monthly Means | Estimates (C°)
(039 (SE’s)
February 1953 -6.48 -6.57 (2.32)
May 1968 11.99 11.81 (1.78)
September 1968 15.17 15.34 (1.16)
October 1973 9.60 9.78 (1.67)
August 1975 18.89 18.59 (1.20)
September 1975 15.17 15.29 (1.16)
July 1976 19.68 19.47 (1.09)
September 1978 15.17 15.30 (1.16)
October 1978 9.60 8.30 (1.70)
August 1979 18.89 18.56 (1.18)

When the Lucknow precipitation data is deseasonalized using [13.2.3], the resulting non-
seasonal sequence is white noise. Because there is no correlation structure in the series, the
appropriate estimate of cach missing data point is simply taken as its average monthly value.

The intervention analysis approach to data filling in Section 19.3 can be used when not
more than about 10% of the data are missing. If there are many missing observations, where
there may be rather long periods of time over which there are no data at all, the technique of Sec-
tion 22.2 may be useful. Furthermore, when there are two series which are causally related but
one is longer than the other, a TFN model relating the two series can be used to obtain estimates
of the shorter series where it doesn’t overlap with the longer one. This technique is called back-
forecasting and is explained in Section 18.5.2. Whatever the case, once the unknown observa-
tions have been estimated for each input series, a TFN model can be built for describing the rela-
tionships between the output and the inputs.

Identifying the Dynamic Component

Based upon a physical understanding of the problem and also using residual CCF analyses,
the possible forms of the transfer functions can be identified for linking precipitation or tempera-
ture to the riverflow output. Firstly, the Saugeen River flows are transformed using a loga-
rithmic transformation ( A =0 in [3.4.30]) in order to avoid problems of non-normality and/or
heteroscedasticity in the model residuals. It is found that the precipitation and temperature serics
do not require a power transformation. Next, an ARMA model is fitted to each deseasonalized
series in Table 17.5.1 and the model residuals are estimated. Finally, the residual CCF between
the residuals from the model fitted to the Saugeen River flows and each of the other four residual
series are then calculated using [16.2.6).

The results of the cross-correlation analyses show a positive significant relationship at lag
zero for each of the two precipitation series. For instance, the plot of the CCF for the Lucknow
precipitation and Saugeen riverflows is displayed in Figure 17.5.1 along with the estimated 95%
confidence interval. The value of the residual CCF at lag zero in Figure 17.5.1 is 0.448 whereas
for the Paisley precipitation the estimated value of 0.365 is slightly smaller. Although the resi-
dual CCF plot for the Paisley precipitation is not shown, it is indeed similar in form to Figure
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17.5.1. The characteristics of the residual CCF’s for the two precipitation series makes intuitive
sense from a physical point of view since for monthly data, most of the precipitation for a partic-
ular month will result in direct runoff in the same month.
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Figure 17.5.1. Residual CCF for the Lucknow precipitation
and Saugeen riverflows.

The results of the residual CCF analyses for the two temperature series and the Saugeen
riverflows are somewhat different. In these cases, there are no significant cross-correlations at
any lag. However, from a physical viewpoint, one might expect that above average temperatures
during the winter season would increase snowmelt and thus riverflow. For this reason, the tem-
perature series are considered in the upcoming TFN model building. The temperature serics are
assumed to have a significant contribution at lag zero and as will be shown later, this assumption
is found to be justifiable.

Combining Multiple Times Series

Often more than one covariate series of a particular kind is available to the analyst. In
hydrological studies, data from several precipitation and temperature stations within or near the
basin may be available. A common procedure employed by hydrologists to reduce model com-
plexity is to combine similar types of series to form a single input covariate series. In the case of
precipitation data, the records from the various stations are often combined to provide a single
series of mean precipitation for a given region or basin. Two common methods of combining
precipitation series are the Isohyetal and the Thiessen polygon techniques (Viessman et al.,
1977). These procedures are essentially graphical methods and require a skilled analyst to obtain
reasonable and consistent results. In an effort to automate procedures for combining similar
types of series and provide more consistent results, a technique based on combining transfer
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function coefficients is presented.

Consider the case where two input covariate series, x;; and x,, , are to be combined to form
a single input covariate series x, . If x,; causes y, instantaneously, then the TFN models for the
two series would be

= WXy + Ny | (17.5.4]
and
= WXz + Ny [17.5.5]

where wy; and g, are the transfer function parameters for the series x;; and x,, , respectively.
For this example, the two series x,; and x,, would be combined using the relative ratio of the
transfer function coefficients such that

%l+% ], [ P ]az—xz [17.5.6]

If more than two input series were available, this procedure could simply be extended to com-
bine all of the available data into one input covariate series.

