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Abstract. The covariance function in time series models is typically modelled via a
parametric family. This ensures straightforward best linear prediction while maintaining
positive-definiteness of the covariance function. We suggest an alternative approach,
which will result in data-determined shrinkage towards this parametric model. Positive-
definiteness is maintained by carrying out the shrinkage in the spectral domain. We
offer both a fully Bayesian hierarchical approach and an approximate hierarchical
approach that will be much simpler computationally. These are implemented on the
frequently analysed Canadian lynx data and compared to other models that have been
fitted to these data.
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1. INTRODUCTION

Data are often collected over time or space. An important aspect of this type of
data is dependence among the observations due to temporal or spatial proximity.
To model accurately such processes, to predict into the future (time), or to
predict at another location (space), this dependence must be carefully modelled
and inferred. A simplifying assumption that is often used (and that we shall also
use) is that of second-order stationarity, where the covariance between two
observations is a function only of the time or displacement between the
observations. Researchers then typically model the covariance function using
parametric models, both for ease of prediction and to ensure that the covariance
function is positive-definite.

In the context of multivariate analysis, Daniels and Kass (1999) discuss the
idea of borrowing strength from a structured covariance matrix to obtain a
more stable estimate of covariances in small samples. Their approach allows
the data to determine the amount of shrinkage towards this structure. As a
result, the uncertainty of not knowing the true structure is incorporated into the
variability of the estimate, and precision is gained over the standard unshrunk
estimate. Our intention in this paper is to extend this approach to the context of
time series modelling and prediction. Thus, instead of fitting a specific
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parametric model to the covariance function, we develop instead a methodology
for shrinkage towards a parametric model.

The aforementioned idea will be implemented as a fully Bayesian
hierarchical model that will account for all uncertainties: the uncertainty in
the estimation of the covariance function and all relevant uncertainties when
carrying out predictions. To ensure the positive-definiteness of the inferred
covariance function, we shall formulate our hierarchical model in the spectral
domain. Then, we return to the time domain easily via Bochner’s Theorem
(Bochner, 1955). A non-parametric estimator for the covariance function for
unequally spaced data, formulated within the spectral domain, was discussed in
Hall et al. (1994). In a like manner, those authors ensure positive-definiteness
by transforming back to the time domain from the spectral domain.

In Section 2, we present the Bayesian hierarchical model that is central to
our approach. Section 3 discusses model fitting and computational issues. In
Section 4, we apply our approach to the frequently analysed Canadian lynx data
and compare our results to other models that have been fitted to these data.
Finally, Section 5 contains conclusions and discussions.

2. MODEL
Let {Y1, ..., ¥,} be a time series of observations at times ¢ =1, ..., n, which
we refer to subsequently as Y. We consider the following model:
Y, =u, +9, ey

where E(Y;) = u, = X,, X, is a design matrix for the fth time point (in our
example, X; =1 so u, = u and we will use u in subsequent discussions and
notation), and {J,} is a second-order stationary process with covariance function
C that captures the temporal dependence; ¢ = 1, ..., n. Second-order stationarity
implies that var(d,) = 0% and that the covariance between the process 0, at times
t; and t; can be written as

cov(dy,, 01,) = C(|t; — ;) = o> p(|t; — 1j])

Consequently, C(0) =02 We further assume that the {d,} are normally
distributed. We refer to (1) and its accompanying assumptions as the first stage
of our model.

A standard approach to modelling the covariance function is through
assuming some parametric form for C(-), which ensures positive-definiteness
and facilitates prediction. If we attempt to extend directly the approach of
Daniels and Kass (1999) from the covariance matrix to the covariance function,
we encounter problems ensuring positive-definiteness of the covariance
function. To avoid this potential difficulty, we shall formulate our model in
the spectral domain using the spectral density f(w), where
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TT

C(h) = ZOZJ f(w)cos(wh)dw; h=0,1,2,... 2)
0

For n equally spaced observations, we can only estimate the spectral density
f at m frequencies, where m is the smallest integer greater than or equal to
(n—1)/2. Let

2 2
F(w)) :% (Z Yf sin(w,-t)) —I—(ZYT cos(w,—t)) i=1,...,m

where
Y, — 27i
Y¥ = %’ut w; ="
o n

and ji, and 0 are the estimates obtained from the model (1). The next step is to
shrink f (the periodogram) towards some prior parametric form (which may
come from exploratory data analysis). By restricting the shrunken estimates to be
non-negative, we can ensure that the resulting covariance function is positive-
definite. To carry out the shrinkage in a statistically optimal fashion, we must
first specify a prior distribution for the spectral density f.

