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PART IX
MULTIPLE INPUT-MULTIPLE OUTPUT MODELS

As explained in Parts VII and VIII, in many natural systems, a single output or response
variable is caused by one or more input or covariate variables. For example, riverflows are
caused by physical variables which include precipitation and temperature. To model a system
for which one or more variables cause another but not vice versa, the TFN model of Part VII can
be employed. When one or more external interventions have modified the behaviour of the out-
put series, the intervention model of Chapter 19 and Section 22.4 can be used. The intervention
model is, in fact, a special type of TFN model.

When there is feedback in a system for which one variable causes another and vice versa,
one must use a multivariate model to describe this situation. According to the definition used in
the statistical literature, a multivariate time series model that is designed for handling feedback
contains both multiple input and multiple output series. Although feedback is not as common as
one way causality in hydrological systems, feedback can sometimes occur. A large lake, for
instance, may affect local climatic conditions and thereby create precipitation which in turn
increases the water level of the lake. In socio-economic systems, the phenomenon of feedback is
very common. For example, unemployment may cause inflation which in turn increases unem-
ployment. A detailed discussion of how to statistically detect various kinds of causality, includ-
ing feedback, using the residual CCF (cross-correlation function) is presented in Section 16.2.2.

To formally model a system that contains feedback, a multivariate model must be used. In
particular, Part IX of the book focuses upon the general multivariate ARMA model and sim-
plifications thereof. Qualitatively, a general multivariate ARMA model can be written as

Multiple Outputs = Multiple Inputs + Multiple Noise

When interventions affect one or more of the series, the multivariate model can be easily
extended to handle that situation. Furthermore, because the multivariate model describes how
series influence one another over time, it is a dynamic model.

In Chapter 20, the general multivariate ARMA model is defined and other kinds of mul-
tivariate models that have been used in hydrology and environmental engineering are described
and compared. Because the general multivariate ARMA model contains a large number of
parameters, it is too cumbersome and overly complex for modelling most water resources sys-
tems problems. Nevertheless, the TFN and contemporaneous ARMA (CARMA) models con-
stitute two important subsets of the general multivariate ARMA model that are well designed
for effectively modelling water resources systems. As demonstrated by extensive applications
for the TFN models in Chapters 17 and 18, and for the intervention models in Chapter 19 and
Section 22.4, these models have widespread applicability in the environmental sciences.

The CARMA model is designed for modelling situations where two or more series affect
one another at the same time or simultaneously. Because of this, the model is called the contem-
porancous ARMA or simply CARMA model. Although CARMA models are not used as often
as TFN models in water resources, they are still indispensible for modelling many types of prob-
lems. For example, two riverflow series measured at sites in two different rivers neither of
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which is upstream from the other may be related contemporaneously because the two measuring
sites fall within the same general climatic region. Rather than separately model each of the two
time series using an ARMA model, a CARMA model can more efficiently model both series
together within a single mathematical framework. In Chapter 21, the CARMA model is defined
and flexible model building procedures are presented. Both water quantity and quality appli-
cations confirm the great utility of CARMA models in water resources and environmental
engineering.

Figure IX.1 depicts the hierarchical relationships among the dynamic models described in
the book. Additionally, the figure contains the locations in the book where the definitions,
model construction tools and applications for these dynamic models can be found.

General
Multivariate
ARMA
(Chapter 20)

CARMA

TFN
(Chapter 21)

(Chopters 17 and 18)

Intervention
(Chopter 19 and
Section 22.4)

Figure IX.1. Hiearchy of dynamic models.
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CHAPTER 20
GENERAL MULTIVARIATE AUTOREGRESSIVE
- MOVING AVERAGE MODELS

20.1 INTRODUCTION

The term multivariate possesses a number of related interpretations that are used com-
monly by both practitioners and researchers. For example, many people consider the word mul-
tivariate to indicate that multiple variables in a system have been measured and, consequently, a
multivariate model is needed to model the system. Under this definition, the TFN models of Part
VII would be classified as multivariate models because the model statistically describes how one
or more input variables affect the behaviour of a single output variable. Likewise, any deter-
ministic model or mixed deterministic-stochastic model that formally describes the relationships
among at least two physical variables can be thought of as being a multivariate model.

Because this book deals mainly with stochastic or time series models, the statistical defini-
tion of multivariate models is utilized. In particular, as noted in the preface to Part IX, a general
multivariate ARMA model is a model that statistically describes how multiple outputs are influ-
enced by multiple inputs and multiple noise terms. According to this statistical definition, the
TFN models of Part VII and the related intervention models of Chapter 19 and Section 22.4 are
not multivariate models. As a matter of fact, since these models possess a single output variable
they are statistically classified as being univariate models.

The many time series applications presented throughout this book firmly establish the fact
that the scientific community clearly recognizes the importance of time series modelling in water
resources and environmental engineering. Indeed, as the demand for water continues to increase
and more and more of the natural environment is altered due to industrialization and other land
use changes, greater emphasis will be placed upon using more flexible systems sciences metho-
dologies to assist decision makers in water resources (see Sections 1.2 to 1.5). To better under-
stand how man’s activities affect the environment, extensive measurements will have to be taken
of a wide range of water quality variables, riverflows and lake levels, meteorological
phenomena, as well as many other kinds of variables. The resulting vast amounts of data will
have to be stored, processed and transferred using extensive computer networks. This in turn
means that the need for having comprehensive multivariate models for describing multiple time
series will continue to expand. In fact, the foregoing scenario is what Prof. V. Yevjevich consid-
ers to be the major challenge for hydrological research (personal communication from Prof. V.
Yevjevich during the Fourth International Hydrology Symposium on Multivariate Analysis of
Hydrologic Processes held at Colorado State University, Fort Collins, Colorado, July 15 to 17,
1985). Due to the current and expanding importance of multivariate analysis in hydrology, the
organizers of the Fourth International Hydrology Symposium selected the theme of their confer-
ence to be Multivariate Analysis of Hydrologic Processes. Within this text, Chapters 20 and 21
put multivariate modelling into proper perspective and present attractive kinds of stochastic mul-
tivariate models for use in practical applications.
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Stochastic or time series models are not the only type of multivariate models that can be
used in water resources for modelling more than one physical variable at the same time. A con-
ceptual model constitutes a deterministic model that is specifically designed to mathematically
simulate the physical processes involved in the hydrological cycle. When studying a given prob-
lem, a scientist should employ a type of multivariate model which he or she feels is most useful
and realistic. In some cases, a scientist may utilize a physically based (i.e., conceptual) model
which he thinks can explain certain deterministic aspects of a natural system. After removing
the portion of the data which can be explained using a physical model, the scientist can then
model what is left over using a stochastic model. The overall model is referred to as a mixed
deterministic-stochastic model. Applications of stochastic, deterministic and mixed
deterministic-stochastic models to hydrological systems are given in the Proceedings of the
Fourth International Hydrology Symposium (Shen et al., 1986). Within the Proceedings, a key-
note paper on stochastic research in multivariate analysis is presented by Hipel (1986). In a spe-
cially edited Monograph on Time Series Analysis in Water Resources (Hipel, 1985b), Salas et al.
(1985) review and compare alternative approaches for modelling multiple water resources time
series.

Conceptual models can possess a number of common problems. In particular, they are
often very complex and have a large number of parameters related to physical phenomena, all of
which must be calibrated (Tong et al., 1985). Furthermore, due to the great complexity of
natural systems, the conceptual models are, like other models, only rough approximations to
reality. As demonstrated by a case study in Section 18.3 and also by Thompstone et al. (1985a),
a simple stochastic TFN model forecasts more accurately than a cumbersome conceptual model
which is very expensive to maintain and calibrate.

Even though most time series models were not originally designed to reflect the behaviour
of physical phenomena, a physical basis to these models can often be justified. For instance, as
explained by Salas and Smith (1981) and also in Section 3.6, a particular conceptual model of a
watershed leads to ARMA streamflows and ARMA groundwater storage. Further discussions
regarding physically based models are give by Klemes (1978). Yevjevich and Harmancioglu
(1985) stress the importance of linking stochastic models with physically consistent properties of
any particular water resources time series.

Many time series analysis approaches to multivariate modelling fall within the general
framework of multivariate ARMA models. Consequently, in the next section the general ARMA
multivariate is defined, while in Section 20.3 model construction is discussed and modelling lim-
itations are clearly pointed out. Subsequent to this, an historical overview of the development of
multivariate ARMA time series modelling in water resources is presented. Part of this historical
evolution leads to the conclusion that the contemporaneous ARMA (CARMA) and TFN models
constitute the two subclasses of the general family of multivariate ARMA models that are suit-
able for use in practical applications. Accordingly, as shown in Figure IX.1, TFN, intervention,
and CARMA models are studied in depth in this book in Chapters 17 and 18, Chapter 19 and
Section 22.4, and Chapter 21, respectively. Following the historical summary, of the develop-
ment of multivariate ARMA models, other families of multivariate models are discussed in Sec-
tion 20.5. In Section 20.5.2, the ongoing debate regarding the relative usefulness and philosoph-
ical foundations of disaggregation and aggregation models is described. Additional classes of
models referred to in Section 20.5 include nonGaussian, nonlinear, fractional differencing, fre-
quency domain, pattern recognition, and nonparametric models, in Sections 20.5.3 to 20.5.8,
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respectively. In the conclusions, a wide variety of challenging problems are suggested for future
research projects in multivariate time series modelling in water resources and environmental
engineering.