The Transfer Function-Noise Models

The various TFN models and one ARMA model that are examined, as well as their associ-
ated AIC values, are presented in Table 17.5.3. A decrease in the value of the AIC indicates that
the additional model complexity is probably warranted since a better statistical fit is obtained.
As expected, each increase in model complexity leads to a corresponding decrease in the value
of the AIC. Thus a better description of the phenomena results with each addition of available
information. For all of the TFN models in Table 17.5.3, the noise term is identified using the
empirical approach of Section 17.3.1 to be an ARMA(1,0) model. Furthermore, all of the
models satisfy the diagnostic checks presented in Section 17.3.3. Details of each of the models
are now discussed.

The first model considers only the Saugeen riverflows. The time series is first transformed
by taking natural logarithms of the data. This series is then deseasonalized by subtracting the
estimated monthly mean and dividing by the estimated monthly standard deviation for each
observation as in [13.2.3]. An ARMA(1,0) model is found to be the best model to fit to these
deseasonalized flows. The value of the AIC is 963.121 and this value is used as a basis for com-
paring improvements in each of the subsequent models in Table 17.5.3.

Precipitation Series as Inputs: As suggested by the results of the residual CCF analyses, each
of the precipitation series is used as an input covariate series. Prior to fitting the TFN model,
each of the series is first deseasonalized. Each series is then used independently as an input
covariate series in a TFN model. As shown in Table 17.5.3, the transfer function parameter, @y ,
for Paisley and Lucknow are estimated as 0.310 and 0.350, respectively. Note that the AIC
value for the Lucknow precipitation series is significantly less than the AIC value for Paisley.
This may suggest that the pattern of the overall precipitation which falls on the Saugeen River
basin upstream from Walkerton, is more similar to the precipitation at Lucknow than the precipi-
tation at Paisley, even though Paisley is closer to Walkerton than Lucknow.
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Table 17.5.3. Transfer function-noise models fitted to the data.

Output and Covariate Parameter Estimates AIC
Time Series (SE’s)

Saugeen Flows ¢, = 0.407 (0.064) 963.121
Saugeen Flows ¢, = 0.405 (0.064) 936.129
Paisley Precipitation (@) @y =0.310 (0.055)
Saugeen Flows ¢, =0.429 (0.063) 925.606
Lucknow Precipitation (0g) | @ =0.350 (0.053)
Saugeen Flows ¢, =0.418 (0.064) 926.340
Combined Precipitation () | @y =0.350 (0.054)
Saugeen Flows ¢, = 0.407 (0.064) 922.270
Summer Precipitation (wg;) | @g; = 0.444 (0.065)
Winter Precipitation (wy,) @y, = 0.183 (0.092)
Saugeen Flows ¢, = 0.408 (0.064) 924.037
Summer Precipitation (wg;) | @y = 0.448 (0.066)
Accumulated Snow (o) @y, = —0.162 (0.109)
Saugeen Flows 6, =0.414 (0.064) 963.700
Paisley Temperature () @y =0.073 (0.061)
Saugeen Flows ¢, =0.419 (0.064) 961.860
Lucknow Temperature (y) | @ =0.112 (0.062)
Saugeen Flows 6, = 0.422 (0.064) 917.558
Summer Precipitation (0g;) | @p; = 0.453 (0.064)
Winter Precipitation (0,) g, = 0.194 (0.090)
Lucknow Temperature ((g3) (303 =0.144 (0.055)
Saugeen Flows ¢, = 0.420 (0.064) 918.586
Summer Precipitation (@g;) | g =0.453 (0.064)
Winter Precipitation (@) @y, = 0.194 (0.090)
Combined Temperature (0g;) | @3 = 0.133 (0.055)

603

Using the procedure outlined in the previous section, the two precipitation series are com-
bined to form a single input covariate series. In this study, the Lucknow and Paisley precipita-
tion series are combined in the ratio 53:47, respectively. This combined precipitation series is
then deseasonalized and used as an input series for the TFN model. The resulting AIC value is
only slightly larger than the AIC value obtained when only the Lucknow precipitation series is
employed. Since the difference is small, either model would be satisfactory and for the balance
of this section the combined precipitation series is employed.
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In the previous models, the precipitation series are entered as a single series having a single
transfer function parameter. In these cases, it is therefore assumed that the contribution of pre-
cipitation is the same throughout the year. Physically, however, it makes sense that the contribu-
tion of precipitation during the winter months would be less than the contribution during the
warmer periods of the year, since the precipitation accumulates on the ground in the form of
snow during the cold season. In an effort to better reflect reality, the single precipitation series
formed by combining the Lucknow and Paisley data, is divided into two separate seasons.