2.1. Prior distribution for components of f

To specify a prior distribution on f, we need only specify a prior for the m
components needed for the approximation, namely f(w;) with w; = 27i/n,
i=1,...,m; note that f(0) will be zero because {0;} has zero mean.
Asymptotlcally, we know that for n 0dd, each periodogram ordinate f(w;) will be
approximately a scaled y? random variable with 2 degrees of freedom and scale
parameter f(w;), and for n even, the last periodogram ordinate, f (wm), will be
approximately a scaled y? random variable with 1 degree of freedom. Work by
Hawkins and Wixley (1986) has shown that the fourth root of X% and x% random
variables are very well approximated by normal distributions. That is,
approximately,

. 3/ . A/
f(wi)1/4~N<f ) Tl 2) =1, m @

1

where for n odd, M; = 2'/*T'(1.25) and V; = 2!/2I'(1.5) — M? for i = 1, m;
and for n even, M;=2YT(1.25) and V;=22I(l. 5) - M? for i=1,

—1 and M, =2'4T(0.75)/T(0.5) and V,, = 2'/2T(0. 5) — For
subsequent calculations and approximations using (3), we substitute f for fin
the variance term and for notational convenience, we drop the subscript on M
and V. Equation (3) suggests a scale for the prior distribution for the unknown £,
namely the fourth root. That is, we assume that

F@)'* ~ (fP(o; )4, ) 4)
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where TN,(v, 4*) denotes a truncated normal distribution whose normal
distribution with mean v, variance A> has been truncated below at g. Its density
can be written as,

Pz = /WIz= q)
V)
g@‘!rm&ﬂwmw
g {272}

We refer to (4) as the second stage of our model.

In Equation (4), f? is a specified parametric form for the spectral density
and ¥ is a vector containing the relevant hyperparameters. Non-informative
priors for 1 will be chosen and a flat prior will be used for 72. If we ignore the
truncation in (4), then, approximately,

F(@)* ~ N(fP(w; )14, T) (5)

This model formulation results in shrinking the empirical covariance function
towards a parametric structure, as discussed in Section 1. A simple heuristic
argument for why this happens follows: From equations (3) and (5), the full
conditional distribution

@) u, 0%, 9, 7 Y = f() 4y, 2, f

will be approximately normally distributed with (estimated) mean

Fl/4
m=s"r (- s ©)
and (estimated) variance
- M? 1)
* =\t ?
where
J@) v/ m?

S

F@)2v/m? 4 72

Thus, high spectral density values will be shrunk more towards the prior density
ordinate. If we desired uniform shrinkage across the fourth-root of all
frequencies, we might specify the variance term in (5) to be 72f(w)'/?. In
addition, we can control the amount of shrinkage by fixing the value of 7°.
However, we are really interested in f, not f'/4. Using the same normal
approximations (3) and (5), we can compute the posterior mean for f(w) as,

E(f(@)|u, 0% v, 7 ¥) = 30* + 602m? + m* ®)

where m and v? are given by (6) and (7), respectively. So, although we observe
linear shrinkage on the f'/4-scale, we see non-linear shrinkage on the f-scale.
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The shrinkage on the C (equivalently, p)-scale will be evident from the way we
compute C (Section 2.2).

A number of remarks about the prior model follow. First, by specifying the
model through the spectral density, we have avoided the problem of the
covariance function not being positive-definite. A less parametric form for this
prior might be to place a Dirichlet-process prior (Ferguson, 1973; MacEachern,
1994) on f instead of the normal prior.

2.2. Computing C from f

As we shall explicitly model ordinates of the spectral density, we need
techniques to move from the spectral domain to the time domain. Bochner’s
Theorem (Bochner, 1955) allows us to write an integral that we shall evaluate
numerically:

C(h) = 2ozfr f(o)os@hdw  h=0,1,2, ... 9)
0

Because we are only modelling f at a discrete number of frequencies, we need
to approximate this integral.
In terms of the correlation function, we seek to approximate the integral

p(h) = 2J:f(a))cos(wh)dw h=0,1,2,... (10)

based on models of f evaluated at a discrete number of frequencies. We consider
two approaches to computing p(-) based on (10) and the spectral density f
evaluated at w;; i=1, ..., m:

1. a discrete approximation, and
2. a numerical-integration approximation.