20.2 DEFINITIONS OF MULTIVARIATE ARMA MODELS

20.2.1 Introduction

After defining the general family of multivariate ARMA models, the TFN and CARMA
classes of models are defined as subsets of this general family. As described in Section 20.3.2,
some rather cumbersome model construction techniques are available for use with general mul-
tivariate ARMA models. However, limitations on using general multivariate ARMA models in
water resources applications are clearly pointed out in Section 20.3.1. To overcome these draw-
backs, subfamilies of multivariatt ARMA models are suggested for use in hydrology. In partic-
ular, the CARMA model described in detail in Chapter 21 is recommended for modelling multi-
ple time series when the series are contemporaneously correlated with one another at a given
time but not at lags other than zero. To model a single response series which is driven by one or
more covariate series plus a noise component, the TFN family of models of Part VII can be used.
As explained in Section 20.4, it is interesting to note how the development of multivariate
modelling in water resources converged over a period of two decades to the conclusion that
CARMA and TFN models are the most appropriate kinds of multivariate ARMA models to use
in practical hydrological applications.

20.2.2 Definitions

General Multivariate ARMA model

Let a set of k time series be represented at time ¢ by the vector
T
Z,=Z,Zp....2y)

where the vector of the theoretical means for Z, is given by L= (U145, . . ., uk)T and the super-
script T stands for the transpose of a vector. If the AR (autoregressive) order is p and the MA
(moving average) order is q, the general k-dimensional multivariate ARMA(p,q) model can be
conveniently written as

Z-wW-9Z - -PYZ - - - - (Dp(zx—p -W
=2,-0,a,_,-0,,,- - -0, [20.2.1]
where
011 012 ... Ouui]
G210 P22 - b
¢" = . . . .
, _¢l;1i O ¢I;/ci_

is the ith AR parameter matrix of order kxk fori=1,2,...,p;
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011 012 ... 1)
651; 02 ... Oy
9,‘: . . . .

Ok1i G2 - O
is the ith MA parameter matrix of order kxk fori=12,...,q; 8,=(g,1,4,5, . . . ,a,)T, is the
k-dimensional vector of innovations for Z, at time ¢. Because the vectors have the form (Z, — p)

in [20.2.1], the multivariate ARMA model is often referred to as a vector ARMA model. When
man-induced or natural interventions affect one or more of the multiple series in [20.2.1], the
model can be easily extended to handle multiple interventions (Abraham, 1980).

A more compact format for writing the model in [20.2.1] is given by

OB)Z, - p) = OB)a, [20.2.2]
where B is the backward shift  operator defined by B* Z2,=2_,,
dB)=1-®B -D,82- --- - ®,B’ is the AR operator of order p where I is the identity
matrix of order kxk, and ©(8) =1-©,B - ©,B% - - -- - ©,BY is the MA operator of order q.

There are a number of assumptions underlying the linear multivariate ARMA(p,q) model
given in [20.2.1] or [20.2.2]. To start with, it is assumed that the innovations given by a, are

identically independently distributed (IID) vector random variables with a mean of zero and vari-
ance covariance matrix A. In order to obtain MLE’s (maximum likelihood estimates) of the
parameters and also design sensitive diagnostic checks, for practical applications it is necessary
to invoke the normality assumption so that the innovations are normally independently distri-
buted (NID) and hence a, = NID(0,A). Finally, to permit the model in [20.2.1] or [20.2.2] to be

stationary and invertible, the zeroes of the determinant equations |®(B)I =0 and IO(B)I =0,
respectively, must lie outside the unit complex circle.

Example: Consider a multivariate ARMA(1,1) model possessing two variables contained in the
vector

Z= (Ztlztz)T

having theoretical means given by L = (i,,4,)7. Because there are two variables, the multivari-

ate model used to describe mathematically the relationship between the two variables is called a
bivariate model. Following [20.2.1], the bivariate ARMA(1,1) model is written as

Z,-W)-PyZ,_,-W)=2a,-Oja,_,

where

O, = [‘i‘m ¢121]

17 16211 6221

is the AR parameter matrix;
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_ 6111 6121
©,= [9211 02,

is the MA parameter matrix; &, = (,,,a,,) is vector of innovations containing IID random vari-
ables. Substituting the AR and MA matrices into the bivariate ARMA model produces

i M| (0 u2n | (Zeern | _ (9| _ [ Gran | (S
2 M| (%1 $221 | -2 M2] T |d2]  [O211 ©221 | 112
After matrix multiplication, the two component equations of the bivariate model are
Z- 110111 (Z 1,11 D9121(Z1 2 1)=0104110,-1,1781219,-1 2

Zi 12921111 11922121 2H12)=02-071101-1,1702210,-1 2

TFN Model

Because of the great importance of TFN models in water resources, these models are stu-
died in depth in Chapters 17 and 18 while the closely related intervention models are entertained
in Chapter 19 and Section 22.4. As noted earlier, the TFN model is a subset of the multivariate
ARMA model in [20.2.1]. In particular, when the AR and MA parameter matrices in [20.2.1]
are either all upper or else lower triangular, the model is called a TFN model. For the case where
the matrices are lower triangular, the TFN model is defined following [20.2.1] as

Z-W-DZ - -DPyZ - W) - - D2, - W)
=a,-0a_,-0,a,_,- - -Oa,_, [20.2.3]
where the ith AR parameter matrix is
rff’m 0 o --- 0 .

621092. 0 --- 0

d

0cti G O3 0 G

and the ith MA parameter matrix is written as

8 0 ¢ ... o |

80002 0 --- 0
9‘.= . . . .

Oc1i Ok Okzi - Oy

Salas et al. (1985) refer to the TFN model in [20.2.3] as a triangular relationship because Z,;
only depends on its own past, Z,, depends on its own past plus the present and past of Z;,, Z, is
dependent on its own past and on the present and past of Z;; and Z,,, and so on. In the final com-
ponent equation in [20.2.3], Z, depends on its own past and on the present and past of
242, ...,2,; ;. This means that the single output Z, depends upon the input variables
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Z213 - - - +Zy—1. Recall from Section 17.5.2 that this definition constitutes, in fact, a TFN

model. By appropriate algebraic manipulations, one can easily demonstrate that the TFN model
in [20.2.3] is equivalent to the more convenient form for writing the TFN model given in
[17.5.3]. Comprehensive model building procedures for constructing TFN models and numerous
water resources applications are presented in Chapters 17 and 18. Because a single output vari-
able is dependent upon multiple input variables, a TFN model can be statistically classified as a
univariate model.

Camacho et al. (1986) provide a simple example to demonstrate when a TFN model would
clearly be selected over a general multivariate ARMA model. More specifically, when dealing
with unregulated multisite hydrological systems, it can be argued that the general multivariate
ARMA model would never be required to model the data and that a TFN model with only upper
or lower triangular parameters will always be appropriate. To illustrate this fact, consider for
simplicity the three-station riverflow system shown in Figure 20.2.1. It is clear from the nature
of the system that only flows located upstream of any given station will lnﬂuence the flows at
that station. Therefore, if the vector of flows at time ¢ is Z, —(Z,I,Z,Z,Z,3) the parameter
matrices of the model in [20.2.1] or [20.2.2] will contain only (possible) nonzero elements at
entries (1,1), (2,2), 3,1), 3,2) and (3,3). No other entry in the matrix should be allowed to be
different from zero. For example, if the (1,3) element of a matrix were permitted to be nonzero,
it would imply that flows at Station 1, Z,;, would be written as a linear combination of past

values of Z,,, past values of Z,3 and some error terms. This, of course, would not have any phy-

sical meaning. It is easy to see that the resulting matrices of the model are lower triangular. The
same argument can be extended to more complex systems.

The simple example presented above shows that when the physical restrictions of the sys-
tem are taken into consideration in the formulation of the model, it is possible to substantially
reduce the number of parameters. The benefits of such a reduction can be appreciated by look-
ing at the precision of the parameters estimates. Suppose, for example, that the bivariate series
Z, = (Z,;,2,p) is modelled as a general multivariate ARMA(1,0) when in fact a CARMA (1,0)
would suffice. It is shown by Camacho et al. (1985a) and also in Section 21.5 that the variances
of the estimated parameters obtained using the CARMA model are always smaller than the ones
obtained using the full multivariate model and that such reductions may be well over 50%.

CARMA Model

A CARMA model is obtained from [20.2.1] or [20.2.2] when all of the parameter matrices
are diagonal. Consequently, for the AR and MA matrices given by ®; and ©,, respectively, the
elements ¢;,,; =0 and 8;,; =0 for j#m and i = 1,2,...,k. In Chapter 21, the CARMA (p,q)
model is written out in full in [21.2.1] as well as [21.2.4]. Because this parsimonious model
implies a contemporaneous relationship among the concurrent multivariate observations or,
equivalently, the multivariate innovations which occur at the same time t, it is referred to as a
contemporaneous ARMA model. Furthermore, since a CARMA model contains multiple output
series, it constitutes a multivariate model. Chapter 21 of this book is entirely devoted to this use-
ful and interesting class of models. A comprehensive set of model construction techniques given
in Section 21.3 allows CARMA models to be conveniently applied to practical problems and the
water resources applications in Section 21.5 demonstrate the utility of these models.
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Figure 20.2.1. A three-station riverflow system where Z;
represents measurements at station i.

20.3 CONSTRUCTING GENERAL MULTIVARIATE ARMA MODELS

20.3.1 Limitations

As noted by authors such as Salas et al. (1985), Camacho et al. (1985a, 1986, 1987a,b,c)
and Hipel (1986), there are two major drawbacks for using the general multivariate ARMA in
[20.2.1] and [20.2.2] for applications in water resources. First of all, because the number of
parameters increases exponentially with the dimensionality of the model, the multivariate
ARMA model is very complicated and possesses too many parameters. Secondly, a comprehen-
sive set of operational and simple model building techniques are not available for constructing
multivariate ARMA models by following the identification, estimation and diagnostic check
stages of model construction. As a result, one cannot assume the most general form of the mul-
tivariate ARMA model to begin with and employ construction techniques to identify an
appropriate model to parsimoniously describe the data set under consideration.