In separating the precipitation into two scasons, the winter season is taken as those months
where the mean monthly temperature is below zero degrees Celcius. For both the Paisley and
the Lucknow temperature series, December, January, February and March have mean monthly
temperatures below freezing. Therefore, the winter precipitation series consists of the deseason-
alized precipitations for these four months and zeros for the other eight months of the year. Con-
versely, the summer precipitation series has zeros for the four winter months and the deseasonal-
ized precipitations for the remaining entries. These two series are input as separate covariate
series with separate transfer function parameters. The resulting calibrated TFN model is

¥, =0.444x,, +0.183x,, + [17.5.7]

¢
(1-0.4078)

where y, is the deseasonalized logarithmic riverflow at time t; x;; is the combined deseasonalized
summer precipitation series; and x;, is the combined deseasonalized winter precipitation series.

As expected, the transfer function coefficient for the summer precipitation is larger than the
transfer function parameter for the winter precipitation. It is also reassuring to note that the
better representation of the physics of the system also leads to an improved statistical fit as indi-
cated by a lower AIC value.

A second type of dynamic model aimed at modelling the spring runoff resulting from
snowmelt is also considered. In this model, the summer precipitation is the same as the model in
[17.5.7). However, the snow accumulated during the winter months from December to March is
represented as a single pulse input in April where the temperature is above zero for the first time
and hence spring runoff occurs. For the other eleven months of the year this series has zero
entries. This type of dynamic model has been shown to work well for river systems located in
areas that experience Arctic climate (Baracos et al., 1981) and rarely have any thaws during the
winter months. However, the climatic conditions in the Saugeen River basin during the winter
are not extremely cold and several midwinter melts result in a significant reduction in the accu-
mulated snow cover on the ground. For this reason, the transfer function parameter for the accu-
mulated winter precipitation is not significantly different from zero. Notice in Table 17.5.3 that
that value of @, = —0.162 is much less than twice the SE of 0.109.

When dealing with quarter monthly data, another approach is presented in Section 18.3 and
also by Thompstone (1983, Ch. 6) for incorporating snowmelt into a TFN model. The advantage
of this approach is that it closely reflects the physical processes of snowmelt.

Temperature Series as Inputs: Although the residual CCF analyses indicate no significant rela-
tionships between temperature and riverflow, the two temperature series are used as input covari-
ate series in TFN models. As before, both series are first deseasonalized by subtracting out the
estimated monthly means and dividing by the estimated monthly standard deviations for each
observation as in [13.2.3]. These series are then entered independently as covariate series in
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TFN models. The resulting models and their associated AIC values are shown in Table 17.5.3.
Because 1.96 times the SE for each parameter is larger than the parameter estimate, neither
transfer function parameter is significant at the five percent significance level. Recall that the
CCF for each temperature series and the Saugeen riverflows, also suggests that there may not be
a marked relationship between the temperatures and riverflows. However, the Lucknow tem-
perature parameter is significantly different from zero at the ten percent significance level. Asa
result, the Lucknow temperature series is included in the TFN models where both the tempera-
ture and precipitation series are included.

Precipitation and Temperature Series as Inputs: In an effort to combine all of the available
information, both the temperature and the precipitation data are used as input covariate series in
TFN models. In the first model of this type in Table 17.5.3, the combined precipitation is desea-
sonalized and split into two seasons as is done in [17.5.7). The deseasonalized Lucknow tem-
perature data is used as another input covariate series. The resulting model is given by

a;

(1-04228)

where y, is the descasonalized logarithmic flow at time t; x,, is the deseasonalized summer pre-
cipitation; x,, is the deseasonalized winter precipitation; x,; is the deseasonalized Lucknow tem-
perature data; and g, is the white noise term. The model and its associated AIC are also shown

in Table 17.5.3. This model provides a significant improvement over any of the models previ-
ously employed with a decrease of almost five in the AIC when compared to the model in
[17.5.7]. Also, the transfer function parameter for the temperature series is significantly dif-
ferent from zero in this case. Recall from before that the transfer function parameter for either
temperature series is not significantly different from zero at the five percent significance level.
However, when the precipitation series is included in the model, the temperature series provides
a significant contribution. This point illustrates the need for more research in identifying the
dynamic component of TFN models when more than one input covariate series is available.

The last model fitted to the data employs the combined precipitation and the combined
temperature data. The temperature series are combined in the same fashion as the precipitation
series but are not divided into two separate seasons. The resulting model and its associated AIC
are shown in Table 17.5.3. Note that the AIC value is only marginally larger than that of the pre-
vious model where the Lucknow temperature data is employed instead of the combined tempera-
ture series. In this case, either of these last two TFN models could be employed as the most
appropriate model for the available data.