Both these approximations are more accurate for when the lag % is small (where
we have more data) than when /% is large (for which we have little information).

DISCRETE APPROXIMATION A simple method to move from the spectral to the
time domain, is to use a discrete approximation to the spectral cumulative
distribution function by putting point masses at the identified frequencies.

However, this only allows computation of p(%4) for A =0, 1, ..., m, through
,m: (wi)cos(w;h)
ot = ==L
Zizlf ()

By evaluating f at an additional n — m frequencies, obtained by linearly
interpolating between the original m frequencies, we obtain

S f(w)cos(w;h)

B —
Pl ==

h=0,1,2,...,n (11)
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where w; = mi/n; i =1, ..., n. The best linear predictor of a value at n*>n,
requires some covariances at lags larger than n. In this case, we can use (11)
evaluated at h=0, 1,2, ..., n* — 1, where w; = mi/(n* — 1) and f(w,) can
again be obtained by linearly interpolating between the original m frequencies;
i=1,...,n"—1.

NUMERICAL-INTEGRATION APPROXIMATION Various numerical techniques are
available to approximate the integral (10). However, we are restricted by the fact
that the function f(-) is only evaluated at m frequencies, ;= 2mi/n;
i=1,..., m In what is to follow, we shall use Filon’s numerical-integration
approximation, since this is an approach designed for Fourier integrals (Filon,
1928). In using this approximation, we must be aware of three things:

1. The approximation to f must be non-negative.
2. f must integrate to 1.
3. The approximation only works for n a factor of 4.

Filon’s general approach is as follows: Divide the interval [a, b] into 2N
subintervals of equal length /; that is, / = (b — a)/(2N). The function f(-) will
be approximated by a quadratic over each successive pair of subintervals. In
our case, N = n/4, [a, b] = [0, 7], and all the observed f(-) at the endpoints
of the subintervals are non-negative. Then, the approximate function can be
evaluated analytically. Specific details on Filon’s approximation are given in the
Appendix.

It may occur that the quadratic approximation to f(-) over particular
subintervals results in negative values. To adjust for this, we truncate the
approximation at zero. The problem of f not 1ntegrat1ng to unity can be
handled by normalizing the integral above with f f(w)dw, where f is
approximated as in the standard Filon formula. The Appendix should be
consulted for the final modified approximation, denoted by pw(:).

3. COMPUTING THE SHRINKAGE ESTIMATORS

3.1. Fully Bayesian analysis

To simulate from the posterior distribution of f, u, o2, ¥, 7?|Y, we use a
Markov chain Monte Carlo (MCMC) method called the Gibbs sampler (Smith
and Roberts, 1993). This involves iteratively simulating from each of the full
conditional distributions derived from the posterior distribution. The full
conditional distributions of ¢2|f, u, ¥, 7%, Yand 72|f, u, 0%, ¥, Y are both
inverse gamma and the full conditional of u|f, o2, y, 1%, Y is normal. We use a
Metropolis—Hastings algorithm to sample from the full conditional distributions
of Y|f, u, o2, 72, Yand of (the components of) f|u, o2, ¥, 72, Y. For p, we use
a normal approximation to the full conditional as a candidate distribution in the
Metropolis—Hastings algorithm. That is, conditional on the current values of f,
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u, o2, 12, we compute the mode and Hessian of the full conditional for 1 and
use these values for the mean and variance for a normal candidate distribution.
The corresponding acceptance probability a for the candidate value at the kth
iteration will be a = min(1, ), where here

p@O|f, u, 0%, 7%, Y)
pp®|f, u, 02,72, Y)

Qo = 1) 2 2
pVfu, 0% 15, Y)
pPYEDIf, u, 02,12, Y)

p(+) is the full conditional distribution of 3, and p(-) is the normal candidate
distribution referred to above.