To overcome the foregoing problems, CARMA and TFN models can be employed. Both
of these subfamilies of models contain far fewer parameters than the cumbersome general mul-
tivariate ARMA model. Additionally, a wide range of flexible model building techniques are
now readily available for use with each of these two classes of models. As described in detail in
Chapters 17 and 19, comprehensive model building techniques are available for conveniently
constructing TFN models and the closely related intervention models, respectively. In Chapter
21, flexible model construction methods are presented for building CARMA models.
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As argued in this book as well as by authors such as Salas et al. (1980), Salas et al. (1985),
Camacho et al. (1985, 1986, 1987a,b,c) and Hipel (1986), the physical properties of hydrologi-
cal systems often dictate that TFN and CARMA models are the proper types of multivariate
models to use in practice. Nonetheless, in some water resources applications which may, for
example, require the use of socio-economic data, it may be necessary to employ a multivariate
ARMA model that does not fall within the TFN or CARMA categories. Consequently, the pur-
pose of this section and Appendix A20.1 is to outline some of the model construction methods
that can be used for building general multivariate ARMA models. However, the reader should
bear in mind that due to the complexity of the vector ARMA model, the model building methods
are unwieldy and are not as flexible or comprehensive as those currently available for building
TFN or CARMA models.

20.3.2 Model Construction
Introduction

As is the case for all of the families of models entertained in this book, constructing mul-
tivariate ARMA models is effected by adhering to the three iterative stages consisting of identifi-
cation, estimation and diagnostic checking. Because the concept of causality described in Sec-
tion 16.2 is closely linked to the identification of not only TFN models (Section 17.3.1) and
CARMA models (Section 21.3), but also general multivariate ARMA models, this idea is briefly
discussed next. Following the summary given by Camacho et al. (1986), a review of recent
model building procedures is then given. When modelling a set of seasonal time series using a
multivariate ARMA model, one of the approaches outlined in Section 20.3.3 may be used.

Causality

As explained in Section 16.2.1, Granger (1969) defined causality between two time series
in terms of predictability. In particular, a variable X causes another variable, Y, with respect to a
given universe or information set that included X and Y, if the present Y can be better predicted
by using past values of X than by not doing so, all other relevant information (including the past
of ¥) being used in either case. Causality from Y to X can be defined in the same way. Feed-
back occurs when X causes Y and Y also causes X.

To determine the type of causality relationship that exists between X and Y, the properties
of the residual CCF are examined. Following the more detailed explanation given in Section
16.2.2, let the sequences of the observations for two variables be represented by the time series
X, and Y,, respectively. These series can be prewhitened by fitting ARMA models to the series

and obtaining the white noise residuals %, and v, in [16.2.3] and [16.2.4] for X, and Y,, respec-

tively. When required for rectifying problems with non-normality and/or heteroscedasticity in
the ARMA model residuals, X, or ¥, can be transfromed using the Box-Cox transformation in

[3.4.30] prior to prewhitening. Subsequent to prewhitening, the residual CCF, written as p,, (k)
at lag k between u, and v, can be considered by using [16.2.5]. In addition to reflecting the type
of linear dependence between u and v and consequently between X and Y, P, (k) gives the kind

of causality relationship between these variables for linear systems. As explained by Pierce and
Haugh (1977) and summarized in Table 16.2.1, there are many possible types of causal interac-
tions between X and Y which can be characterized by the properties of p,, (k). If X and Y are
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independent, p,, (k) =0 for all k and, hence, it would not be appropriate to develop any kind of
multivariatt ARMA model to link these two variables. When there is unidirectional causality
such that X causes Y and Y does not cause X, it can be proven that p,, (k) # 0 for some k >0,
and p,, (k) = 0 for either all k < 0 or else all k 0. For this situation, the most appropriate kind
of multivariate ARMA model to link the input or covariate series X, with the output or response
Y, is a TFN model defined in [17.2.5). If X and Y are only related instantaneously, p,,(0) #0
and p,,, (k) =0 for all k #0. When this is the case, a CARMA model in [21.2.1] or [21.2.4] can
be used to mathematically describe the contemporaneous linear dependence between X, and ¥,.
Finally, if there is feedback and hence X causes Y and vice versa, p,, (k) # 0 for some k > 0 and

for some k < 0. Feedback between two or more variables can be modelled using the multivariate
ARMA model in [20.2.1] or [20.2.2].

In practical applications, one examines the sample residual CCF in [16.2.6] for X, and Y, to

identify the type of linear dependence between X and Y. Besides detecting causality between
two series, the sample residual CCF can be used for identifying time series models to mathemati-
cally describe the dynamic linkage between X, and Y,. In addition to output from other identifi-

cation techniques, this information can then be used for identifying the appropriate kind of mul-
tivariate model to fit to the series. The manner in which the sample residual CCF can be used to
design TFN and CARMA models is explained in Sections 17.3.1 and 21.3, respectively. In the
next three subsections, model construction methods are presented for building general multivari-
ate ARMA models.

Identification

As shown by applications in Chapter 5, selecting the order of a simple univariate ARMA
model can sometimes be challenging. For the multivariate ARMA case, model identification is
far more difficult (Tiao and Tsay, 1983a; Tjostheim and Paulsen, 1982; Jenkins and Alavi, 1981;
Tiao and Box, 1981). Different identification procedures have been advocated in the literature.
For example, Tiao and Box (1981) and Jenkins and Alavi (1981) have extended the use of the
sample CCF and the PACF to identify the order of the AR and MA operators of a multivariate
process. Tiao and Tsay (1983a,b) have proposed the use of the extended sample cross correla-
tion function (ESCCF) to identify the order of general multivariatt ARMA(p,q) models.
Newbold and Hotopp (1984) have expanded a two-step procedure given by Hannan and Rissanen
(1982) to the multivariate case in order to identify and model. These procedures are based on the
calculation of simple sample statistics and stepwise regressions. Another technique based on the
estimation of heavily parameterized ARMA models and the use of a consistent information cri-
terion (Quinn, 1980; Hannan and Quinn, 1979) has also been proposed. The difficulty of apply-
ing such procedures clearly lies in the high computational costs.

In Appendix A20.1, the following three identification methods are described:
1. sample CCF matrix,
2. sample PACF matrix,
3. ESCCF matrix.
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Because the theoretical CCF matrix cuts off for pure multivariate MA processes, the sample
CCF matrix can be used to identify when a multivariate MA model is required (Tiao and Box,
1981; Jenkins and Alavi, 1981). This is similar to the manner in which the sample ACF in
[2.5.9] is employed for detecting when a pure MA univariate model is needed (see Section
5.3.4). The theoretical PACF matrix truncates for a pure multivariate AR process and therefore
the sample PACF matrix can be used for finding out when a multivariate AR model is required
to model a given data set (Tiao and Box, 1981; Jenkins and Alavi, 1981). This is similar to the
way in which the sample PACF in Section 3.2.2 can be used for designing a pure univariate AR
model (see Section 5.3.5). When both MA and AR parameters are needed in a multivariate
ARMA model, the ESCCF matrix can be utilized for ascertaining the orders of the MA and AR
parameter matrices (Tiao and Tsay, 1983a,b; Tsay and Tiao, 1984).

Estimation

The likelihood function of the general multivariate ARMA(p,q) model has been given by
Nicholls and Hall (1979), Hillmer and Tiao (1979), and Wilson (1973). Conditional and exact
likelihood estimators have been proposed, by these authors. It has been shown by Hillmer and
Tiao (1979) that if the determinant of the moving average operator has one or more zeroes close
to the unit circle, the exact likelihood should be employed. Algorithms to evaluate the likeli-
hood function have been proposed by Hall and Nicholls (1980) and by Ansley and Kohn (1983),
who discussed the use of the Kalman filter to incorporate the case of missing or aggregated data.
Shea (1989) provided a computer program for calculating the exact likelihood of a multivariate
ARMA(p,q) model. For estimating the parameters of TFN and CARMA models, algorithms
which are more computationally efficient can be employed. When obtaining MLE’s for the
parameters of TFN and intervention models, the estimator given in appendix A17.1 can be util-
ized. For CARMA models, Camacho (1984) and Camacho et al. (1985a, 1987a,b) have
developed a computationally efficient algorithm to estimate the parameters of the model. They
have also extended the algorithm to include the case of CARMA models with unequal sample
sizes. Their algorithm is described in Section 21.3.3.

Diagnostic Checking

As pointed out in Section 20.2.2 with equations [20.2.1] and [20.2.2], the innovations of the
general multivariate ARMA model are assumed to be NID. Diagnostic checks should be exe-
cuted to insure that the key residual assumptions are satisfied. In particular, to determine if the
residuals are white one can employ the sample CCF and sample PACF described in Appendix
A20.1. Alternatively, one can use the modified Portmanteau test of Li and McLeod (1981) for
whiteness checks. To verify that the normality assumption is satisfied, one can utilize the mul-
tivariate normality tests proposed by Royston (1983). Finally, one could develop multivariate
extensions of the constant variance tests of Section 7.5 to make sure that the residuals are not
heteroscedastic.