¥y =0.453x,, +0.194x,, + 0.144x,; + [17.5.8]

17.6 ARMAX MODELS
From [17.2.7], the TFN model having a single covariate series is written as

R R [17.6.1]

The first and second terms on the right hand side of [17.6.1] are referred to as the dynamic and
noise components in Sections 17.2.2 and 17.2.3, respectively. The operators contained in the
o(B) Bb
&B)

series y, are defined in Section 17.2.2. Finally, the operators in the transfer function

transfer function for transferring the influence of the covariate series x; to the response

6(8)

%B) for




606 Chapter 17

the white noise g, are defined in [17.2.4] of Section 17.2.3 for the ARMA process describing the
correlated or coloured noise as

0(8)
N,=—==a [17.6.2]
)
Some authors prefer to write a dynamic model having a stochastic noise component in a
different fashion than the one given in [17.6.1]. More specifically, their model is written as

OB, — Hy) = (B)B(x, - ,) + 8(B)a, (17.6.3]

In the literature, this model is most commonly called the ARMAX (autoregressive-moving
average-exogeneous variables) model (Hannan, 1970) but is also referred to as the ARTF
(autoregressive transfer function) and ARMAV models. The exogencous variable in [17.6.3]
refers to the input series, x,. By dividing [17.6.3] by ¢(B), the ARMAX model can be

equivalently given as

o(B) 6(8)
¢(8) ®(8)

A feature of the ARMAX model written in [17.6.3] is that the response variable is written
directly as an autoregression. For example, if the order of ¢(B) is 2, the model would be

Y1 = By = 0100mx = Ma) + 02012 = 1) + (BB (x, — ) + 6(B)a,

Nonetheless, the TFN model possesses distinct theoretical and practical advantages over the
ARMAX model. To compare these two models consider the linear filter interpretations depicted
in Figures 17.6.1 and 17.6.2 for the TFN model in {17.4.1] and ARMAX model in [17.6.4],
respectively. In each figure, the inputs to the model are the g, innovations plus the covariate x,

series. After passing through the indicated linear filters, the plus sign indicates that the dynamic
and noise components are added together to create the y, response. In both models, the input sig-

nal, x,, and white noise, a,, enter the linear filter system by different pathways. However, for the

case of the ARMAX model in Figure 17.6.2, the input transfer function :’ég)) and the ARMA

noise transfer function 2%;_ are interrelated, since they have the same common denominator
¢(B). On the other hand, the transfer functions for the input and noise terms for the TFN model
in Figure 17.6.1 have no common operators and are, therefore, independent of one another. Con-
sequently, the TFN model is a more general representation of a dynamic-noise system than the
ARMAX model (Young, 1984, pp. 113-116). The TFN model clearly separates out the deter-
ministic or dynamic component and the stochastic noise effects.

As pointed out by Young (1984, pp. 116-117), one could also define other related versions
of a dynamic-noise model outside of those given in [17.4.1] and {17.6.3]. For example, one
could constrain the noise term in [17.6.1] or [17.6.4] to be purely AR or solely MA. Overall, the
most general and flexible definition is the TFN model given in [17.6.1].

A great practical advantage of TFN modelling is that comprehensive model construction
tools are available for conveniently applying TFN models to realworld problems. As explained
in Section 17.3, flexible techniques are known and tested for use in identification, estimation and
diagnostic checking of TFN models. However, this is not the situation for ARMAX models.

Bb(x, —p,) + a, [17.6.4]

o -uy)=
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at o (B) Nt
1 ¢ (B)
Xt =k w (B) Bb N Yt—Hy
1 6(B) N/

Figure 17.6.1. Linear filter depiction of the TFN model in [17.6.1].

ot e (B) Nt
¢ (B)
Xt=Hx w(B) B R Yt—Hy
| e (B) o/

Figure 17.6.2. Linear filter interpretation of the
ARMAX model in [17.6.4].
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For example, one has to be careful when estimating the parameters of an ARMAX model. If the
order of certain operators in the ARMAX model are not specified correctly, one may obtain poor
parameter estimates (Young, 1984, p. 117). Because of the aforesaid and other reasons, it is
recommended that the TFN model be selected over the ARMAX model for employment in prac-
tical applications.

The ARMAX model was introduced into system identification by Astrom and Bohlin
(196S). In the past, ARMAX models have been successfully applied to hydrological and
environmental engineering problems. For documented case studies of ARMAX modelling in
hydrology, the reader can refer, for instance, to the research of Haltiner and Salas (1988), as well
as references cited therein. In environmental engineering, ARMAX models have been employed
for modelling dynamic systems problems arising in the conveyance (Capodoglio et al., 1990)
and treatment (Capodoglio et al., 1991, 1992; Novotny et al., 1991) of wastewater. As a matter
of fact, ARMAX and TFN models perform well when compared to more complex deterministic
models written as differential equations, for capturing the key dynamic aspects of wastewater
treatment plants (Capodoglio et al., 1992).

