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CHAPTER 2
BASIC STATISTICAL CONCEPTS

2.1 INTRODUCTION

In this chapter, the general properties of time series and stochastic processes are firstly dis-
cussed. This leads to the problem of deciding upon in which situations it is feasible to assume
that the statistical characteristics of a time series under consideration are more or less constant
over time and hence it is permissible to fit a stationary stochastic model to the data. A general
appraisal is given regarding the controversies surrounding stationarity and nonstationarity. Fol-
lowing this, some statistical definitions are presented for examining stationary data in the time
domain while the usefulness of the cumulative periodogram for frequency domain analyses is
pointed out. Finally, the importance of linear stationary models in the environmental sciences is
demonstrated by explaining the relevant results from the Wold decomposition theorem (Wold,
1954).

2.2 TIME SERIES

A time series is a set of observations that are arranged chronologically. In time series
analysis, the order of occurrence of the observations is crucial. When a meteorologist wishes to
forecast the weather conditions for tomorrow, the time sequence in which previous weather con-
ditions evolved is of utmost importance. If the chronological ordering of the data were ignored,
much of the information contained in the time series would be lost and the meteorologist would
have a difficult task when attempting to forecast future weather patterns.

Data can be collected continuously over time. For example, temperature readings and the
depth of a river may be recorded on a continuous graph. Data that are measured at every
moment of time, constitute a continuous time series. Other types of observations may be
recorded at discrete points in time and the resulting time series is said to be discrete. In certain
situations, the time interval between sequential observations may vary. When the pollution lev-
els in a river are being monitored downstream from a sewage treatment plant, readings may be
taken every half hour during the daytime and once every two hours during the night when the
pollutant concentrations fluctuate less. This type of data set is often called an unevenly spaced
time series. However, for many types of environmental time series, observations are available at
equally spaced discrete time intervals such as hourly, daily, weekly, monthly or yearly time
separations. Average weekly precipitation records may be convenient for use in forecasting
short-term weather trends while mean yearly records may be appropriate for studying longer-
term climatic changes. In Parts II to IX of this book, as well as Chapter 22, the time series
models considered are designed for use with discrete time series that are measured at equally
spaced time intervals. Additionally, the variable being observed at discrete times is assumed to
be measured as a continuous variable using the real number scale. Furthermore, the type of
model to be employed is not only a function of the inherent properties of the phenomenon that is
being modelled but is also dependent upon the time interval under consideration. For example,
the stationary nonseasonal models of Chapter 3 are designed for fitting to average yearly river-
flow series while the seasonal models of Chapters 13 and 14 can be used with average monthly
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riverflow time series. Finally, the nonparametric trend tests of Chapter 23, the regression
analysis models of Chapter 24, and many of the graphical methods of Chapter 22 and elsewhere
in the book, can be employed with both evenly and unevenly spaced measurements.

The assumption, that the entries in a time series under study are given at discrete time inter-
vals that are evenly spaced, has many inherent advantages. Firstly, natural time series are often
conveniently available in this type of format. Government agencies frequently list riverflows
both as average weekly and monthly values. Other types of time series may only be given as one
measurement during each time interval and, therefore, it is not possible to represent each entry in
the time series as an average value. Secondly, the equispaced discrete time assumption greatly
simplifies the mathematical theory underlying the various types of stochastic or time series
models that can be designed for modelling environmental time series. In fact, little research has
been successfully completed regarding comprehensive stochastic models that can allow for the
time interval to vary between observations. Thirdly, if the data are not given in the form of an
equally spaced discrete time series, the observations can often be conveniently converted to this
format. Continuous time series can be easily transformed to discrete observations by lumping
data together over a specified time interval. For instance, continuous temperature information
may be listed as average hourly readings. Other types of data may be continuously accumulated
over a period of time. For a chosen time interval, the amount accumulated over that period can
form one value in the discrete time series. Rain gauges, for example, may be inspected weekly
in order to record the amount of precipitation that has accumulated. In other situations, a
discrete time series that is recorded using a specified time interval, may be changed to a data
sequence that is based upon a larger time separation between observations. For instance, average
daily riverflows can readily be converted to mean weekly, monthly or yearly records. In some
situations, certain types of time series that do not possess equal time separations between obser-
vations may in fact be treated as if the time intervals were constant. For example, when the
values in a time series represent the occurrence of some kind of event such as the successive
yields from a batch chemical process, the amount of time that elapses between each happening
may not be important. Consequently, the time series can be analyzed using the techniques that
have been developed for equally spaced observations. Finally, as explained in Section 19.3 and
elsewhere in the book, unevenly spaced series can often be converted to evenly spaced series by
employing appropriate data filling procedures.

In most time series studies, the interval separating observations is ime. However, it is pos-
sible to have other types of separations. The interval may be spatial. The depth of a lake at
equally spaced intervals along its length may behave according to some probabilistic mechan-
ism. The contours of a mountain range in a fixed direction could perhaps be treated as a time
series. The values for the direction of flow of a meandering river measured at equispaced points
along the course of the river, constitute a time series based upon spatial considerations (Speight,
1965; lkeda and Parker, 1989). Nevertheless, in the vast majority of practical applications the
spacing between observations in a series is due to time. Accordingly, even if the spacing
between entries is a result of distance, the term ‘‘time’’ series is still usually employed.

If a polynomial can be fit to a known time series and future entries of the time series can be
exactly determined, the time series is said to follow a deterministic function. When the future
values of a time series cannot be calculated exactly and can be described solely in terms of a pro-
bability distribution, the time series is described by a nondeterministic model which is usually
some kind of statistical or stochastic model. Chronological observations measured from a given
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phenomenon form a statistical time series. By knowing the historical values of the widths of the
tree rings at a specified site, for example, the range of possible growths for the upcoming years
can only be predicted using appropriate probabilistic statements. This text is involved with
modelling natural phenomena which evolve with time according to a probabilistic structure.