If the residuals are not white, the multivariate model must be appropriately redesigned.
When the residuals are not approximately normally distributed and/or homoscedastic, one may
wish to transform one or more of the variables using an appropriate transformation such as the
Box-Cox transformation in [3.4.30]. Following this, the parameters of the multivariate model
can be estimated for the transformed series.
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20.3.3 Seasonality

The general multivariate ARMA model given in [20.2.1] and [20.2.2] is defined for han-
dling nonseasonal time series. Likewise, the model construction techniques of Section 20.3.2 are
explained for the nonseasonal case. When a set of seasonal time series are to be modelled using
a multivariate model, one of the two useful approaches described below can be used.

Deseasonalized Multivariate Model

A commonly used procedure for modelling seasonal data is to first deseasonalize each time
series using the deseasonalization methods defined in [13.2.2] or [13.2.3]). As explained in Sec-
tion 13.3.3, to decrease the number of parameters required for deseasonalization a Fourier series
approach can be utilized. Subsequent to deseasonalization, the most appropriate type of nonsea-
sonal multivariate model in [20.2.1] can be fit to the set of deseasonalized series by following
the model construction procedures presented in Section 20.3.2 as well as Appendix A20.1.

Periodic Multivariate Model

An assumption underlying the deseasonalized model is that the correlation structure among
seasons is the same throughout the year. To allow for a seasonally varying correlation structure,
periodic models can be employed. As described in depth in Chapter 14, two popular periodic
models are the PAR (periodic autoregressive) and PARMA (periodic ARMA) models. When fit-
ting a PAR model to a single seasonal series, a separate AR model is designed for each season of
the year. In a similar manner, a PARMA model consists of having a separate ARMA model for
each scason of the year. Within hydrology, PAR modelling dates back to the research of Tho-
mas and Fiering (1962) who proposed a specialized type of PAR model whereby the order of the
AR operator for each season is fixed at unity. More recently, authors such as Salas et al. (1980)
and Thompstone et al. (1985a,b) have suggested that the order of the AR operator for each sea-
son be properly identified. Model construction techniques that can be employed with PAR
models are presented in Sections 14.3 and 14.5.3 while PARMA modelling methods are dis-
cussed in Section 14.7. Because there is a separate model for each season of the year, periodic
models can be considered to be special types of multivariate models (Salas et al., 1985; Vecchia
et al., 1983; Vecchia, 1985a,b).

PAR and PARMA models can be considered as the periodic extensions of nonseasonal AR
and ARMA models, respectively, for modelling seasonal data. Similar to the PAR and PARMA
models described in Chapter 14, a periodic multivariate model would essentially consist of hav-
ing a separate multivariate model for each season of the year. Salas and Pegram (1978) define
the periodic version of multivariate ARMA(p,0) models while, Salas et al. (1980) present the
periodic extension of the general multivariate ARMA(p,q) models given in [20.2.1] and [20.2.2].
Bartolini and Salas (1986), Haltiner and Salas (1988), Bartolini et al. (1988) and Ula (1990)
investigate the statistical properties of multivariate PARMAC(1,1) processes. Additionally, Salas
and Abdelmohsen (1993) devise an initialization procedure for generating univariate and mul-
tivariate PAR(1), PAR(2) and PARMA(1,1) processes. Their approach is, in fact, the PARMA
version of the WASIM2 simulation algorithm presented in Section 9.4 for simulating with
ARMA models. In Section 19.6.3 and also in the paper by Hipel and McLeod (1981), specific
kinds of periodic TFN and intervention models are proposed.
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Because a periodic multivariatt ARMA model possesses many more parameters than the
complex nonperiodic version, one must devise ways to decrease the number of model parame-
ters. Following the approach of Thompstone et al. (1985a) described in Section 14.5, one
method to reduce the size of a periodic model is to divide the year into groups of seasons where
consecutive seasons having similar correlation structures are put into the same group. The
periodic multivariatt ARMA model used to fit to the grouped data would only have parameters
that preserve the correlation relationships among the groups of data rather than the original sea-
sons. Secondly, as proposed by Salas et al. (1980) for PAR and PARMA models, a Fourier
series approach could be utilized to reduce the number of parameters required in a periodic mul-
tivariate model. A final approach to economize on the number of parameters is to adopt the pro-
cedure suggested for periodic intervention models in Section 19.6.3. Depending upon the statist-
ical characteristics of the multiple time series being modelled, only specified components of the
multivariate ARMA model would be permitted to have a periodic structure. In fact, this is what
is done for the intervention models developed in Sections 19.2.5 and 22.4.2 for modelling sea-
sonal riverflows, as well as in Section 22.4.2 for describing water quality times series that have
been impacted by external interventions.

20.4 HISTORICAL DEVELOPMENT

Recently, Salas et al. (1985) presented a comprehensive review of various approaches to
multivariate modelling in hydrology. A significant portion of their paper deals with research
closely related to multivariate ARMA modelling of hydrological time series. Camacho et al.
(1986) also put research on multivariatt ARMA modelling from the hydrological and statistical
literature into proper perspective. The section follows closely the historical survey given by
Hipel (1986), which was presented at the Fourth International Hydrology Symposium held at
Colorado State University from July 15 to 17, 1985 (Shen et al., 1986).

Research in multivariate modelling in water resources goes back to the early 1960’s when
researchers such as Maas et al. (1962) introduced systems sciences techniques into the field of
water resources. Much of this research dealt with proposing fairly simple multivariate models,
most of which are either subsets of or else closely related to the multivariate ARMA model in
[20.2.1] and [20.2.2]. In the earlier research, often the exact form of the model used for fitting to
a data set was specified prior to model construction. For instance, some researchers suggested
using a multivariate AR(1) model while others proposed employing a multivariate ARMA(1,1)
model. This type of procedure may result in using a model that does not fit the data well.
Because of this, Finzi et al. (1975) found that synthetic data generated by prespecified models
were inadequate in several applications. Another disadvantage of this approach is that it may
cause inefficient estimation of the model parameters (Camacho et al., 1985).

In a pioneering paper, Fiering (1964) proposed a two station multivariate model to link two
series, X; and Y,. The model of Fiering was later modified by Kahan (1974) and Lawrance
(1976).

Matalas (1967) suggested a multisite AR(1) model for use in hydrology. His model
preserves both the lag zero and lag one cross covariance matrices. He also pointed out that the
model could be simplified by having a diagonal AR matrix and he described a parameter estima-
tion procedure based on the method of moments. Kuczera (1987) explained how to obtain
MLE’s for the parameters of a multivariate AR(1) model using the EM algorithm of Dempster et
al. (1977) when there are missing observations. To take into account seasonality in a time series,
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Young and Pisano (1968) suggested first deseasonalizing the multivariate series before fitting
the Matalas model. Furthermore, they designed improved estimation procedures and suggested
transformations for removing skewness in the data.

For modelling monthly multivariate data, Bernier (1971) considered a monthly multivariate
AR(1) model. His model is actually a combination of the Fiering and Matalas model.

For a multivariate AR(p) model, Pegram and James (1972) proposed a moment estimation
procedure to estimate the parameters and when using the model for streamflow generation they
gave reasons for diagonalizing the AR matrices. A general multivariate AR(p) model with sea-
sonally varying parameters was designed by Salas and Pegram (1978) who suggested both the
methods of moments and maximum likelihood to estimate the parameters. When their model
has diagonal AR matrices, it forms a periodic contemporaneous AR(p) model.

As explained in Section 10.4, the FGN (fractional Gaussian noise) model defined in
[10.4.2] was developed to model long term persistence and thereby provide an explanation for
the Hurst phenomenon described in Section 10.3.1. To model the multivariate version of long
term persistence, Matalas and Wallis (1971) considered the multivariate fractional Gaussian
noise (FGN) model for which each of the series is modelled by a univariate FGN model with
contemporaneously correlated innovations. O’Connell (1974) proposed a vector ARMA(1,1)
model to describe long term persistence. Canfield and Tseng (1979) studied the same model
with diagonal AR and MA matrices while Lettenmaier (1980) suggested improved estimation
procedures for the vector ARMA(1,1) model.

Franchini et al. (1986) developed a type of multivariate AR model which has the ability to
preserve long term persistence and to reproduce the statistical properties of the seasonal flows at
more than one station situated in a given river basin. They pointed out that their model is capa-
ble of maintaining the time-space correlations at the seasonal level as well as the properties of
the flow volumes at the annual level.

In 1974, Mejia et al. considered the situation where the generation of synthetic hydrological
sequences are obtained from a mixture of distributions. To reproduce the historical moments in
the simulated data, they proposed a transformation of the moments of the historical data to be
used in the estimation of the parameters of the model. This procedure appears to have little sta-
tistical justification according to Stedinger (1981) who shows that direct estimation of the
moments of the transformated historical data can result in significantly better estimates of the
true cross correlations.

Kottegoda and Yevjevich (1977) compared the preservation of the correlation in the gen-
erated samples of four kinds of existing two station models. Because the models produced
essentially equivalent results, they concluded that one has ‘‘to apply the simplest model with the
best physical justification’’.

Stedinger (1981) compared different approaches for estimation of the correlations in mul-
tivariate streamflow models. He concluded that ‘‘there appears to be little statistical justification
to the idea that one should select a streamflow model’s parameters so as to reproduce exactly the
observed correlations of the flows themselves ... and perhaps the most important lesson to be
learned ... is that estimates of many streamflow model parameters are inaccurate’’. Therefore, it
“ijs very reasonable to use statistically efficient parameter estimation which may not exactly
reproduce the observed means, variances and correlations of the historical flows’’ (Stedinger and
Taylor (1982a).
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By generalizing the methodology of Vicens et al. (1975), Valdes et al. (1977) developed a
Bayesian procedure to generate synthetic streamflows for multivariate AR models. An advan-
tage of this procedure is that it takes into account parameter uncertainty. However, Davis (1977)
and McLeod and Hipel (1978c) mention drawbacks to the simulation approach of Vicens et al.
(1975) for handling parameter uncertainty. As explained in Section 9.7, the method of McLeod
and Hipel (1978) for simulating, using univariate ARMA models, correctly takes into account
parameter uncertainty and could ecasily be extended to the multivariate case. As pointed out
Stedinger and Taylor (1982b), to include uncertainty in the parameters of the model is very
important for obtaining realistic and honest estimates of system reliability.