17.7 CONCLUSIONS

As exemplified by the applications in this chapter, a TFN model can be conveniently con-
structed for handling both single and multiple inputs. In addition to an understanding of the phy-
sical properties of a system being modelled, an array of well developed statistical tools are avail-
able for use in designing a suitable TFN model. For model identification, the empirical approach
along with appropriate CCF analyses described in Section 17.3.1, can be used to identify the
dynamic component of a TFN model. To identify the noise component of the TFN model, it is
recommended that the empirical approach be used, especially when there are more than one
covariate series. Subsequent to identifying one or more tentative TFN models, MLE’s can be
obtained for the model parameters (see Appendix A17.1) and a number of statistical tests can be
employed for checking the validity of the model. Automatic selection criteria, such as the AIC
and BIC, can be quite useful for model discrimination purposes.

If there are more than one precipitation or temperature series, a procedure is available for
obtaining a single precipitation or temperature series. For the situation where snow accumulates
during the winter time, the precipitation series can be incorporated into the dynamic model in
specified manners so that the model makes sense from a physical point of view. For the case of
the best Saugeen River dynamic model, the precipitation series was split into a winter and sum-
mer series, and a separate transfer function was designed for each of the series. An alterative
approach for incorporating snowmelt into a TFN model is presented in Section 18.3.

When TEN models are fitted to other kinds of environmental series, the scientist can prac-
tice the art and science of his profession by designing physically based transfer functions and
using flexible statistical tools to isolate the best design. As shown by the TFN applications in
the next chapter, a properly designed TFN can produce accurate forecasts which in turn can be
used in the control and operation of a system of reservoirs.
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APPENDIX A17.1
ESTIMATOR FOR TFN MODELS

An estimator for obtaining MLE’s for the parameters of a TFN model is outlined in this
appendix. For convenience of explanation, the estimate is explained for the case of a TFN model
having a single input series as in [17.2.5]. The expansion of this estimator for handling the situa-
tion where there are multiple input series as in [17.5.3], as well as interventions (see Chapter 19
and 22), is straightforward.

The estimator for a TFN model is, in fact, a direct extension of the estimator for an ARMA
model. In general, the estimator works as follows. Recall from the start of Part VII that a TFN
model can be qualitatively written as

single output = dynamic component + noise

where the dynamic component contains one or more input series and the correlated noise com-
ponent is modelled as an an ARMA model process. As explained in Chapter 19, the dynamic
component can also be designed for not only taking care of multiple input series but also the
effects of external interventions upon the output series. Whatever the case, one can calculate the
noise component as

noise = single output — dynamic component

Next, because the noise is assumed to be an ARMA process, one can calculate the white noise
part for the correlated noise term by using an ARMA filter. Recall that these residuals are
assumed to be NID(O,o}). Finally, keeping in mind that one is simultaneously estimating the

parameters for an overall TFN model, one can employ an ARMA estimator, such as the McLeod
(1977) algorithm described in Appendix A6.1 or one of the other estimators listed in Section
6.2.3, to obtain MLE’s for the model parameters. Possible optimization techniques for maximiz-
ing the likelihood function are also referred to in Section 6.2.3.

To be more specific, consider the TFN model in [17.2.5] having one input series, which is
written as
Vi =Ky =VB)x —K1,) +N,

9B g _
- a(B)B (xl u’I)+NI

o(B)
= ——=(x,_p = W) + N, [A17.1]
5(8) 1~b ux t
where y, is the output or response series having a theoretical mean of y, and x, is the input or
covariate series that has a theoretical mean of p,. The transfer function for the input series

models the influence of x; upon y, and is given as
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OXB)Bb= (%-(018-(0232— cee "(l)mBm)Bb
B) (158 -8B - 58"

where b is a positive integer for modelling any delay in time for x, to affect y,. If there is no
delay effect, then b = 0. Lastly, because N, is assumed to follow an ARMA process as in [3.4.4],

(BN, = 6(B)a,

8B) ,
orN = @) [A17.2]
where the ARMA filter is given as
8(B) _ (1-6,8-0,82— --- -9_BY)
¢(B) (l-¢13—¢232_ N _¢PBp)

and the a,’s are assumed to be NID(0,2).

Before fitting a TFN model to the data, the response and covariate series may undergo a
transformation such as the Box-Cox transformation in [3.4.30). Whatever the case, the theoreti-
cal means of the y, and x, series can be estimated by the sample means given as

i=5=1% [A17.3]

and

A

b =% = %)_: [A17.4]

respectively, where n is the number of observations in the x; and y, series. One could also simul-
taneously estimate p, and p, along with the other model parameters, but for the length of series

that are usually analyzed, the sample means provide adequate estimates. The remaining parame-
ters to be estimated in the transfer function in the dynamic component are

8=(3,,5,,....,9,)
o = (W, 0,0, . . . , W)

where @y is always included as a parameter in any transfer function. The parameters which must
be estimated in the noise term are

O=(01.92.--.9,)
0=(8,8,....6,)

Because the g, innovations are automatically estimated during the estimation procedure, in the
final iteration the variance, 62, of the innovations can be calculated as
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" n
G2=Llyg2 [A17.5]
R =

where d; is the estimate for g,.