2.3 STOCHASTIC PROCESS

For natural phenomena it is impossible to predict deterministically what will occur in the
future. For instance, meteorologists never state that there will be exactly 3.00 mm of rain
tomorrow. However, once an event, such as tomorrow’s rainfall, has occurred, then that value of
the precipitation time series is known exactly. Nevertheless, it will continue to rain in the future
and the sequence of all the historical precipitation records is only one realization of what could
have occurred and also of what could possibly happen. Precipitation is an example of a statisti-
cal phenomenon that evolves in time according to probabilistic laws. A mathematical expression
which describes the probability structure of the time series that was observed due to the
phenomenon, is referred to as a stochastic process. The sequence of historical observations is in
fact a sample realization of the stochastic process that produced it.

In Table 1.4.1 within Section 1.4.3, stochastic models are classified according to the cri-
teria of discrete and continuous time as well as discrete and continuous state space. As pointed
out in Section 1.4.3, this book deals with time series models which constitute a special class of
stochastic models for which the time is discrete and the possible values or state space of the vari-
ables being measured are continuous. Some well known books on stochastic processes include
contributions by Cox and Miller (1965) referenced in Section 1.4.3, Parzen (1962), Ross (1983)
and Papoulis (1984). Representative books on time series analysis are referred to in Section
1.6.3.

In a practical application, a time series model is fitted to a given series in order to calibrate
the parameters of the model or stochastic process. The procedure of fitting a time series or sto-
chastic model to the time series for use in applications is called time series analysis. One objec-
tive of time series analysis is to make inferences regarding the basic features of the stochastic
process from the information contained in the historical time series. This can be accomplished
by developing a mathematical model which possesses the same key statistical properties as the
generating mechanism of the stochastic process, when the model is fit to the given time series.
The fitted model can then be used for various applications such as forecasting and simulation.
The families of stochastic models considered in this text constitute classes of processes that are
amenable for modelling water resources and other natural time series.

In Part I1I, a linear nonseasonal model is designed for modelling the average annual flows
of the St. Lawrence River at Ogdensburg, New York, U.S.A., from 1860 to 1957. The average
flows are calculated in m/s for the water year from October 1 of one year to September 30 of the
following year and were obtained from a paper by Yevjevich (1963). Figure 2.3.1 shows a plot
of the 97 observations. As explained in Chapter 9, the model which is fitted to the flows can be
used to generate or simulate other possible sequences of the flows. For instance, Figures 2.3.2
and 2.3.3 display two generated sequences from the fitted model. Notice that the synthetic time
series shown in these two figures differ from each other and are also not the same as the histori-
cal series in Figure 2.3.1. However, within the confines of the fitted model the generated series
do possess the same overall statistical characteristics of the historical data. In general, an ensem-
ble of data sequences could be generated to portray a set of possible realizations from the
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population of time series that are defined by the generating stochastic process.
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Figure 2.3.1. Annual flows of the St. Lawrence River at
Ogdensburg, New York.
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Figure 2.3.2. First simulated sequence of flows for the St. Lawrence River
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Figure 2.3.3. Second simulated sequence of flows for the St. Lawrence River
at Ogdensburg, New York.

Because it is conceptually possible for more than one sequence of values to occur over a
specified time span, a stochastic process can theoretically be represented by a random variable at
each point in time. Each random variable possesses its own marginal probability distribution
while joint probability distributions describe the probability characteristics of more than one ran-
dom variable. In order to simplify the mathematical theory underlying a stochastic process, it is
often assumed that the stochastic process is stationary.

2.4 STATIONARITY

2.4.1 General Discussion

Stationarity of a stochastic process can be qualitatively interpreted as a form of statistical
equilibrium. Therefore, the statistical properties of the process are not a function of time. For
example, except for inherent stochastic fluctuations, stationary stochastic models are usually
designed such that the mean level and variance are independent of time. Besides reducing the
mathematical complexity of a stochastic model, the stationarity assumption may reflect reality.
For instance, if a natural river basin has not been subjected to any major land use changes such
as urbanization and cultivation, it may be reasonable to assume that a stationary stochastic model
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can be fitted to the time series of historical average annual riverflows. Consequently, this infers
that the stochastic properties of the complex physical mechanism that produces the observed
riverflows, can be represented mathematically by a stationary stochastic process.

Stationarity is analogous to the concept of isofropy within the field of physics. In order to
be able to derive physical laws that are deterministic, it is often assumed that the physical pro-
perties of a substance such as conductivity and elasticity, are the same regardless of the direction
or location of measurement. For example, when studying the conductive properties of an electri-
cal transmission line, it is reasonable to consider the wire to have uniform cross-sectional area
and constant density of copper along its length. Likewise, in stochastic modelling, the statistical
properties of a process are invariant with time if the process is stationary.

In certain situations, the statistical characteristics of a process are a function of time. Water
demand tends to increase over the years as metropolitan areas grow in size and the affluence of
the individual citizen expands. The average carbon dioxide content of the atmosphere may
increase with time due to complex natural processes and industrial activities. To model an
observed time series that possesses nonstationarity, a common procedure is to first remove the
nonstationarity by invoking a suitable transformation and then to fit a stationary stochastic
model to the transformed sequence. For instance, as explained in Section 4.3.1, one method to
remove nonstationarity is to difference the given data before determining an appropriate station-
ary model. Therefore, even when modelling nonstationary data, the mathematical results that are
available for describing stationary processes, are often required.