In 1978, Ledolter proposed that the general class of multivariate ARMA models be used in
hydrology. Salas et al. (1980) suggested the CARMA models with constant or periodic parame-
ters constitute parsimonious models that reflect the physical reality of hydrological systems.
They also proposed procedures for use in model construction. Further advances in identification,
estimation and diagnostic checking of CARMA models were given by Camacho et al. (1985,
1986, 1987a,b,c). Other research related to contemporaneous modelling is given by authors
including Hannan (1970), Wilson (1973), Granger and Newbold (1977), Wallis (1977), Chan and
Wallis (1978), Hillmer and Tiao (1979), Nicholls and Hall (1979), Risager (1980, 1981), Tiao
and Box (1981), and Jenkins and Alavi (1981).

Along with model construction procedures, Cooper and Wood (1982a,b) propose the multi-
ple input-output model. This class of models is actually equivalent to the multivariate ARMA
family in [20.2.1] and [20.2.2]. The mathematical and statistical properties of the multivariate
models considered by Cooper and Wood (1982a,b) were studied by Hannan and Kavalieres
(1984).

As was the case for the CARMA class of models, the space-time ARMA or STARMA fam-
ily of models was designed to overcome the problem of too many parameters in multivariate
ARMA models (Deutsch and Ramos, 1984, 1986; Pfeifer and Deutsch, 1980; Deutsch and
Pfeifer, 1981). However, Camacho et al. (1986) argued that the parameter restrictions incor-
porated into the STARMA model may be too severe and thereby limit the applicability of the
model. Nonetheless, Adamowski et al. (1986) found the STARMA model useful for modelling
eleven raingage sites located in a watershed in Southern Ontario, Canada.

Kelman et al. (1986) devised a multivariate version of a model proposed by Kelman (1980)
for separately modelling the rising and falling limbs of daily hydrographs. The multivariate
extension of the model follows the approach suggested by Matalas (1967).

Srikanthan (1986) proposed a multivariate model for simulating daily climatic data. Daily
rainfall was simulated using a multistate first order Markov model and the remaining climatic
variables were simulated using a multistate type model (Matalas, 1967; Richardson, 1981).
Nasseri (1986) utilized a multivariate AR model of order one to generate hourly rainfall for a
network of raingages.

Venugopal et al. (1986) used a multisite model for simulating flows of the Narmada River
system in India. In particular, the HEC-4 (Feldman, 1981) and disaggregation models were
employed for the synthetic generation of riverflows.

As pointed out in Section 20.2.2 the TFN and intervention group of models is actually a

subset of the general multivariate ARMA family of models in [20.2.1] and [20.2.2] when the AR
and MA parameter matrices are either all upper or lower triangular. The use of TFN modelling
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in water resources dates back to the time of Fiering (1964) who proposed a bivariate TFN model
which was later modified by Lawrance (1976). In fact, because of the great importance of TFN
modelling and intervention analysis in water resources and environmental engineering, Parts VII
and VIII of this book deal exclusively with TFN and intervention modelling, respectively.

References regarding the theory and practice of TFN modelling are listed at the ends of
Chapters 16 to 18 while references for intervention modelling are given in the final parts of
Chapter 19 and 22. At the Fourth Intemnational Hydrology Sympoisum on Multivariate Analysis
of Hydrologic Processes held at Colorado State University from July 15 to 17, 1985, a number of
research papers were concerned with TFN modelling (Shen et al., 1986). In particular, Nicklin
(1986) employed a TFN model to mathematically formulate the dependence between nonstation-
ary irrigation diversion and return flows. In order to identify an appropriate TFN model, he sug-
gested novel identification procedures designed to use with his particular type of problem. Del-
leur (1986) developed a model consisting of a mixed model for forecasting real-time flash
floods. The model consisted of a nonlinear conceptual submodel for transforming the observed
rainfalls into effective precipitation followed by a TFN model relating the effective rainfall to
the observed flood.

20.5 OTHER FAMILIES OF MULTIVARIATE MODELS

20.5.1 Introduction

The previous section on the historical development of statistical multivariate models in
hydrology dealt mainly with models closely related to the general multivariate ARMA family of
models in [20.2.1] and [20.2.2]. Other classes of statistical models have also been used in
hydrology. For example, Fiering (1964) introduced multivariate analysis for generating mul-
tisite streamflows using principal component analysis. Numerous authors, have developed and
employed regression analysis models for use in applications such as environmental impact
assessment, data filling, and synthetic streamflow generation. In fact, within Chapter 24 of this
book, ways in which regression analysis can be employed for both exploratory and confirmatory
data analysis purposes are explained and illustrated. In Section 24.3, a trend analysis methodol-
ogy, which uses techniques such as regression analysis and nonparametric tests (Chapter 23), is
presented for detecting and modelling trends in water quality time series measured in rivers.

In a perceptive paper, Yevjevich and Harmancioglu (1985) discuss the past and future of
time series analysis in water resources. Some of the challenging research projects that these
authors feel should be actively pursued include the proper treatment of nonGaussian, nonlinear
and multivariate time series. Besides defining new univariate and multivariate models for han-
dling the foregoing and other problems, any new models must be made fully operational by
developing appropriate model construction techniques. In a sequence of nineteen invited papers
written by statisticians, hydrologists and other scientists, these as well as many other challenges
are met head on by many original research contributions (Hipel, 1985b). As pointed out in Sec-
tion 1.1, because of the great importance of time series analysis as well as other statistical tech-
niques in the environmental sciences, the new field of environmetrics has evolved into a promis-
ing new discipline. Moreover, many journals and books in which environmetrics research is
published are mentioned in Section 1.6.3. In this section, various types of recently designed
multivariate models, many of which are currently under development, are now discussed.
Because of the controversy surrounding the disaggregation model, this family of models is
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entertained first.

20.5.2 Disaggregation Models

A special class of multivariate models is the disaggregation family of models. This class
allows one to break down a series for which there are longer time units separating values into a
sequence of values separated by shorter time units. For instance, an annual series can be disag-
gregated into a monthly series. The major reason why Valencia and Schaake (1973) proposed
the disaggregation model was to insure that relevant statistics at both the annual and seasonal
levels are consistent with one another. Annual flows, for example, could be generated by a short
or long memory model and these annual flows could then be disaggregated to the seasonal level.
As noted by Salas et al. (1985), disaggregation can be used for not only disaggregating variables
in time, but for disaggregating in space as well. For example, precipitation over an area may be
disaggregated into precipitation over sub-areas (Salas et al., 1980). Frevert and Lane (1986)
presented a technique for accomplishing two level spatial disaggregation in a single run of their
computer programs for disaggregation.

As discovered in a discussion with V. Klemes on May 30, 1985, in Tucson, Arizona, the
basic idea of disaggregation is relatively old. In earlier research, the idea of disaggregation was
utilized for addressing problems related to storage (Savarenskiy, 1940; Gould, 1961; Svanidze,
1962, 1980; Klemes, 1963, 1981). Woolhiser and Osborn (1986) devised a special kind of
model for disaggregating storms into seasonal and regional components. Valencia and Schaake
(1973) proposed a disaggregation model for obtaining seasonal flows from riverflows simulated
at the annual level. As explained by Salas et al. (1985), since 1973 there have been numerous
papers suggesting improvements to the original disaggregation model of Valencia and Schaake
(1973) as well as related models developed thereafter. For example, Mejia and Rouselle (1976)
put forward enhancements for the original disaggregation model of Valencia and Schaake
(1973). Lee (1986) developed a multisite, multiseason synthetic flow generation model within a
disaggregation framework. Other contributions to research in disaggregation are provided by
authors including Tao and Delleur (1976), Stedinger and Vogel (1984), and Grygier and Sted-
inger (1988).

In a conversation held with V. Yevjevich on May 30, 1985, in Tucson, Arizona, he stated
that two questions should be satisfactorily answered in order to adequately justify the use of
disaggregation models in hydrology. The first question is whether there is information in annual
measurements which is not contained in the seasonal observations. If there is not more informa-
tion contained in the annual series, a better procedure may be to aggregate rather than disaggre-
gate. When aggregating, a seasonal time series is modelled directly using a process such as a
PARMA model and then it is aggregated to produce a compatible model for the aggregated
series, usually at the annual level. Vecchia et al. (1983) presented a convincing argument which
favours the concept of aggregation over disaggregation. They proved that if the original sea-
sonal data follow a PARMA model in [14.2.15] or [14.2.16] with one moving average and one
autoregressive parameter (i.c., PARMA(1,1)) then the aggregated annual data must be an ARMA
model in [3.4.3] or [3.4.4] with one AR parameter (i.e., ARMA(1,0)) or else an ARMA model
with one AR and one moving average parameter (i.e., ARMA(1,1)). Furthermore, there is signi-
ficant gain in parameter estimation efficiency at the aggregated level when the seasonal data and
their model are used rather than the aggregated (i.c., annual) data and their model. Rao et al.
(1985) derived similar results for the situation where the seasonal data follow a PAR model in
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[14.2.1] or [14.2.3]. In addition, they showed theoretically that the aggregated data can be more
accurately predicted by using a valid model of the aggregated data. Moreover, in a related topic,
aggregation of forecasts are discussed in Section 15.6 of this book. Further research regarding
aggregation is presented by authors such as Kavvas et al. (1977), Obeysekera and Salas (1982,
1986) and Bartolini et al. (1988). Finally, Eagleson (1978) employs the principle of aggregation
when he derives the distribution of annual precipitation from observed storm sequences.