Based upon the normality assumption for the innovations, one can obtain the likelihood
function for a model and employ an optimization procedure for iteratively finding the values of
the parameter which converge to values that maximize the likelihood function. For a given max-
imum likelihood estimator, at each iteration one must be able to calculate the g,’s based upon the

current values of the parameters as well as the structure of the model. As explained by Box and
Jenkins (1976, p. 389), one can determine the current values of the g,’s for the TFN model in

[A17.1], by following a three stage procedure. Firstly, the output, d;, from the dynamic com-
ponent can be computed from

= S - D= 52, - D
or
8(B)d, = (B)(x,_, - F)
or
d=-8d_ - - =8,d_, =X,y ~X)— 0, (X;_p_; - %)
g [A17.6]

Next the noise, N,, can be determined using

N=0,-y)-4d, [A17.7]
Thirdly, the @,’s can be obtained from [A17.2] as
(B)
= N,
al e(B) t
or
@, =010_1+00 7+ - +0,0,_ +N, = ON_ 1 —-$N,5— - - ,N,_, [A17.8]

In order to calculate the innovations at each iteration in the overall optimization pro-
cedures, appropriate starting values are required for x,’s, y,’s and a,’s in [A17.6] to [A17.8],

respectively. As noted by Box and Jenkins (1976, p. 389), the effects of transients can be
minimized if the difference equations are initiated using a value of ¢ for which all previous x,’s

and y,’s are known. Consequently 4, in [A17.6] is computed from ¢ = u + 1 onwards, where u is
the larger of r and m + b and d,’s occurring before u + 1 are set equal to zero. In tum, N, in
[A17.7] can be determined from N,,,; onwards. Finally, if the unknown a,’s are set equal to their
unconditional expected values of zero, the a,’s can be calculated from a,,,., onwards.
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Since one knows how to calculate the g,’s in the ARMA noise component, an estimator
developed for an ARMA model can be employed within the TFN structure to obtain MLE’s for
the parameter of both the noise and dynamic components. For example, one could employ the
estimator of McLeod described in Appendix A6.1. The standard errors of the estimated parame-
ters 8, ©, ¢ and O are obtained by inverting the observed information which is obtained by
numerical diferentiation of the log likelihood function.

Brockwell and Davis (1987) give an alternative method for estimating TFN models using
the Kalman filter. This technique yields exact maximum likelihood estimates as opposed to the
method outlined above which is approximate. In practice, however, there is normally little
difference between estimates produced by the two approaches, particularly when the lengths of
the series exceed 50 data points.

PROBLEMS

17.1 Select two yearly series called x, and y, for which you think that x, causes y, and
then carry out the following tasks:

(a) Following the procedure of Section 16.2.2, employ the residual CCF to ascer-
tain if your suspected causality relationship between x, and y, is true.

(b) Employing the three identification approaches of Section 17.3.1, design a TFN
model for formally connecting x, and y,. Which identification method pro-

vides the most clear results and is easiest to apply?
(c) After estimating the model parameters for the TFN identified in part (b), exe-
cute suitable diagnostic checks from Section 17.3.3 and make any necessary

changes to the model. Be sure to explain all of your results and write down the
difference equation for the final model.

17.2 By referring to the paper of Haugh and Box (1977), outline how these authors derive
their identification procedure for a TFN model.

17.3 Explain the main steps that Box and Jenkins (1976) follow to derive their TFN iden-
tification method.

17.4 Based upon your experiences in fitting TFN models to data as well as theoretical

attributes of the identification procedures, compare the three identification methods
described in Section 17.3.1 according to advantages and limitations.

17.5 By referring to the literature in a field of interest to you, locate three articles describ-
ing applications of TFN models. Briefly outline the types of TFN applications car-
ried out in the papers and chapters and how the TFN modelling was of assistance to
the authors.

17.6 Follow the instructions of problem 17.1 for the situation where you employ average
monthly or other types of seasonal data.
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17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

Construct a TFN model for formally modelling a yearly output series for which you
have two meaningful annual covariate series. For instance, you may have an aver-
age annual riverflow series as well as yearly precipitation and temperature records.

Carry out the instructions of problem 17.7 for the case of monthly or quarter
monthly time series.

Obtain an average monthly riverflow data set for which you have at least two pre-
cipitation and two temperature series. Follow the approach of Section 17.5.4, to
systematically select the most appropriate TFN model to link your data sets.

After reading the paper of Haltiner and Salas in which they employ the ARMAX

model of Section 17.6 for short-term forecasting of snowmelt runoff, do the follow-

ing:

(a) Outline the approach that they employ for modelling how streamflow is
affected by other hydrological variables.

(b) Compare the procedure of Haltiner and Salas for modelling runoff to that given
in Section 17.5.4.