The idea of stationarity is a mathematical construct that was created to simplify the theoret-
ical and practical development of stochastic models. Even the concept of a stochastic process
was adopted for mathematical convenience. For a particular geophysical or other type of natural
phenomenon, the only thing that is actually known is one unique historical series. An ensemble
of possible time series does not exist because the clocks of nature cannot be turned back in order
to produce more possible time series. Consequently, Klemes (1974, p. 676) maintains that it is
an exercise in futility to argue on mathematical grounds about the stationarity or nonstationarity
of a specific geophysical series. Rather, the question of whether or not a process is stationary is
probably a philosophical one and is based upon an understanding of the system being studied.

Some researchers believe that natural processes are inherently nonstationary and therefore
the greater the time span of the historical series, the greater is the probability that the series will
exhibit statistical characteristics which change with time. However, for relatively short time
spans it may be feasible to approximately model the given data sequence using a stationary sto-
chastic model. Nevertheless, the reverse position may seem just as plausible to other scientists.
Apparent nonstationarity in a given time series may constitute only a local fluctuation of a pro-
cess that is in fact stationary on a longer time scale.

Within this textbook, the question of stationary or its antipode, is based upon practical
considerations. When dealing with yearly hydrological and other kinds of natural time series of
moderate time spans, it is often reasonable to assume that the process is approximately stationary
(Yevjevich, 1972a,b). For example, even though the climate may change slowly over thousands
of years, within the time span of a few hundred years the changes in hydrologic time series may
be relatively small and therefore these series can be considered to be more or less stationary. If
the underlying modelling assumptions are satisfied when a stationary stochastic model is fitted
to a nonseasonal series, then these facts validate the assumption of stationarity. When
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considering average monthly riverflows, the individual monthly averages may have constant
mean values but the means may vary from month to month. Therefore, as explained in Chapters
13 and 14, time series models are employed that reflect the stationarity properties within a given
month but recognize the nonstationarity characteristics across all of the months. In other situa-
tions, there may be a physical reason for a process to undergo a change in mean level. For exam-
ple, in 1961 a forest fire in Newfoundland, Canada, devastated the Pipers Hole River basin. In
Section 19.5.4, an intervention model is used to model the monthly flows of the Pipers Hole
River before and after the fire. The intervention model describes the manner in which the river-
flows return to their former patterns as the natural vegetation slowly reverts, over the years, to its
condition prior to the fire.

2.4.2 Types of Stationarity

As mentioned previously, the historical time series can be thought of as one realization of
the underlying stochastic process that generated it. Consequently, a stochastic process can be
represented by a random variable at each point in time. When the joint distribution of any possi-
ble set of random variables from the process is unaffected by shifting the set backwards or for-
wards in time (i.e., the joint distribution is time independent), then the stochastic process is said
to possess strong (or strict) stationarity.

In practice, the assumption of strong stationarity is not always necessary and a weaker form
of stationarity can be assumed. When the statistical moments of the given time series up to order
k depend only on time differences and not upon the time of occurrence of the data being used to
estimate the moments, the process has weak stationarity of order k. For example, if the stochas-
tic process can be described by its mean, variance and autocorrelation function (ACF) (see Sec-
tion 2.5.2 for the definition of the ACF), then it has second-order stationarity. This second-order
stationarity may also be referred to as covariance stationarity and all of the stationary processes
discussed in this text are covariance stationary. Some important statistics which are used in con-
junction with covariance stationary processes, are now defined.

2.5 STATISTICAL DEFINITIONS

In this section, some basic definitions are presented that are especially useful in the time
series analysis. Readers who have forgotten some of the basic ideas in probability and statistics
are encouraged to refresh their memories by referring to some introductory books such as the
ones by Ross (1987), Kalbfleisch (1985), Snedecor and Cochran (1980), Kempthomne and Folks
(1971) and Guttman et al. (1971) as well as statistical hydrology books by writers including
McCuen and Snyder (1986), Haan (1977) and Yevjevich (1972a). Moreover, a handbook on
statistics is provided by Sachs (1984) while Kotz and Johnson (1988) are editors of a
comprehensive encyclopedia on statistics.

2.5.1 Mean and Variance

Let z,,2,, - *  ,zy, be a time series of N values that are observed at equispaced time inter-
vals. The theoretical mean 1 = E[z,] of the process can be estimated from the sample realization
by using the equation
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Z= [2.5.1]

M=z
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The amount of spread of a process about its mean W is related to its theoretical variance
0',2 =E[(z - 1)?). This variance can be estimated from the given time series by employing the

equation

- N
62=Ltyq -2 [2.52]
N 1=]

2.5.2 Autocovariance and Autocorrelation
The covariance between z, and a value z,,;, which is k time lags removed from z,, is
theoretically defined in terms of the autocovariance at lag k given by

Y = COV[Z, azn-k] = E[(Zx = u)(zﬁ-k - p')] [2.5.3]
When k=0, the autocovariance is the variance and consequently Y, = 0',2.

A normalized quantity that is more convenient to deal with than y,, is the theoretical aufo-
correlation coefficient which is defined at lag k as

Pe= 1 [2.5.4]

Yo
Because of the form of [2.5.4], the autocorrelation coefficient is dimensionless and, therefore,
independent of the scale of measurement. Furthermore, the possible values of p, range from -1
to 1, where p, has a magnitude of unity at lag zero.
Jenkins and Watts (1968, p. 146) refer to the autocovariance, ¥;, as the theoretical autoco-

variance function while the autocorrelation coefficient, p,, is called the theoretical autocorrela-

tion function (ACF). Although the ACF is also commonly referred to as the autocorrelation coef-
ficient or serial correlation coefficient, in this book the terminology ACF is employed. For
interpretation purposes, it is often useful to plot the ACF against lag k. Because the ACF is sym-
metric about lag zero, it is only necessary to plot p, for positive lags from lag one onwards.