A second issue raised by V. Yevjevich was whether the large number of parameters in a
disaggregation model can be significantly reduced. In addition to other approaches, Stedinger et
al. (1985) proposed a more parsimonious disaggregation model which is designed in a fashion
which is analogous to the CARMA model described in detail in Chapter 21. Koutsoyiannis
(1992) developed a multivariate dynamic disaggregation model, having a reduced parameter set,
as a stepwise approach to disaggregation problems.

In certain situations, a practitioner or researcher may feel that it is appropriate to employ
disaggregation models. A well-tested set of computer programs for implementing disaggrega-
tion models are available for use on both main frame and personal computers (Lane and Frevert,
1990).

20.5.3 Gaussian and NonGaussian Variables

As noted by Lewis (1985), simple linear models, such as the family of ARMA models, are
not necessarily defined as having Gaussian variates but are simplest to use as such because linear
operations on Gaussian variates preserves Gaussianity or normality. Furthermore, model con-
struction procedures, based on the assumption of Gaussianity, are well developed. As a result,
theoretical research regarding the development of stochastic models which can explicitly handle
variables which are nonGaussian and therefore do not follow a normal distribution, has only
been initiated recently. Among others, Tong et al. (1985) point out the fact that hydrological
data are often not normally distributed and procedures are required to effectively handle this
problem.

When the data are nonGaussian, one approach for obtaining data which are approximately
normally distributed is to transform the original data using a transformation such as a Box-Cox
transformation (Box and Cox, 1964) in {3.4.30]. This will produce a transformed series which is
approximately Gaussian. A model based upon the Gaussian assumption can then be fitted to the
transformed series. An alternative approach is not to assume Gaussianity in the first place but to
select a distribution that the original data actually follow. Li and McLeod (1988) present results
on estimation and diagnostic checking for ARMA models having nonGaussian innovations.
Lewis (1985) describes a range of new models developed for use with continuous variate
nonGaussian time series. The nonGaussian distributions he considers are the Exponential,
Gamma, Weibull, Laplace, Beta and Mixed Exponential distributions. McKenzie (1985)
presents a variety of models similar to Markov chains for describing discrete variate time series
that follow various distributions The distributions which he entertains are the Poisson,
Geometric, Negative Binomial and Binomial distributions. Finally, Brillinger (1985) develops
procedures for fitting finite parameter models to nonGaussian series via bispectral fitting. The
foregoing and other univariate developments in nonGaussian modelling, can be defined for
modelling multiple time series. For example, Lewis (1985) mentions that his nonGaussian
models can be extended to the multivariate case and that a periodic version of these models can
be devised for modelling seasonal data.
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20.5.4 Linear and Nonlinear Models

When a model is linear, it is a linear function of the variables in the model. In a nonlinear
model, there is at least one term where the variables and/or innovations appear as products or are
raised to powers. Lewis (1985) gives a brief discussion regarding alternative definitions for
linearity and nonlinearity. Generally speaking, as the time interval between observations
becomes smaller, the nonlinearities present in the data become more pronounced. For instance,
average daily riverflow data may have to be modelled using a model containing nonlinear terms
because of the nonlinear relationship between runoff and precipitation over a small time scale.
On the other hand, a linear model may be sufficient to model mean annual riverflows for which
the nonlinearities have been ‘‘averaged out’.

A variety of interesting nonlinear stochastic models are now available (Tong, 1990). For
example, Tong et al. (1985), Ozaki (1985), as well as Brillinger (1985) and Gallant (1987)
describe threshold, discrete time storage, and nonlinear regression models, respectively, which
are capable of modelling various kinds of nonlinearities which may be present in natural time
series. Li (1992) derives the asymptotic standard errors of residual autocorrelations in nonlinear
time series models for use in diagnostic checking while, in 1993, Li presents a statistical test for
discriminating among different nonlinear time series models. As noted by Tong et al. (1985),
the threshold model (Tong, 1983) can be easily defined for the multivariate case. Further, Bril-
linger (1985) defines a spatial-temporal process for multivariate modelling.

20.5.5 Multivariate Fractional Autoregressive-Moving Average (FARMA) Models

Short and long memory models are defined in Section 2.5.3 using [2.5.7]. A special class
of long memory models is the FARMA family of models defined in [11.2.4]. Because the
FARMA model is a generalized type of ARIMA (autoregressive integrated moving average)
model given in [4.3.4] for which the differencing operator can assume real values, the FARMA
model can be easily written for the multivariate case. However, a great deal of research is
required to develop model construction techniques for use with multivariate FARMA models.

20.5.6 Time and Frequency Domains

Time series models such as the nonGaussian models of Lewis (1985) or the general mul-
tivariatt ARMA model in [20.2.1] or [20.2.2] are defined in terms of discrete time variables. In
order to fit a time series model to a data set, various techniques are available for use at the three
stages of model construction. If a given method or statistic, such as the sample ACF which can
be used for model identification, is expressed directly in terms of the time variable, it is said to
be expressed in the fime domain. Alternatively, one can work in the frequency domain by enter-
taining Fourier transforms. As explained in Sections 2.6 and 3.5, the Fourier transform of the
autocovariance function produces the spectrum which expresses the distribution of the variance
of the series with frequency (Jenkins and Watts, 1968). Although it is more common in water
resources to execute univariate and multivariate time series modelling in the time domain rather
than the frequency domain, sometimes it is advantageous to work in the latter domain. For
instance, Brillinger (1985) presents interesting results regarding Fourier inference. Canfield and
Bowles (1986) devise a method for conveniently generating multivariate series from the spec-
trum. Ghani and Metcalfe (1986) employ a spectral approach for predicting the probability of
the peak flow exceeding a given level during a specified time period. A host of other applica-
tions of spectral methods to environmental problems can be found in journals and books referred
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to in 1.6.3, although only some of the published spectral research deals with multivariate prob-
lems.

20.5.7 Pattern Recognition

In order to model multivariate hydrological time series, MacInnes and Unny (1986) extend
to the multivariate level the univariate approach of Panu and Unny (1980) and Unny et al. (1981)
for modelling time series from a pattern recognition viewpoint. They apply their pattern recog-
nition model to familiar multistation streamflow problems and discuss both the advantages and
disadvantages of using pattern recognition-based models.

20.5.8 Nonparametric Tests

In order to lessen the number of underlying assumptions required for testing a hypothesis
such as the presence of a specific kind of trend in a data set, researchers developed non-
parametric procedures for use in hypothesis testing. Due to the great importance of non-
parametric testing in environmental impact assessment, Chapter 23 of this book is entirely
devoted to this type. Some of the nonparametric tests, such as the partial rank correlation tests of
Section 23.3.6, can either be used or else extended for use with multi-site and/or multiple vari-
able data sets. As a result, nonparametric tests are very useful in multivariate analysis, espe-
cially when the data are very messy. Part X of this book explains how intervention analysis, non-
parametric tests and regression analysis can be used for modelling messy environmental data.

20.6 CONCLUSIONS

The general multivariate ARMA model is defined in [20.2.1] and [20.2.2] while model
construction procedures are presented in Section 20.3.2 and Appendix A20.1. Within this gen-
eral family of time series models, the CARMA and TFN models are of particular importance in
the field of water resources and environmental engineering. As explained in this chapter and
Section 21.1 and also by Salas et al. (1985) and Camacho et al. (1985a, 1986), the physical con-
straints dictated by a given hydrological system negate the need for using the general form of the
multivariate ARMA model and, therefore, usually some type of CARMA or TFN model is all
that is required in a practical application. Additionally, as described in depth in Chapters 17 and
21, model construction techniques are now fully developed for employment with TFN and
CARMA models, respectively. The CARMA model constitutes a parsimonious version of the
general multivariate ARMA model for describing multiple time series that are contemporane-
ously correlated with one another. Besides being able to model the impacts of interventions
upon the mean level of a series and estimate missing observations (see Chapter 19), the TFN
model can describe the mathematical relationships between a single response variable and any
number of covariate series (see Chapter 17). The most general form of the TFN or intervention
model is defined in [19.5.8].

In Section 20.4 the historical development of multivariate ARMA modelling in hydrology
is outlined while other kinds of families of multivariate models are referred to in Section 20.5.
These additional types of multivariatt models include various classes of disaggregation,
nonGaussian, nonlinear and long memory models. For some of these models, such as the
nonGaussian models of Lewis (1985) and the nonlinear threshold models of Tong et al. (1985),
further research is required for developing model construction techniques for use in modelling
multiple time series.
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For classifying the capabilities of a family of time series models, Hipel (1985b) suggests a
list of twenty-five criteria that reflect the main statistical characteristics that could be modelled.
This list includes linear, nonlinear Gaussian, nonGaussian, long memory and short memory cri-
teria. Using these criteria, a given multivariate model, such as the CARMA model, can be
categorized as being linear, Gaussian and short memory. By understanding the modelling capa-
bilities of each family of models, as well as the main physical and statistical characteristics of
the time series being studied, a practitioner can decide upon which classes of models are most
appropriate to consider for modelling the key statistical properties of his or her data set. Subse-
quent to exploratory data analysis referred to in Section 1.2.4 and described in detail in Section
22.3, the practitioner can select the best specific time series model at the confirmatory data
analysis stage by following the three stages of model construction.