() Explain how Haltiner and Salas could employ a TFN model instead of an
ARMAX model to formally model their hydrological data sets.

Capodaglio et al. (1992) demonstrate that ARMAX or TFN models perform as well
as deterministic differential equations for describing certain wastewater treatment
processes. For their applications, explain how they accomplished this. Find and
explain another physical systems problem where TFN models fare as well or better
than their deterministic counterparts.

The TFN model is an example of a finite difference equation that mathematically
models the relationships among data sets available at discrete time points. In con-
tinuous time, one employs stochastic differential equations. Explain the
continuous-time versions of the TFN models in [17.2.5] and [17.5.3].

As pointed out in Section 17.1, Delleur (1986) demonstrates that a TFN is physi-
cally justified for modelling flows in a watershed. By referring to Delleur’s paper
and using both differential and difference equations, explain how he does this.

Find a paper in a field which is of interest to you that clearly explains the relevance
of TFN modelling for describing physical and/or socio-economic systems. Sum-
marize the main findings of the paper and be sure to emphasize which results you
think are most interesting.

By referring to papers such as those by Novotny and Zheng (1989) and Capodaglio
et al. (1990), explain how TFN models can be employed for approximately model-
ling nonlinear relationships between variables.



614 Chapter 17

REFERENCES

For other references related to TFN modelling, the reader may wish to refer to Chapters 16,
18, 19, 20 and 22.

ARMAX MODELLING

Astrom, K. J. and Bohlin, T. (1965). Numerical identification of linear dynamic systems from
normal operating records. Proceedings of the IFAC (International Federation of Automatic
Control) Symposium on Self-Adaptive Systems, Teddington, England; also in P. H. Hammond,
Editor, Theory of Self-Adaptive Control Systems, Plenum, New York.

Capodaglio, A. G., Jones, H., Novotny, V. and Feng, X. (1991). Sludge bulking analysis and
forecasting: Application of system identification and artificial neural computing technologies.
Water Research, 25(10):1217-1224.

Capodaglio, A. G., Novotny, V. and Fortina, L. (1992). Modelling wastewater treatment plants
through time series analysis. Environmetrics 3(1):99-120.

Capodaglio, A. G., Zheng, S., Novotny, V. and Feng, X. (1990). Stochastic system identification
of sewer flow models. Journal of Environmental Engineering, American Society of Civil
Engineering, 116(2):284-298.

Haltiner, J. P. and Salas, J. D. (1988). Short-term forecasting of snowmelt runoff using ARMAX
models. Water Resources Bulletin, 24(5):1083-1089.

Hannan, E. J. (1970). Multiple Time Series. John Wiley, New York.

Novotny, V., Jones, H., Feng, X. and Capodaglio, A. G. (1991). Time series analysis models of
activated sludge plants. Water Science Technology 23:1107-1116.

Young, P. C. (1984). Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin.

DATA SETS

Environment Canada (1979a). Historical streamflow summary, Saskatchewan to 1978. Technical
report, Water Survey of Canada, Inland Waters Directorate, Water Resources Branch, Ottawa,
Ontario, Canada.

Environment Canada (1979b). Historical streamflow summary, Alberta to 1978. Technical
report, Water Survey of Canada, Inland Waters Directorate, Water Resources Branch, Ottawa,
Ontario, Canada.

Environment Canada (1980a). Historical streamflow summary, Ontario to 1979. Technical
report, Water Survey of Canada, Inland Waters Directorate, Water Resources Branch, Ottawa,
Ontario, Canada. '

Environment Canada (1980b). Monthly meteorological summary, Ontario to 1979. Technical
report, Meteorological Branch, Environment Canada, Ottawa, Canada.



Constructing TFN Models : 615

TIME SERIES ANALYSIS

Abraham, B. and Ledolter, J. (1983). Statistical Methods for Forecasting. John Wiley, New
York.

Bartlett, M. S. (1935). Stochastic Processes. Cambridge University Press, London.
Beguin, J. M., Gourieroux, C. and Monfort, A. (1980). Identification of a mixed autoregressive-

moving average process: the Comer method. In Anderson, O. D., Editor, Time Series, pages
423-436, Amsterdam. North Holland.

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control.
Holden-Day, Oakland, California, revised edition.

Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods. Springer-Verlag,
New York.

Haugh, L. D. and Box, G. E. P. (1977). Identification of dynamic regression (distributed lag)
models connecting two time series. Journal of the American Statistical Association,
72(357):121-130.

Liu, L. and Hanssens, D. M. (1982). Identification of multiple-input transfer function models.
Communication in Statistics, Theory and Methods, 11(3):297-314.

McLeod, A. 1. (1977). Improved Box-Jenkins estimators. Biometrika, 64(3):531-534.

Priestley, M. B. (1971). Fitting relationships between time series. Bulletin of the International
Statistical Institute, 34:295-324.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, Massachusetts.