Autocovariance and Autocorrelation Matrices
Let the N historical observations be contained in the vector

zT = (zlyZZa ot 9ZN)
The autocovariance matrix for a stationary process of N successive observations is defined by
Ty =El@-We-w

where U is a vector of dimension Nx1 which contains N identical entries for the theoretical mean
level p. In expanded form, the autocovariance matrix is a doubly symmetric matrix and is writ-
ten as
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The autocorrelation matrix is defined by

|y
Py=— [2.5.6]
Yo

For the random variables, z,,2,_;, - * * ,2,_y,, consider any linear function given by

L=l ~ W) + by —W+ - +IyGpe = 1)

By letting I be the vector 7= (/1,13 - - - ,In), the linear function can be economically written as
L=z~ Q). For a stationary process, the covariance function is symmetric about lag zero and
hence cov[z;z;] = v,j_;. Consequently, the variance of L, is

var[L,] = covIL,L]1 = EIL.LT] = EIV z - AT @ - W)T1=EN z - p)(z - w1}

“PE(@- - W=yl =3 3 Ly
- - N 'ZZIJIJYI;-H
i=1j=1

If the I’s are not all zero and the series is nondeterministic, then var[L,] is strictly greater than

zero and hence the quadratic form in the above equation is positive definite. Therefore, it fol-
lows that the autocovariance and autocorrelation matrices are positive definite for any stationary
process (Box and Jenkins, 1976, p. 29). Consequently, the determinant and all the principal
minors of these matrices must be greater than zero.

When the probability distribution associated with a stochastic process is a multivariate nor-
mal distribution, then the process is said to be a normal or a Gaussian process. Because the mul-
tivariate normal distribution is completely characterized in terms of the moments of first and
second order, the presence of a mean and autocovariance matrix I'y for all N implies that the

process possesses strict stationarity. In addition, when the process is Gaussian, the ACF com-
pletely characterizes all of the dependence in the series.

2.5.3 Short and Long Memory Processes

For a known stochastic process, it is possible to determine the theoretical autocovariance,
Y;» Or equivalently the theoretical ACF, p,. In Chapter 3, for example, theoretical ACF’s are
derived for different kinds of stationary autoregressive-moving average (ARMA) processes,

while in Section 10.4 the theoretical ACF is presented for a fractional Gaussian noise (FGN) pro-
cess. When the theoretical ACF is summable it must satisfy (Brillinger, 1975)
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M= 3 Ipl < [2.5.7]

k=o—eo

where M stands for memory. Essentially, a covariance stationary process is said to possess a
short memory or long memory according to whether or not the theoretical ACF is summable. For
more precise definitions of short and long memory, the reader can refer to Cox (1991). Exam-
ples of short memory processes are the stationary ARMA processes in Chapter 3 whereas the
FGN and fractional ARMA (FARMA) processes of Chapters 10 and 11, respectively, possess
long memory for specified ranges of certain model parameters. The importance of both long and
short memory processes for modelling annual hydrological time series is exemplified by the
study of the ‘‘Hurst phenomenon’’ in Chapter 10.

2.5.4 The Sample Autocovariance and Autocorrelation Functions

In practical applications, the autocovariance function and the ACF are estimated from the
known time series. Jenkins and Watts (1968) have studied various procedures for estimating the
autocovariance function from the given sample of data. It is concluded that the most appropriate
sample estimate of vy;, the autocovariance at lag k, is

1 N-k
==Y - -1) [2.5.8]
N 1=1

The estimated or sample ACF for kth lag autocorrelation p, is

— [2.5.9]

To obtain the sample autocovariance matrix, one substitutes ¢, from [2.5.8] for 7,
k=0,1,...,N-1, into [2.5.5]. Using the divisor N in [2.5.8] instead of N—k insures that the
sample autocovariance matrix is positive definite (McLeod and Jimenez, 1984). Because the
sample autocovariance matrix is positive definite for a stationary process, this property also
holds for the sample autocovariance matrix as well as the sample ACF matrix.

As explained for the case of ARMA models in Chapters 3 and 5, the sample ACF is useful
for identifying what type of time series model to fit to a given time series of length N. Because
the ACF is symmetric about lag zero, it is only required to plot the sample ACF for positive lags
except for lag zero, to a maximum lag of about N/4. To determine which values of the estimated
ACF are significantly different from zero, confidence limits should also be included on the
graph. This requires a knowledge of the variance of the sample ACF, ;.

For short-memory processes, the approximate variance for ry is given by Bartlett (1946) as
=13 2 4 2p2p? 2.5.10
var(nl == 3 @ +PjsPj+ = 4PiP;Pj +2p; Pi) [2.5.10]
J:—-
The above equation can be greatly simplified if it is known that p; is zero beyond lag q. In par-
ticular, the variance of r; after lag q is derived from [2.5.10] as
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var(r,] = %(1 +23pD)  for k>g [2.5.11]
p=

When a normal process is uncorrelated and p, = 0 for k > 0, the variance of r, for k > 0 is
approximately -117 from [2.5.11]. Using simulation experiments, Cox (1966) demonstrated that

when r; is calculated for a sequence of uncorrelated samples, the sampling distribution of r, is

very stable under changes of distribution and the asymptotic normal form of the sampling distri-
bution is a reasonable approximation even in samples as small as ten. However, for correlated
data larger samples are required in order for [2.5.11] to be valid.