An obvious extension to the work completed thus far in time series analysis is to develop
more comprehensive families of models that can simultaneously handle a wider variety of the
criteria. For example, it may be possible to design a multivariate model that can take care of
both nonlinear and nonGaussian characteristics of the data. However, any new class of models
should be designed to be as simple as possible and thereby not have too many parameters, as
well as provide a good statistical fit to the data. Whenever possible, researchers are encouraged
to incorporate both the physical and statistical aspects of the problem into the basic model
design. Subsequent to the design, appropriate algorithms are required for use at the three stages
of model construction. A continuous dialogue among the statisticians, water resources engineers
and other scientists should increase the probability of designing new models that will be wel-
comed by the practitioners for solving pressing water resources problems.

Besides designing new models, existing models should be rigorously compared from both
theoretical and empirical viewpoints in order to ascertain which families of models are most
appropriate to use in practice. For instance, thorough scientific comparisons of the disaggrega-
tion and aggregation approaches to time series modelling are long overdue. ‘‘To disaggregate or
not to disaggregate’’, that is the nagging question haunting both practitioners and theoreticians
alike in hydrology.

Due to the continued and growing abuse of the natural environment by man-induced activi-
ties such as industrialization and agricultural development, there will continue to be a great
demand for having flexible multivariate models for use in environmental impact assessment.
Future research in the time series aspects of environmental impact assessment will probably
entail developing more nonparametric tests for handling a wider variety of situations in trend
detection and evaluation, rigorously comparing the capabilities of both parametric and non-
parametric approaches, and providing guidelines for optimally designing sampling schemes for
water quality variables.

As is also emphasized in Section 3.6 and elsewhere in the book, Yevjevich and Harman-
cioglu (1985) stress the importance of linking stochastic models with physical consistent proper-
ties of any particular water resources time series. In some circumstances, it may be possible to
employ purely stochastic models to accomplish this goal. Altematively, it may be necessary to
employ a combination of deterministic and stochastic models for realistically modelling certain
kinds of water resources systems.
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The authors maintain that the development and use of multivariate models, in general, and
multivariate time series models in particular, will significantly increase in the future within the
realm of water resources and environmental engineering. Besides hydrological time series, mul-
tivariate models will be used more and more for modelling other kinds of water related time
series such as water quality (physical, chemical and biological), water demand, water pricing and
meteorological time series.

APPENDIX A20.1
IDENTIFICATION METHODS FOR

GENERAL MULTIVARIATE ARMA MODELS

As advocated by Tiao and Box (1981), the sample CCF and PACF matrices are especially
useful for identifying pure multivariate MA and AR models, respectively. When the set of time
series follow a multivariate ARMA(p,q) process, the extended sample cross correlation function
(ESCCF) matrix of Tsay and Tiao (1984) and Tiao and Tsay (1983a,b) can also be used. Section
20.3 describes how model construction is carried out for general multivariate ARMA models.

A20.1.1 Sample CCF Matrix

Suppose k time series of length n are represented at time ¢ by the vector
Z,=ZyZy ... 'Z:k)T

For lag /, where [ = 1,2, ..., the theoretical CCF matrix of order kxk is written as p(/). A typi-
cal entry, p;;(!), in the matrix is theoretically defined as

pii(1) = Cov(Z;.Z,, )/ IVar Z,)VarZ,)]'? [A20.1.1]

The sample CCF matrix at lag [ is denoted by R(/). Each element r;;(/) in the matrix is calcu-
lated using

n-l - - n - ahn -
rit)= X2 ~Z) ;- ZY X 2 - 21 X2, - Z)1'? [A20.1.2]
t=1

=1 =1
where Z-, and Z-J are the sample means of the ith and jth series, respectively.

For a pure multivariatt MA process of order ¢, the theoretical CCF matrix vanishes after
lag g (Tiao and Box, 1981; Jenkins and Alavi, 1981). Hence, if Z, follows a MA(q) process, the

entries in the sample CCF matrix are not significantly different from zero for / > q. Because the
asymptotic distribution of r;;/ is N(0,1/n), the 95% confidence limits given approximately by

:i:% can be used to decide whether or not the estimated value is significantly different from
n

zero. If each entry in R(/) falls within these limits, it can be assumed that the sample CCF
matrix has cutoff at lag / and, consequently, / can be considered as the order of the multivariate
MA model. If the series Z, follows a multivariate AR model of order p or a general multivariate
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ARMA(p,q) model, no cut-off will appear in R(/). Tiao and Box (1981) suggest summarizing
the numerical values of each rij(l) with “‘4”’ to indicate a value greater than —I7 with ““-”’ to
n
indicate a value less than —‘% and with *‘.”’ to indicate a value between —% and —?72- This is
n n n

a very convenient way to interpret the entries in R(/). Similar to the situation for the identifica-
tion of univariate ARMA models in Chapters 3 and 5, onec must define another statistic for
detecting cutoff in pure multivariate AR(p) models.

A20.1.2 Sample PACF Matrix

For a pure multivariate AR process of order p, denoted by AR(p), the theoretical PACF
matrix, P(/), for lag I, where / = 1,2, ..., can be defined. Let <b,j be the jth AR matrix in a mul-

tivariate AR process of order / so that &y is the last matrix. The theoretical PACF matrix, P(l),
is defined as @, ; where @, ®p,, . . . , @, are the solutions of the system of equations

I .
YO, T(G-i)=T(=)), j=12,...,1 [A20.1.3]
i=l
where I'(j) = Cov[Z,,Z,,;]. This equation constitutes a multivariate generalization of the Yule-
Walker equations in [3.2.17] for AR models in univariate time series analysis. If the process is
multivariate AR(p) then by definition ®,, = ®, in [20.2.1] and ®,,;p4+j =0 for j > 0. Conse-
quently, for a pure multivariate AR(p) process, P(/) =0 for / > p. If the process is MA(qQ) or
ARMA(p.q), ®; will not cutoff but rather decay to zero.
The sample PACF matrix at lag | where [ =1,2, ..., is defined as the f’(l) = <f>,, matrix in
the solution of the system of equations
I .
YO;R( -i) =R(=)) [A20.1.4]
i=1
The sample PACF matrix, 13(1 ) at lag /, is calculated by fitting a multivariate AR(l) model using
Z,=c+®pZ,_ +DpZ o+ -+ Z_ +ad [A20.1.5]

and setting P(l) = ®,, where c is a vector of k constants that are recursively estimated along with
the other model parameters using standard multivariate least squares (Tiao and Box, 1981).
Asymptotically, the distribution for each entry in f’(l) isN (0,%). To denote whether an entry in

P(/) is greater than, less than, or falls within the approximate 95% confidence limits given by

:I:—%, one can employ ‘‘+°*, “‘=’* or **.”", respectively. Using the foregoing symbols rather than
n

numerical values makes it easier to detect the important identification information contained in
P().

Basically, the sample PACF matrices arc determined by fitting AR models of order
1=12,..., in [A20.1.5]. By analyzing the variance-covariance matrices corresponding to suc-
cessive AR fittings, one can ascertain how much the statistical fit improves as the order / is
increased.
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For any given /, / =1,2,..., a formal test of hypothesis for testing the null hypothesis:
P(1)=0 against the alternative P(/) # 0 can be performed. The likelihood ratio statistic is given

by
U=ISINS{ - 1)l [A20.1.6]

where

n
s = zﬁ‘(’).i‘(’)r

=1
for which 4" are the residuals of the fitted model in [A20.1.5].
Using Barlett’s (1938) approximation, the statistic
x() =—~(N = 1/2 = Ik)-log [IS()INS( = 1)1] [A20.1.7]

will have a chi-square distribution with k? degrees of freedom when / > p. Now, for MA(q) or
general ARMA(p,q) models, the sample PACF matrices do not have a cutoff and, therefore, they
are expected to obtain significant values of x(/) even for large lags. Examples of the use of the
sample ACF and PACF matrices in the identification of hydrologic time series are given by
Camacho et al. (1987¢).

The sample ACF and PACF matrices are very useful for identifying pure MA and pure AR
models, respectively. In practice, the difficulty arises in the identification of mixed ARMA(p,q)
models when both p and q are larger than zero. In these cases, the ESCCF can be employed to
help in the identification.

A20.1.3 ESCCF Matrix

The ESCC (extended sample cross correlation) matrix was proposed by Tsay and Tiao
(1984) and Tiao and Tsay (1983a,b) to help in the identification of the order of mixed multivari-
ate ARMA models. The main idea of the technique is to calculate consistent estimates of the AR
matrices @y, . .., ®,, say, and then use the properties of the transformed series

W,=2,-$&z, [A20.1.8]
=1

to identify the order of the process. If Z, follows a multivariatt ARMA(p,q) process and the
estimated parameters are consistent, then W, follow a multivariate MA(q) process, so that the
sample CCF matrices of W, should be able to identify the proper order of the model. Tiao and

Tsay (1983a) have shown that when the order of the model is known, it is possible to obtain con-
sistent estimates for the @’s using a process of iterated regressions. However, in practice the
order of the model is not known in advance, and therefore, it is necessary to study the properties
of the iterated regression estimates and their associated transformed series W,.

The following algorithm can be used to obtain the iterated regression estimates where
further details are given by Tiao and Tsay, (1983a):

Step 1: Form =1.2,...,M+J+1 fit an AR(m) regression
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Z,=Y0Z _+em® t=m+l,...,n [A20.1.9]
=1

using ordinary least squares. Denote the estimated parameters as d>,(,,,) The superscript (o)

indicates the ordinary least square estimates and the subscript (m) indicates the order of the AR
fit.