Vandaele, W. (1983). Applied Time Series and Box-Jenkins Models. Academic Press, New
York.

TFN APPLICATIONS

Anselmo, V. and Ubertini, L. (1979). Transfer function-noise model applied to flow forecasting.
Hydrological Science Bulletin IAHS (International Association of Hydrological Sciences)
24(3):353-359.

Baracos, P. C., Hipel, K. W. and McLeod, A. 1. (1981). Modelling hydrologic time series from
the Arctic. Water Resources Bulletin, 17(3):414-422.

Campbell, A., Noakes, D. J. and Elner, R. W. (1991). Temperature and lobster, homarus ameri-
canus, yield relationships. Canadian Journal of Fisheries and Aquatic Sciences, 48(11):2073-
2082.

Chow, K. C. A, Watt, W. E. and Watts, D. G. (1983). A stochastic-dynamic model for real time
flood forecasting. Water Resources Research, 19(3):746-752.

Delleur, J. W. (1986). Recursive parameter identification for flash flood forecasting. In Mul-
tivariate Analysis of Hydrologic Processes, Proceedings of the Fourth International Hydrology
Symposium held at Colorado State University, Fort Collins, Colorado, July 15 to 17, 1985.
Edited by H. W. Shen, J. T. B. Obeysekera, V. Yevjevich and D. G. DeCoursey, published by
the Enginecring Research Center, Colorado State University, 154-177.



616 Chapter 17

Fay, D. M., Watt, W. E. and Watts, D. G. (1987). A stochastic real-time spring flood forecasting
system for Carman, Manitoba. Canadian Journal of Civil Engineering, 14(1):87-96.

Gumnell, A. M. and Fenn, C. R. (1984). Box-Jenkins transfer function models applied to
suspended sediment concentration-discharge relationships in a proglacial stream. Arctic and
Alpine Research 16(1):93-106.

Hipel, K. W., McLeod, A. L and Li, W. K. (1985). Causal and dynamic relationships between
natural phenomena. In Anderson, O. D., Ord, J. K. and Robinson, E. A., Editors, Time Series
Analysis: Theory and Practice, pages 13-34. North-Holland, Amsterdam. ‘

Hipel, K. W., McLeod, A. I. and McBean, E. A. (1977). Stochastic modelling of the effects of
reservoir operation. Journal of Hydrology, 32:97-113.

Hipel, K. W., McLeod, A. 1. and Noakes, D. J. (1982). Fitting dynamic models to hydrological
time series. In El-Shaarawi, A. H. and Esterby, S. R., Editors, Time Series Methods in Hydrosci-
ences, 110-129. Elsevier, Amsterdam.

Lemke, K. A. (1990). An evaluation of transfer function/noise models of suspended sediment
concentration. The Professional Geographer 42(3):324-335.

Lemke, K. A. (1991). Transfer function models of suspended sediment concentration. Water
Resources Research, 27(3):293-305.

Li, W. K. (1981). Topics in Time Series Modelling. PhD thesis, Dept. of Statistical and Actuarial
Sciences, The University of Western Ontario, London, Ontario, Canada.

Maidment, D. R., Miaou, S. P. and Crawford, M. M. (1985). Transfer function models of daily
urban water use. Water Resources Research, 21(4):425-432.

Noakes, D. J., Welch, D. W. and Stocker, M. (1987). A time series approach to stock-recruitment
analysis: transfer function noise modelling. Natural Resource Modeling, 2(2):213-233.

Novotny, V. and Zheng, S. (1989). Rainfall-runoff function by ARMA modeling. Journal of
Hydraulic Engineering, ASCE (American Society of Civil Engineering) 115(10):1386-1400.
Olason, T. and Watt, W. E. (1986). Multivariate transfer function-noise model of river flow for
hydropower operation. Nordic Hydrology, 17:185-202.

Snorrason, A., Newbold, P. and Maxwell, W. H. C. (1984). Multiple input transfer function-
noise modeling of river flow. In Maxwell, W. H. C. and Beard, L. R,, Editors, Frontiers in
Hydrology, pages 111-126. Water Resources Publications, Littleton, Colorado.

Thompstone, R. M. (1983). Topics in Hydrological Time Series Modelling. PhD thesis, Depart-
ment of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Thompstone, R. M., Hipel, K. W. and McLeod, A. I. (1983). Transfer function-noise modelling
for power-house inflow forecasting. INFOR, 21(4):258-269.

Viessman Jr., W., Knapp, J. W., Lewis, G. L. and Harbaugh, T. E. (1977). Introduction to
Hydrology. Harper and Row, New York, second edition.

Welch, D. W. and Noakes, D. J. (1991). Optimal harvest rate policies for rebuilding the Adams
River sockeye salmon (oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sci-
ences, 48(4):526-535.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


