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Summary. We consider the problem of comparing complex hierarchical models in which the 
number of parameters is not clearly defined. Using an information theoretic argument we derive 
a measure PD for the effective number of parameters in a model as the difference between 
the posterior mean of the deviance and the deviance at the posterior means of the parameters 
of interest. In general PD approximately corresponds to the trace of the product of Fisher's 
information and the posterior covariance, which in normal models is the trace of the 'hat' matrix 
projecting observations onto fitted values. Its properties in exponential families are explored. 
The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the 
contributions of individual observations to the fit and complexity can give rise to a diagnostic 
plot of deviance residuals against leverages. Adding PD to the posterior mean deviance gives 
a deviance information criterion for comparing models, which is related to other information 
criteria and has an approximate decision theoretic justification. The procedure is illustrated in 
some examples, and comparisons are drawn with alternative Bayesian and classical proposals. 
Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain 
Monte Carlo analysis. 

Keywords: Bayesian model comparison; Decision theory; Deviance information criterion; 
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1. Introduction 

The development of Markov chain Monte Carlo (MCMC) methods has made it possible to 
fit increasingly large classes of models with the aim of exploring real world complexities of 
data (Gilks et al., 1996). This ability naturally leads us to wish to compare alternative model 
formulations with the aim of identifying a class of succinct models which appear to describe the 
information in the data adequately: for example, we might ask whether we need to incorporate 

Address for correspondence: David J. Spiegelhalter, Medical Research Council Biostatistics Unit, Institute of 
Public Health, Robinson Way, Cambridge, CB2 2SR, UK. 
E-mail: david.spiegelhalter@mrc-bsu.cam.ac.uk 

1369-7412/02/64583 ? 2002 Royal Statistical Society 

This content downloaded from 129.100.58.76 on Sun, 11 Jan 2015 19:18:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


584 D. J. Spiegelhalter, N. G. Best, B. P Carlin and A. van der Linde 

a random effect to allow for overdispersion, what distributional forms to assume for responses 
and random effects, and so on. 

Within the classical modelling framework, model comparison generally takes place by defin- 
ing a measure offit, typically a deviance statistic, and complexity, the number of free parameters 
in the model. Since increasing complexity is accompanied by a better fit, models are compared 
by trading off these two quantities and, following early work of Akaike (1973), proposals are 
often formally based on minimizing a measure of expected loss on a future replicate data set: 
see, for example, Efron (1986), Ripley (1996) and Burnham and Anderson (1998). A model 
comparison using the Bayesian information criterion also requires the specification of the num- 
ber of parameters in each model (Kass and Raftery, 1995), but in complex hierarchical models 
parameters may outnumber observations and these methods clearly cannot be directly applied 
(Gelfand and Dey, 1994). The most ambitious attempts to tackle this problem appear in the 
smoothing and neural network literature (Wahba, 1990; Moody, 1992; MacKay, 1995; Ripley, 
1996). This paper suggests Bayesian measures of complexity and fit that can be combined to 
compare models of arbitrary structure. 

In the next section we use an information theoretic argument to motivate a complexity mea- 
sure PD for the effective number of parameters in a model, as the difference between the posterior 
mean of the deviance and the deviance at the posterior estimates of the parameters of inter- 
est. This quantity can be trivially obtained from an MCMC analysis and algebraic forms and 
approximations are unnecessary for its use. We nevertheless investigate some of its formal prop- 
erties in the following three sections: Section 3 shows that PD is approximately the trace of the 
product of Fisher's information and the posterior covariance matrix, whereas in Section 4 we 
show that for normal models PD corresponds to the trace of the 'hat' matrix projecting observa- 
tions onto fitted values and we illustrate its form for various hierarchical models. Its properties 
in exponential families are explored in Section 5. 

The posterior mean deviance D can be taken as a Bayesian measure of fit or 'adequacy', 
and Section 6 shows how in exponential family models an observation's contributions to D and 
PD can be used as residual and leverage diagnostics respectively. In Section 7 we tentatively 
suggest that the adequacy D and complexity PD may be added to form a deviance iinformation 
criterion DIC which may be used for comparing models. We describe how this parallels the 
development of non-Bayesian information criteria and provide a somewhat heuristic decision 
theoretic justification. In Section 8 we illustrate the use of this technique on some reason- 
ably complex examples. Finally, Section 9 draws some conclusions concerning these proposed 
techniques. 