When using [2.5.11] in practice, the first step is to substitute r, for p,(k =1,2, - - q) into
the equation if p, is assumed to be zero after lag q. Then, the square root of the estimated vari-
ance for r; can be calculated to determine the large-lag estimated standard deviation. An

estimated standard deviation, such as the one just described, is commonly referred to as a stan-
dard error (SE). Moreover, because the distribution of r; is approximately normal, appropriate

confidence limits can be established. For instance, to obtain the 95% confidence interval (or
equivalently the 5% significance interval) at a given lag, plot 1.96 times the large-lag SE above
and below the axis. When determining the sample ACF, one has the option of either estimating
the mean of the input series when employing [2.5.9] to calculate the sample ACF or else assum-
ing the mean to be zero. If one is examining the sample ACF of the given series, the mean
should be estimated for use in [2.5.9]. If it is found that the data are not stationary, the nonsta-
tionary can sometimes be removed by an operation called differencing (see Section 4.3.1). The
mean of series that remains after differencing is usually zero (refer to [4.3.2]) and, consequently,
when estimating the ACF for such a series the mean can be set equal to zero. If it is suspected
that there is a deterministic trend component contained in the data, the mean of the differenced
series should be removed when estimating the ACF for the differenced series (see Section 4.6).
Finally, the mean is assumed to be zero for the sequence of residuals that can be estimated when
a linear time series model is fitted to a specified data set. Therefore, when calculating the resi-
dual ACF, a mean of zero is employed (see Section 7.3).

Average annual temperature data are available in degrees Celsius for the English Midlands
from 1813-1912 (Manley, 1953, pp. 225-260). Equations [2.5.8] and [2.5.9] are employed to
calculate r; while the 95% confidence limits are obtained using [2.5.11] if it is assumed that p,
is zero after lag gq. Figure 2.5.1 is a plot of the estimated ACF for the temperature data. Notice
that there are rather large values of the ACF at lags 1, 2 and 15. Because the data are nonsea-
sonal, the magnitude of the sample ACF at lag 15 could be due to chance. When p; is assumed

to be zero after lag 2, the 95% confidence limits of the sample ACF for the temperature data are
as shown in Figure 2.5.2.

The theoretical ACF can also be plotted for the temperature data. After fitting a proper sta-
tionary ARMA model to these data (see Section 3.3.2 and Part III), the known parameter esti-
mates can be utilized to calculate the theoretical ACF (see Sections 3.3.2 and 3.4.2, and Appen-
dix A3.2 for theoretical descriptions). The theoretical ACF for the temperature data is displayed
in Figure 2.5.3. Notice that the plots given in Figures 2.5.2 and 2.5.3 are very similar. As is
explained in Chapter 10, when an appropriate time series model is properly fitted to a given data
set, the fitted model will preserve the important historical statistics such as the sample ACF at



74

Chapter 2

o
N
|

4t

ll I.l .l 8 | a ll‘lll ll' 2 Py llnlllll 2
T T T '

SAMPLE ACF
)
<

©
N
)

i \ | ' |
10 20 30 40 50
LAC

Figure 2.5.1. Sample ACF and 95% confidence limits for the annual
temperature data from the English Midlands.
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Figure 2.5.3. Theoretical ACF for the model fitted to the temperature
data from the English Midlands.
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different lags. It is crucial that stochastic models that are used in practice possess a theoretical
ACEF that is close to the sample ACF, especially at lower lags.

The observations in many yearly hydrological data are often uncorrelated. Consider the
average annual flows of the Rhine River in m>/s at Basle, Switzerland. These flows are given
from 1837 to 1957 in a paper by Yevjevich (1963). As shown by the sample ACF in Figure
2.5.4, the Rhine flows appear to be uncorrelated except for a value of lag 11 which could be due
to chance alone. The 95% confidences limits are calculated using [2.5.11], under the assumption
that p, is zero for all nonzero lags.

The plot of the theoretical ACF of the Rhine flows would be exactly zero at all nonzero
lags. The observations are, therefore, uncorrelated and are called white noise (see discussion on
spectral analysis in Section 2.6 for a definition of white noise). If the time series values are
uncorrelated and follow a multivariate normal distribution, the white noise property implies
independence. When the observations are not normal, then lack of correlation does not neces-
sarily infer independence. However, independence always means that the observations are
uncorrelated.

Some care must be taken when interpreting a graph of the sample ACF. Bartlett (1946) has
derived formulae for approximately calculating the covariances between two estimates of p, at
different lags. For example, the large lag approximation for the covariance between ry and ry,;

assuming p; =0 for j 2k is

1 L]
covlry,ril= N Y PiPj+i [2.5.12]
Jj=—eo
An examination of [2.5.12] reveals that large correlations can exist between neighbouring values
of r, and can cause spurious patterns to appear in the plots of the sample ACF.

2.5.5 Ergodicity Conditions

A desirable property of an estimator is that as the sample size increases the estimator con-
verges with probability one to the population parameter being estimated. An estimator possess-
ing this property is called a consistent estimator. To estimate the mean, variance and ACF for a
single time series, formulae are presented in [2.5.1], [2.5.2] and [2.5.9], respectively. In order
for these estimators to be consistent, the stochastic process must possess what is called ergodi-
city. Another way to state this is that an ensemble statistic, such as the mean, across all possible
realizations of the process at each point in time, is the same as the sample statistic for the single
time series of observations. For a detailed mathematical description of ergodicity, the reader
may wish to refer to advanced books in stochastic processes [see for example Hannan (1970, p.
201), Parzen (1962, pp. 72-76), and Papoulis (1984, pp. 245-254)].

For a process, z,, to be mean-ergodic and the sample mean Z in [2.5.1] constitute a con-
sistent estimator for the theoretical mean |, a necessary and sufficient condition is

lim var(zy)=0 [2.5.13]
N300

where Zy is the sample mean of a series having N observations. Sufficient conditions for mean-

ergodocity are:
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N
im -3, =0 [2.5.14]
aY

or cov(z,,Zy)—0 as N—eo or Y, —0 as k—eo

A process represented by z, is said to be Gaussian if any linear combination of the process

is normally distributed. When the process is Gaussian, a sufficient condition for ergodicity of
the autocovariance function is the theoretical autocovariances in [2.5.8] satisfy

N
lim -3 y2=0 [2.5.15]

From the above formulae, it can be seen that ergodicity implies that the autocovariance or auto-
correlation structure of the time series must be such that the present does not depend “‘too
strongly’’ on the past. All stationary time series models that are used in practice have ergodic
properties.