Step2:Forj=12,...,J,andm=1,...,M, recursively compute the AR(m) jth iterated esti-
mates@,([,,),l- 1,...,mas:

-1 - -1
d’l(("l)"d’ly +1) ~ m+l()m+l) m(m;] ld’l-l(,).) [A20.1.10]}
where @40 =-1.

Now if Z, follows a multivariate ARMA(p,Q) and no linear combination of
Y, = (Z,T, oo ,Z,_p+|)T follows a MA model with order less than g, then the matrices @f{,},) are
consistent estimators for ®; when (i) m 2p and j =g, or, (ii) m =p and j > ¢ (Tiao and Tsay,
1983a). Also, for j > g, the transformed series

. m . .
wWi=2,-3ydz,, [A20.1.11]
=1

will approximately follow a multivariate MA(q) model. Therefore, the samplc CCF matrix of
W9 will have a cutoff after lag ¢. In particular, the lag j CCF matrix of W) ), BipyU) will be

such that

C, jsgq
B> 0, j>q [A20.1.12]

where C is a generic symbol for a matrix whose elements are not necessarily all zero.

The mth ESCCF matrix is now defined as f,,() is the lag j sample CCF matrix of W,S,’}

For a general multivariate ARMA(p,q) process, f,,,(j) has the following asymptotic property:
0, Osm—p<j—g
BmyU) —){C otherwise [A20.1.13]
This property of the ESCCF can now be exploited in the following way to help in the identifica-

tion of the order (p,q) of an ARMA model:

Stage 1: Arrange the ESCCF matrices f,,)(/) in a block matrix as is shown in Table A20.1.1.
The rows numbered 0,1,2, . . ., signify the AR order and, similarly, the columns signify the MA
order. To investigate how to use this table, suppose that the true model for Z, is a multivariate
ARMA(2,1) model. The pattern of the asymptotic behaviour of the ESCCF is shown in Table

A20.1.2.

It can be observed from Table A20.1.2 that there is a triangle of asymptotic zero matrices and
that the vertex of the triangle is located at the entry (2,1). For a general multivariate ARMA(p,q)
model the same pattern is expected and the vertex of such a triangle will always be located at
entry (p,q). This observation suggests the second idea in the identification of the process.
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Table A20.1.1. The ESCCF table.

AR MA
0 1 2 3
0 | fioy P20 P30y Pao
1 | by P2y B3y  Paqy
2 | by P2y B3y Pa)
3 | hiey Py B3y Pa

Table 20.1.2 The asymptotic ESCCF matrix table of an ARMA(2,1) model
where C and 0 denote, respectively, a nonzero and

a zero matrix.
AR MA

0 1 2 3 4 5
0 C €C € € C cC
1 C € € C ¢Cc c
2 cC 0 0 o0 o0 o
3 cC C o0 o0 o0 O
4 cC € C o0 o o0

Stage 2: Look for the vertex with entry (d;,d,) of a triangle of asymptotic zero matrices with
boundary lines m =d; and j—m =d, 2 0 and tentatively specify the order of the model as p =d;
and ¢ =d,. As a crude approximation, the value (n-m—j)~! can be used for the variance of the
elements of f,,)(j) under the hypothesis that the transformed series W,,‘{} is a white noise pro-

cess. As an informative summary, (+, -, -) signs can be used to replace numerical values of the
elements of P,,;), where a plus sign (+) is used to indicate a value greater than two times the
standard deviation, a minus sign (-) to indicate a value less than minus two times the standard
deviation, and a period (*) for in-between values.

Simulated and hydrological applications of using the ESCCF for multivariarte ARMA(p,q)
model identification are given by Camacho et al. (1986). Consider, in particular, the simulated
example. On hundred realizations of an ARMAC(1,1) model with parameter matrices

8.0 S50
®=157|9=]0s
were generated using the simulation algorithm of Camacho (1984) which is similar to the one

described in Section 21.4.2 for CARMA models. The plot of the data is given in Figure A20.1.1
and the pattern of the ESCCF matrices is shown in Table A20.1.3. As can be observed, the

1.6
A= 6 1 [A20.1.14]
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vertex of a triangle of zero matrices is located at entry (1,1), indicating that an ARMA(1,1)
model would be adequate to fit the data.
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Figure A20.1.1. 100 simulated observations of an ARMA(1,1) model with
parameter matrices given in [A20.1.14].

Table A20.1.3. ESCCF matrix for the simulated ARMA(1,1) data.

MA
AR | 0 1 2 3 4 5
0 + + + + o + + o + .
+ + + + + + + o + +
1 + + L) o o ® o o .
o0 e o o 0 ° o o ®
+ - o + o o . o 0 .
2 + - o 0 o o ° o o °
o - - o — ° e o .
3 o o o o o — . ® .
o + o o + o [ [ °
4 * + LI + o . . .
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20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

209

PROBLEMS

The general multivariatt ARMA model is defined in [20.2.1] and [20.2.2]. Write
down the following vector ARMA(p,q) models using both the matrix notation and
the full length description when matrices and vectors are not used.

(@) ARMA4,0)

(b) ARMA(0,3)

(c) ARMA(2,2)

(d ARMAQG,I)

Demonstrate that the two equations for writing a TFN model given in [20.2.3] and
[17.5.3] are equivalent.

Explain why the PARMA model given in [14.2.15] can be considered as a special
case of the multivariate ARMA model in {20.2.1].

By referring to [20.2.1] give the matrix equations as well as the equations where
matrices and vectors are not employed for the following CARMA(p,q) models:

(2 CARMA4,0)
(b) CARMA(0,3)
(c) CARMA(Q22)
(d) CARMAQG,1)

The general multivariate ARMA model for fitting to a set of seasonal time series is
defined in [20.2.1] and [20.2.2]. Assuming that there are 5 seasons per year, define
the general multivariate deseasonalized ARMA model using both the matrix nota-
tion and the full length notation when matrices and vectors are not used. Explain
how you would fit this model to a set of seasonal time series by following the three
stages of model construction. In your explanation be sure to mention specific graph-
ical methods and algorithms that you would employ.

Repeat the instructions of problem 20.5 for the case of a general multivariate PAR
model.

Follow the instructions of problem 20.5 for the case of a general multivariate
PARMA model.

In appendix A20.1, three procedures are presented for identifying general multivari-
ate ARMA models. By referring to this appendix and also the original references,
compare the advantages and drawbacks of these approaches. Explain how they
could be expanded for use with seasonal data.

Using equations when necessary, outline the approach of Hillmer and Tiao (1979)
for estimating the parameters of a general multivariate ARMA(p,q) model.
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20.10

20.11

20.12

20.13

20.14

20.15

20.16
20.17

20.18

20.19

20.20

20.21

20.22

Chapter 20

Employing equations when needed, summarize the procedure of Ansley and Kohn
(1983) for calibrating a general multivariate ARMA model.

Explain how the sample CCF and sample PACF described in Appendix A20.1 can
be employed for checking the whiteness assumption about the residuals of a cali-
brated general multivariate ARMA model.

Define the modified Portmanteau test of Li and McLeod (1981) and explain how it
can be utilized for testing the whiteness assumption of the residuals of a fitted gen-
eral multivariate ARMA model.

Using equations when necessary, explain how multivariate normality tests proposed
by Royston (1983) can be employed for testing the normality assumption for the
residuals of a calibrated general multivariate ARMA model.

Select two nonseasonal time series which you suspect should be modelled using
some type of multivariatt ARMA model. Using the residual CCF approach
presented in detail in Section 16.3.2 and outlined in Section 20.3.2, determine what
kind of multivariate ARMA model could be fitted to this data.

For the two nonseasonal time series examined in problem 20.14, calibrate the most
appropriate multivariate ARMA(p,q) model.

Execute the instructions of problem 20.14 for the case of two seasonal time series.

Follow the instructions of problem 20.15 for the seasonal time series examined in
problem 20.16.

Mathematically define the input-output class of models put forward by Cooper and
Wood (1982a,b). Explain the assets and drawbacks of this group of models, espe-
cially with respect to the general multivariate ARMA family of models. How are
the input-output models mathematically related to the multivariate ARMA models?

The STARMA (space-time ARMA) class of models is discussed in Section 20.4.
By referring to appropriate references, mathematically define this group of models,
summarize its advantages and drawbacks, and compare it to the multivariate ARMA
family of models in [20.2.1] and [20.2.2].

Define mathematically the multivariate FGN model of Matalas and Wallis (1971)
referred to in Section 20.4. Is this a realistic model to employ in practice? Justify
your response. You may wish to refer to the discussions on FGN given in Section
10.5 as well as appropriate references listed at the end of Chapter 10.

Within the hydrological literature there has been an ongoing and heated debate
about whether one should employ disaggregation or aggregation models in hydrol-
ogy. By referring to appropriate research work that is referenced in Section 20.5.2,
mathematically define a disaggregation model and also an aggregation model based
upon ARMA processes. Compare these two categories of models according to their
relative advantages and disadvantages. Which class of models would you employ in
hydrological applications?

Using mathematical equations, extend the nonGaussian model of Lewis (1985) men-
tioned in Section 20.5.3 to the multivariate case. Discuss any implementation prob-
lems that you may encounter when applying this mathematical model.
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20.23 Define mathematically the multivariate version of the threshold model of Tong et al.
(1985) referred to in Section 20.5.4. Describe the types of data to which you think
this model could be applied and discuss potential model construction techniques.

20.24 Mathematically define the multivariate FARMA model of Section 20.5.5. Describe
the types of model construction tools that would have to be developed to apply this
model in practice.
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