The major computational issue in our approach is efficient sampling from the
full conditional distribution of the components of f, since each realization from
flu, o2, v, 1%, Y requires inversion of an n X n matrix. As a result, we
consider two possible candidate distributions for the Metropolis—Hastings
algorithm that obviate the need for more than one n X n matrix inversion at
each iteration of the Gibbs sampler. The first possibility is a normal (or ¢-)
approximation to the full conditional distribution for the components of f
obtained after replacing (1) with (3) and (4) with (5). The acceptance
probability a for the candidate value at the kth iteration will be a =
min(1, ay), where here

(12)

p(fPlu, 02, 9, 7, Y)
PP, 02, 9,72, Y)
Qo = =) 2 2
p(f* O, 0%, 9, 1%, )
PO D, 02,9, 2, Y)

p(+) is the full conditional distribution of the components of f, and p(-) is the
normal candidate distribution with mean given by (6) and variance given by (7).
The second possibility is a random walk using a variance proportional to (6) but
substituting in a fixed value for 72. A proposed choice for 72 will be discussed in
the next section. The acceptance probability a for the candidate value at the kth
iteration will be a = min(1, @), where here
k 2 2
p(f*Dlu, 02, 9, 72, Y)

We shall consider both of these possible candidate distributions in the example.

(13)

3.2. An Approximate Analysis

For long time series, where n is large, computations can become prohibitive. A
model that approximates the various distributions given in Section 2 would be
useful. We consider both fully Bayesian and empirical Bayesian (or frequentist)
approximations that circumvent the computational difficulties. Intuitively, the
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sample size needed for these approximations to be accurate should increase with
the strength of dependence in the time series.

FULLY BAYESIAN APPROXIMATION We first consider a fully Bayesian model in
which inversion of the n X n covariance matrix at each iteration is not required.
We replace the first stage (1), with the approximate model (3). Then, by
combining (3) and (4), we have a simple hierarchical model (often called a
normal-normal model; see Daniels and Kass, 1998) in which the data f /4 and
their mean, f'/* both follow normal distributions. This model can be fit using
the Gibbs sampler in standard software such as BUGS (e.g., Spiegelhalter et al.,
1996). The full conditional of f'/*|y, 72, f will now be a truncated normal
distribution, obtained by truncating a normal distribution, with mean and
variance given by (6) and (7) respectively, at 0; the full conditionals of 1 and 72
will take the forms given in Section 3.1.

EMPIRICAL BAYESIAN APPROXIMATION We attempt to simplify computations
further by developing a point estimator from the approximate model (3) and the
approximation (5) that can be computed directly without recourse to the Gibbs
sampler. We consider the estimator for f(w) given in (8), which is conditional on
y and 7°. A standard empirical Bayes approach is to plug in estimates of these
parameters into (8). We estimate 1 with a maximum likelihood estimator
obtained by fitting directly to the data the parametric model that yields /P in (5).
For the example in Section 4, fP is the spectral density derived from an AR(2)
process. To estimate 72, we use a moment estimator similar to the one used for
the between-study variance in random-effects meta-analysis (Whitehead and
Whitehead, 1991). Here we can assume the prior means fP(w;; 1)'/* are known,
and we obtain

il @) — S (@i )Y —m
>
Zwl Zwi

where ;! = var(f(w;)'/*) given by (3) with / substituted for /. Other estimates

can be used for 1 and 72, but they lack the ease and simplicity of the
aforementioned estimates.

72 = max | 0,

(15)

ACCURACY OF THE FULLY BAYESIAN APPROXIMATION We now discuss a
simple way to assess the accuracy of the approximation (3). We first run 10—-20
iterations of the Gibbs sampler using the first candidate distribution for the full
conditional of f (Section 3.1) and monitor the Metropolis—Hastings acceptance
probabilities of f. Recall that these probabilities are derived from the quantity o
given by (13). The numerator and denominator of @y can be thought of as
importance weights and the candidate densities can be viewed as importance-
sampling densities for the exact full conditional distribution of f|u, o2, v, 72, Y.
If these candidate densities are also a good approximation to the exact model,
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the importance weights in both the numerator and the denominator will be close
to one; thus, ay will also be close to one. So, by monitoring a, for a few
iterations of the Gibbs sampler that was specified in Section 3.1, we can gauge
the accuracy of the approximation. An example of the use of this diagnostic is
given in Section 4.