2.6 SPECTRAL ANALYSIS

The spectrum is the Fourier transform of the autocovariance function (Jenkins and Watts,
1968) and, therefore, provides no new information about the data that is not already contained in
the autocovariance function or equivalently the ACF. However, the spectrum does provide a dif-
ferent interpretation of the statistical properties of the time series since it gives the distribution of
the variance of the series with frequency. As shown by Jenkins and Watts (1968), the spectrum
can be plotted against frequency in the range from O to 1/2. Therefore, when studying the spec-
trum one is said to be working in the frequency domain while investigating the autocovariance
function or ACF is referred to as studying in the time domain. For the topics covered in this text,
it is usually most convenient to carry out time series studies in the time domain. Nevertheless,
occasionally a spectral analysis can furnish valuable insight in certain situations. In Section 3.5,
the theoretical spectra of ARMA processes are presented. The cumulative periodogram, which is
closely related to the cumulative spectrum, can be utilized at the identification and diagnostic
check stages of model development (see Part II). Due to its usefulness in forthcoming topics
within the book, the cumulative periodogram is now described.

Given a stationary time series 2,25, * * * ,2y, the periodogram function, /(f;), is

t=1

2 |X .
1)) =+ | Zaexp-2mif;e)

1
2 N 2 N 2|2
=N Y zcos2nf;t| + | Y zsin2nf;t [2.6.1]
=1

t=1

where f; =-# is the jth frequency j=1,2, ...,N’, N’=[N/2] (take integer portion of N/2), Il

denotes the magnitude and i=N-1. In essence, I(f ;) measures the strength of the relationship
between the data sequence z, and a sinusoid with frequency f; where 0<f;<0.5.
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The normalized cumulative periodogram is defined by

k
I
Ct=— 2.62]

where 6, is the estimated variance defined in [2.5.2]. The normalized cumulative periodogram
is henceforth simply referred to as the cumulative periodogram.

When estimating the cumulative periodogram, sine and cosine terms are required in the
summation components in [2.6.1]. To economize on computer usage, the sum-of-angles method

can be used to recursively calculate the sine and cosine terms by employing (Robinson, 1967, p.
64; Otnes and Enochson, 1972, p. 139)

cos 2xf;(t+1) = acos 2nf;t = bsin 2nf;t [2.6.3]
sin 2xf;(r+1) = beos 2nf;t + asin 2nft [2.6.4]

where
a =cos 2rf; and b = sin 2nf;

Utilization of the above relationships does not require any additional computer storage and is
much faster than using a standard library function to evaluate repeatedly the sine and cosine
functions.

When C(f,) is plotted against f;, the ordinate C(f}) ranges from O to 1 while the abscissa
S« goes from 0 to 0.5. Note that

N -

Y I(f)=NS;

j=1
Therefore, if the series under consideration were uncorrelated or white noise, then a plot of the
cumulative periodogram would consist of a straight line joining (0,0) and (0.5,1). The term
white noise is employed for an uncorrelated series, since the spectrum of such a series would be
evenly distributed over frequency. This is analogous to white light which consists of electro-
magnetic contributions from all of the visible light frequencies.

In order to use the cumulative periodogram to test for white noise, confidence limits for
white noise must be drawn on the cumulative periodogram plot parallel to the line from (0,0) to
(0.5,1). For an uncorrelated series, these limits would be crossed a proportion € of the time. The

K
limits are drawn at vertical distances * £ above and below the theoretical white noise
N-1

2
line, where [A%—l—] means to take only the integer portion of the number inside the brackets.

Some approximate values for K are listed in Table 2.6.1.



Basic Statistical Concepts 79

Table 2.6.1. Parameters for calculating confidence limits
for the cumulative periodogram.

€ 0.01 005 010 025
K. | 163 136 122 102

Unlike spectral estimation, the cumulative periodogram white noise test is useful even
when only a small sample (at least 50) is used. The cumulative periodogram for the average
annual flows of the Rhine River at Basle, Switzerland from 1937-1957 is given in Figure 2.6.1.
As shown in this figure, the values for cumulative periodogram for the Rhine flows do not devi-
ate significantly from the white noise line and fail to cross the 95% confidence limits. However,
as illustrated by the cumulative periodogram in Figure 2.6.2, the average annual temperature data
for the English Midlands from 1813-1912 are not white noise since the cumulative periodogram
goes outside of the 95% confidence limits.

Besides being employed to test for whiteness of a given time series or perhaps the residuals
of a model fitted to a data set, the cumulate periodogram has other uses. It may be used to detect
hidden periodicities in a data sequence or to confirm the presence of suspected periodicities. For
instance, annual sunspot numbers are available from 1700 to 1960 (Waldmeier, 1961) and the
cumulative periodogram for the series is shown in Figure 2.6.3. Granger (1957) found that the
periodicity of sunspot data follows a uniform distribution with a mean of about 11 years. This
fact is confirmed by the dramatic jump in the cumulative periodogram where it cuts through the

95% confidence limits at a frequency of about -llT =0.09.