4. EXAMPLE

In this section, we shall fit our hierarchical model (and the approximation) to the
frequently analysed Canadian lynx data; see, for example, Moran (1953),
Campbell and Walker (1977), Lim (1987) and Lin and Pourahmadi (1998).
However, our goal here will not be to find the best model for the lynx data, but
to illustrate the attractiveness of our approach in comparison to a non-
hierarchical model fitted to these data.

The following two models are fitted to the logarithm of the Canadian lynx
data. In both cases, we assume that x4, = u. The first will consist of the original
AR(2) model suggested by Moran (1953), along with a prior distribution
directly on the AR(2) parameters. The second model is our fully Bayesian
hierarchical model (shrinkage model), described in Section 2, where an AR(2)
model is chosen for fP.

Our goal here is improved prediction through better estimation of the
covariance function. To assess how well our methods compare to existing
methods, we use the first 80 years of the Canadian lynx data to fit models and
the last 34 years to provide performance criteria.

We shall compute two quantities to evaluate the predictions. The first
quantity is the posterior predictive mean squared-error (MSPE) and the second
is the 95% posterior predictive prediction interval (PI). We shall estimate the
posterior predictive MSPE averaged over the predictions at all 34 times, from
M iterations of the MCMC algorithm, by using

1 M
aVG{MZ(Yé’Eid,,—KW)z r=81,...,114} (16)
k=1

where

1 M
(3o, vt}
k=1

is an estimate of the MSPE for time ¢, Y ;’fgdt is the conditional expectation

E(Yt|f(k)a M(k)a 0_2(1{)’ Yj ] == 1, ceey 80)

and Yine s 1s the observed value of the process at time ¢, t = 81, ..., 114. Models
with smaller posterior predictive MSPEs will be preferred. The posterior
predictive PIs will be computed using the 0.025 and the 0.975 observed quantiles
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of the distributions of Ypreqs; ¢ = 81, ..., 114. The model with coverage of the
posterior predictive Pls closer to 95% will be preferred. We note that these
comparisons could also be done for other more complicated models that have
been fitted to these data; such models would then play the role of /P in stage 2
of our hierarchical model.

The Markov chain of the MCMC algorithm using the first candidate
distribution for the full conditional of f (Section 3.1) mixes rather slowly and
the acceptance probabilities suggest that the normal approximation is not
adequate here. As a result, we used the second candidate distribution (the
random walk) discussed in Section 3.1.

Figure 1 shows the fitted correlation functions from the shrinkage model and
from the Bayesian AR(2) model, and in addition, it shows pointwise 95%
credible intervals from the shrinkage model. We choose the posterior mean of p
as our estimate of the correlation function. This will be positive-definite, since
any convex combination of positive-definite correlation functions is positive-
definite. The figure shows how our estimator differs from that under the AR(2)
model in terms of both location and size of peaks and valleys. Notice that the
AR(2) correlation function lies within the 95% credible intervals of our model,
which is perhaps not surprising since the prior fP is an AR(2) model. Figure 2
displays twenty realizations from the posterior distribution of the correlation
function from the shrinkage model. This portrays the uncertainty in the
correlation function more accurately than the pointwise confidence intervals in
Figure 1.

p (h)

0 20 40 60 30 100
h

FIGURE 1. Shrinkage estimator (posterior mean) of the correlation function (solid line), Bayesian

AR(2) estimator (posterior mean) of the correlation function (dotted line), and 95% credible

intervals for the full Bayesian hierarchical model (A) based on the posterior distribution of p
(dashed line)
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p (h)

T T T T T

0 20 40 60 80 100
h

FIGURE 2. Twenty realizations from the posterior distribution of the correlation function for the
fully Bayesian hierarchical model (A)

The posterior predictive MSPE averaged over all 34 times (given by equation
(16)) was about 30% larger for the fitted AR(2) model, and the shrinkage
model had smaller posterior predictive MSPE at 21 of the 34 times. The 95%
posterior predictive PIs covered the true values 18 out of 34 times for our
model, versus 12 out of 34 for the fitted AR(2) model. Notice that we are
performing anywhere from a one-step-ahead forecast up to a 34-step-ahead
forecast in this assessment. Clearly, the shrinkage estimator is resulting in much
better predictions.