Monthly riverflow data follow a seasonal cycle due to the yearly rotation of the earth about
the sun. Average monthly riverflow data are available in m3/s for the Saugeen River at Walker-
ton, Ontario, Canada, from January 1915 until December 1976 (Environment Canada, 1977)
Besides the presence of a sinusoidal or cyclic pattern in a plot of the series against time, the
behaviour of the cumulative periodogram can also be examined to detect seasonality. Notice in
Figure 2.6.4 for the cumulative periodogram of the Saugeen River flows, that the cumulative
periodogram cuts the 95% confidence limits at a frequency of 1/12 and spikes occur at other fre-
quencies which are integer multiples of 1/12. Thus, seasonality is easily detected by the cumula-
tive periodogram. In other instances, the cumulative periodogram may reveal that seasonality is
still present in the residuals of a seasonal model that is it to the data. This could mean that more
seasonal parameters should be incorporated into the model to cause the residuals to be white
noise (see Part VI).

2.7 LINEAR STOCHASTIC MODELS

This text is concerned mainly with linear stochastic models for fitting to stationary time
series (see, for example, Chapter 3). When dealing with nonstationary data, stationary linear sto-
chastic models can also be employed. By utilizing a suitable transformation, nonstationarity
(such as trends, seasonality and variances changes over time) is first removed and then a linear
stochastic model is fitted to the resulting stationary time series (see, for instance, Section 4.3).
The usefulness and importance of linear stochastic models for modelling stationary time series is
emphasized by the Wold decomposition theorem.
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Figure 2.6.2. Cumulative periodogram and 95% confidence limits for the
annual temperature data from the English Midlands.
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Figure 2.6.3. Cumulative periodogram and 95% confidence limits for the
annual sunspot numbers from 1700 to 1960.
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Wold (1954) proved that any stationary process, z;, can be represented as the sum of a

deterministic component and an uncorrelated purely nondeterministic component. The process
for z, at time ¢ can be written as

=W +ta, + V18 Yt [2.7.1]

where t is discrete time that occurs at equispaced time intervals, p, is the deterministic com-
ponent, g, is white noise (also called disturbance, random shock or innovation) at time t, and y;

is the ith moving average parameter for which Z\V,-z < oo for stationarity. The white noise, a,,

i=0
has the properties
E(a)=0
var(a,) = 62
and

cov(a;,a;) =0, t#s

The deterministic component, Ji,, can be a function of time or may be a constant such as the
mean level y of a process. The terms other than i, on the right hand side of [2.7.1] form what is
called an infinite moving average (MA) process (see Section 3.4.3).

When a time series represented by z, is Gaussian, the g,’s in [2.7.1] are independent and
normally distributed with a mean of zero and a variance of 002. Consequently, the Wold decom-

position theorem justifies the use of linear stochastic models for fitting to Gaussian stationary
time series. In Part III, it is shown that many types of annual geophysical time series appear to
be approximately Gaussian and stationary, and hence can be readily modelled using linear sto-
chastic models. Furthermore, when the data are not normally distributed and perhaps also non-
linear, a Box-Cox transformation (Box and Cox, 1964) can be invoked to cause the transformed
data to be approximately Gaussian and linear. Following this, a linear stochastic model can be
fitted to the transformed series (see Section 3.4.5).

As is discussed in Section 3.4, the ARMA family of linear time series models constitutes a
parsimonious representation of the infinite MA component that is given in [2.7.1]. The infinite
number of MA parameters can be economically represented by a finite number (usually not more
than four) of model parameters. Thus, the ARMA family of linear stochastic models are of
utmost importance in time series modelling.

There is a close analogy between the Wold decomposition theorem and an important pro-
perty from multiple linear regression. In the linear regression of the dependent variable y on the
m independent variables x;,x5,....X,,, the error is uncorrelated with x;,x,,...,x,,. For a stationary

time series regression of z, on its infinite past z,_;,z,_5, ..., the g, errors are uncorrelated with
2_1,2;-2--- - Additionally, the a,’s are white noise.

As pointed out by Yule (1927), the a, disturbances are fundamentally different from the
superimposed type of error in other types of statistical models. This is because the g, sequence
in [2.7.1] affects not only the current observation, z,, but the future values, 21,242, * * =, as well.
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Consequently, the system is driven by the g, innovations.

2.8 CONCLUSIONS

A covariance stationary time series can often be usefully described by its mean, variance
and sample ACF or, equivalently, by its mean, variance and spectrum. For the types of applica-
tions considered in this book, it is usually most convenient to work in the time domain rather
than the frequency domain. However, the cumulative periodogram is one of the concepts from
spectral analysis that is used in some applications presented in the book.

Historically, the mean, variance and ACF have formed the foundation stones for the con-
struction of covariance stationary models. The ARMA family of stationary models and other
related processes that are discussed in this text possess covariance stationarity. If normality is
assumed, second-order stationarity implies strict stationarity.

Because of the Wold decomposition theorem, stationary linear stochastic models possess
the flexibility to model a wide range of natural time series. Nevertheless, as explained by
authors such as Tong (1983) and Tong et al. (1985), nonlinear models can be useful in certain
situations. In addition to linearity, models can also be classified according to properties of the
theoretical ACF. Accordingly, both short (see Chapter 3) and long (refer to Part V) memory
models are considered in the text and the relative usefulness of these classes of models is exam-
ined.

When employing a specified type of stochastic model to describe a natural time series,
statistics other than the mean, variance and ACF may be important. For instance, when using a
riverflow model for simulation studies in the design of a reservoir, statistics related to cumula-
tive sums are important. This is because the storage in a reservoir is a function of the cumulative
inflows less the outflows released by the dam. In particular, the importance of the rescaled
adjusted range and Hurst coefficient in reservoir design, is discussed in Chapter 10. When con-
sidering situations where droughts or floods are prevalent, extreme value statistics should be
entertained. Thus, practical engineering requirements necessitate the consideration of statistics
that are directly related to the physical problem being studied.

PROBLEMS

2.1 In Section 2.2, a time series is defined. Based on your own experiences, write down three
examples of continuous time series, equally spaced discrete time series, and unequally
spaced discrete time series for which the variables being measured are continuous random
variables.