Although the normal approximation to the fourth root of the periodogram
ordinates does not appear to be very accurate here, we nonetheless compared
the predictions (on the log scale) derived from the approximate model, given by
(3) and (5), to various other predictions using the average prediction error
(APE) and the average squared prediction error (ASPE) averaged over all 34
time points,

1 114 1 114

ﬁ Z(Ypred,t - Ytrue,t) and ﬁ Z(Ypred,r - Ytrue,t)2
=81 =81

respectively. The other predictions used in the comparison were those derived
from a non-Bayesian AR(2) model (using maximum likelihood) and from the
posterior predictive means

. 1 & .
E(Y,|Y,j=1,.., SO)z%ZE(YAf”‘), u®, g¥Py, =1, ..., 80)
k=1

t=281,...,114

© Blackwell Publishers Ltd 2001



264 M. J. DANIELS AND N. CRESSIE

assuming the two Bayesian models described at the beginning of this section.
Table 1 contains the APE and the ASPE for all four models:

(A) Bayesian hierarchical model, discussed at the beginning of this section

(B) Bayesian AR(2) model, also discussed at the beginning of this section

(C) Empirical Bayesian approximate hierarchical model, discussed in Section
32

(D) Non-Bayesian (fitted by maximum likelihood) AR(2) model

Both shrinkage estimators, based on models (A) and (C), did better than the
estimators based on the AR(2) models, namely models (B) and (D). In
comparing models (A) and (B) at each ¢t = 81, ..., 114, the shrinkage estimator
from model (A) had better predictions at 27 out of the 34 time points. The
analysis above suggests that the estimator based on model (C), the empirical
Bayesian approximate hierarchical model, may have merit as a computationally
convenient estimator, even if the model approximation is not very good
(although this needs further study).

5. DISCUSSION

Our approach can be thought of as a means to smooth or shrink the spectral
density towards a particular parametric form for the density. This approach,
though computationally intensive, should often lead to better predictions and can
be made much more computationally tenable using the approximate model,
given by (3) and (5) (computationally, this only requires inversion of one n X n
covariance matrix).

Current extensions of this research that we are working on include adding a
measurement error component to the model, handling the case of unequally
spaced observations, such as one encounters in longitudinal and spatial data,
and using alternative approaches to compute the correlation function from the
ordinates of the spectral density, including kernel smoothing. Other more
general issues include what to use as a point estimate of the spectral density
and/or covariance function; currently, we use the posterior means but other
summaries of the posterior distribution might have better properties.

TABLE 1

AVERAGE PREDICTION ERRORS (APE) AND AVERAGE SQUARED
PREDICTION ERRORS (ASPE) FOR ALL FOUR MODELS

Model APE ASPE
(A) Bayesian hierarchical —0.379 0.971
(B) Bayesian AR(2) —0.462 1.49
(C) Empirical Bayes approx. —0.440 1.32
(D) Non-Bayesian AR(2) —0.491 1.54
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APPENDIX: FILON’S INTEGRAL

We wish to approximate the following integral:

3
p(h) = ZJ cos(wh) f(w)dw h=0,1,2,... (17)
0
Filon’s approximation takes the following form:
N_ (w2, _
pr(h) = ZJ cos(wh)f(w)dw h=0,1,2,... (18)
r=1 JW2,2

where f is a quadratic approximation to f over the interval (w,,_,, w,,) that goes through
the points f(wz,-2), f(w2,-1), and f(w,,); that is,

f(@) =4+ B(w — w3,1) + D(@ — w3,1)?*

where
A4 = f(wa,-1)
_ Sf@2) = f(war-2)
2((1)2, - w2r71)
and

_ fw2,) + f(wr,—2) = 2f (w2r-1)

D
Z(wZV - a)Zr—l)z

For details, see Filon (1928).
To normalize the integral, we use the modified approximation,

N W2y 7
_ cos(wh) f(w)dw
pm(h) = Lo o @) h=0,1,2,... (19)

ZL[ F)o

W2r-2

where if there are intervals (¢, d) within the subinterval (w,,_,, @,,) such that <0, we
replace
W2y - W2y
J cos(wh)f(w)dw and J f(w)dw
@22 @22
respectively, with,

2

JC cos(wh)f(a))dw+J cos(a)h)f(a))dw

d

W22

and
0]

| Fwn+ | o

W22
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