2.2 A qualitative definition for a stochastic process is presented in Section 2.3. By referring to
a book on stochastic processes, such as one of those referenced in Section 1.6.3, write down
a formal mathematical definition for a stochastic process.

2.3 Stochastic processes are discussed in Section 2.3. Additionally, in Table 1.4.1 stochastic
models are categorized according to the criteria of time (discrete and continuous) and state
space (discrete and continuous). By utilizing books referenced in Sections 1.4.3 and 1.6.3,
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write down the names of three different kinds of stochastic models for each of the four clas-
sifications given in Table 1.4.1.

2.4 Strong and weak stationarity are discussed in Section 2.4.2. By referring to an appropriate
book on stochastic processes, write down precise mathematical definitions for strong sta-
tionarity, weak stationarity of order k and covariance stationarity.

2.5 In Section 2.5, some basic statistical definitions are given. As a review of some other ideas
for probability and statistics write down the definitions for a random variable, probability
distribution function and cumulative distribution function. What is the exact definition for
a Gaussian or normal probability distribution function? What is the central limit theorem
and the weak law of large numbers? If you have forgotten some of the basic concepts in
probability and statistics, you may wish to refer to an introductory text on probability and
statistics to refresh your memory.

2.6 Ergodicity is briefly explained in Section 2.5.5. By referring to an appropriate book on sto-
chastic processes or time series analysis, such as the one by Parzen (1962) or Hannan
(1970), give a more detailed explanation of ergodicity than that presented in Section 2.5.5.
Be sure that all variables used in any equations that you use in your presentation are clearly
defined and explained.

2.7 Go to the library and take a look at the book by Wold (1954). Provide further details and
insights about Wold’s decomposition theorem which go beyond the explanation given in
Section 2.7.
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PART II
LINEAR NONSEASONAL MODELS

Environmetrics is the development and application of statistical methodologies and tech-
niques in the environmental sciences. As explained in Chapter 1 of Part I, statistical methods
from the field of environmetrics can enhance scientific investigations of environmental problems
and improve environmental decision making. Of primary interest in this book is the presentation
of useful time series models that can be employed by water resources and environmental
engineers for studying practical problems arising in hydrology and water quality modelling.
Chapter 2 of Part I provides definitions and explanations for some important statistical tech-
niques and concepts that are utilized in time series modelling and environmetrics.

The objectives of Part II of the book are to define a variety of linear time series models
that can be applied to nonseasonal time series and to explain some of the key theoretical proper-
ties of these models which are required for understanding how to apply the models to actual data
sets and to interpret the results. Chapters 3 and 4 describe linear nonseasonal models for fitting
to stationary and nonstationary time series, respectively (see Section 2.4 for an explanation of
stationarity and nonstationarity).

Figure I1.1 displays a graph of the annual flows of the St. Lawrence River at Ogdensburg,
New York, from 1860 to 1957. This figure is also given as Figure 2.3.1 in Chapter 2. The plot-
ted time series appears to be stationary since statistical properties, such as the mean and vari-
ance, do not change over time. In addition, because there is no seasonal component, which
would appear as some type of sinusoidal cycle in the graph, the data set is nonseasonal. The pur-
pose of Chapter 3 is to describe three related families of linear time series models that could be
considered for fitting to a time series like the one in Figure II.1. In particular, the three sets of
models are:

1. AR (autoregressive) (Section 3.2),
2. MA (moving average) (Section 3.3), and
3. ARMA (autoregressive-moving average) models (Section 3.4).

The AR and MA models are in fact subsets of the general ARMA family of models. It turns out
that the most appropriate model to fit to the yearly riverflow series of Figure II.1 is a special
kind of AR model (Section 3.2.2). Indeed, within Section 3.6 it is demonstrated that there is
sound physical justifications for fitting ARMA models to yearly riverflow time series.

The values of the annual water usage for New York City from 1898 to 1970 are plotted in
Figure I1.2 as well as Figure 4.3.8 in Chapter 4. Because the level of the series is increasing with
time, the data are obviously nonstationary. Moreover, no seasonal cycle is contained in the
graph. In Chapter 4, the following family of linear nonstationary time series models is described
for applying to a nonstationary data set like the one in Figure I1.2:

4. ARIMA (autoregressive integrated moving average) models.
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When fitting an ARIMA model to a nonstationary series, the nonstationarity is removed from the
series using a technique called differencing. Subsequently, appropriate AR and MA parameters
contained in the ARIMA model are estimated for the resulting stationary series formed by dif-
ferencing the original nonstationary series. In Section 4.3.3, it is explained how one can decide
upon the most reasonable kind of ARIMA model to fit to the annual water use series for New
York City.

The increasing levels of the water use series in Figure I1.2 constitutes a trend in the data
over time. Deterministic and stochastic trends are described in Section 4.6 along with
approaches for modelling these types of trends. In fact, the ARIMA models of Chapter 4 consti-
tute a procedure for modelling stochastic trends. The intervention models of Part VIII provide
an approach for modelling known deterministic trends and estimating their magnitudes.

In summary, Part II of the book defines some flexible families of linear nonseasonal
models for fitting to stationary (Chapter 3) and nonstationary (Chapter 4) time series. Addition-
ally, useful theoretical properties for these models are pointed out so that a practitioner can
decide upon or identify the most appropriate model to fit to a given time series. Part III
describes how a user can fit the models of Part II to actual time series by following the identifi-
cation (Chapter 5), estimation (Chapter 6), and diagnostic check (Chapter 7) stages of model
construction. In fact, modified versions of the model building methods of Part III are employed
with all of the kinds of time series models presented later in the book. Finally, techniques for
forecasting and simulating using the models of Part II are given in Chapters 8 and 9, respec-
tively, of Part I'V.
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