2. The complexity of a Bayesian model 

2. 1. 'Focused' full probability models 
Parametric statistical modelling of data y involves the specification of a probability model 
p(yIO), 0 E Q. For a Bayesian 'full' probability model, we also specify a prior distribution 
p(0) which may give rise to a marginal distribution 

P(Y) = J P(YIO) p(O) d0. (1) 

Particular choices of p(yIO) and p(O) will be termed a model 'focused' on 9. Note that we 
might further parameterize our prior with unknown 'hyperparameters' 4 to create a hierarchical 
model, so that the full probability model factorizes as 
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Model Complexity and Fit 585 

p(y, 0, O) = p(y, 0) p(Ol1p) p($). 

Then, depending on the parameters in focus, the model may compose the likelihood p(y I) and 
prior 

p(O) = / P(0l) p(b) di, 

or the likelihood 

p(ylb) = p(ylO) p(Olb) dO 

and prior p(gb). Both these models lead to the same marginal distribution (1) but can be consid- 
ered as having different numbers of parameters. A consequence is that in hierarchical modelling 
we cannot uniquely define a 'likelihood' or 'model complexity' without specifying the level of 
the hierarchy that is the focus of the modelling exercise (Gelfand and Trevisani, 2002). In fact, 
by focusing our models on a particular set of parameters 9, we essentially reduce all models to 
non-hierarchical structures. 

For example, consider an unbalanced random-effects one-way analysis of variance (ANOVA) 
focused on the group means: 

Yi Oi - N(0i,7ri-1), 0 - N, ), i = 1, ... p. (2) 

This model could also be focused on the overall mean b to give 

yilb - N(b, i-1 + A-1), 

in which case it could reasonably be considered as having a different complexity. 
It is natural to wish to measure the complexity of a focused model, both in its own right, 

say to assess the degrees of freedom of estimators, and as a contribution to model choice: for 

example, criteria such as BIC (Schwarz, 1978), AIC (Akaike, 1973), TIC (Takeuchi, 1976) and 
NIC (Murata et al., 1994) all trade off model fit against a measure of the effective number of 

parameters in the model. However, the foregoing discussion suggests that such measures of com- 

plexity may not be unique and will depend on the number of parameters in focus. Furthermore, 
the inclusion of a prior distribution induces a dependence between parameters that is likely 
to reduce the effective dimensionality, although the degree of reduction may depend on the 
data that are available. Heuristically, complexity reflects the 'difficulty in estimation' and hence 
it seems reasonable that a measure of complexity may depend on both the prior information 

concerning the parameters in focus and the specific data that are observed. 

2.2. Is there a true model? 
We follow Box (1976) in believing that 'all models are wrong, but some are useful'. However, 
it can be useful to posit a 'true' distribution pt(Y) of unobserved future data Y since, for any 
focused model, this defines a 'pseudotrue' parameter value Ot (Sawa, 1978) which specifies a 
likelihood p(YIQt) that minimizes the Kullback-Leibler distance Et[log{pt(Y)}/p(YIOt)] from 

pt(Y). Having observed data y, under reasonably broad conditions (Berk, 1966; Bunke and 
Milhaud, 1998) p(OIy) converges to Ot as information on the components of 0 increases. Thus 

Bayesian analysis implicitly relies on p(Y1Ot) being a reasonable approximation to pt(Y), and 
we shall indicate where we make use of this 'good model' assumption. 
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2.3. True and estimated residual information 
The residual information in data y conditional on 0 may be defined (up to a multiplicative 
constant) as -2log{p(yl0)} (Kullback and Leibler, 1951; Burnham and Anderson, 1998) and 
can be interpreted as a measure of'surprise' (Good, 1956), logarithmic penalty (Bernardo, 1979) 
or uncertainty. Suppose that we have an estimator 0(y) of the pseudotrue parameter 0t. Then 
the excess of the true over the estimated residual information will be denoted 

do{y, t, 0(y)} = -2 log{p(yOt)} + 2 log[p{yl0(y)}]. (3) 

This can be thought of as the reduction in surprise or uncertainty due to estimation, or alter- 
natively the degree of 'overfitting' due to 0(y) adapting to the data y. We now argue that de 
may form the basis for both classical and Bayesian measures of model dimensionality, with each 
approach differing in how it deals with the unknown true parameters in de. 

2.4. Classical measures of model dimensionality 
In a non-Bayesian likelihood-based context, we may take 0(y) to be the maximum likelihood 
estimator 0(y), expand 2 log{p(ylOt)} around 2log[p{ylO(y)}], take expectations with respect 
to the unknown true sampling distribution pt (Y) and hence show (Ripley, 1996) (page 34) that 

Et[do{Y, Ot, 0(Y)}] - p* = tr(KJ-1), (4) 

where 

-E a2log{p(YrOt)}- J = -Et 
J= - a-2 -(5) - 
alog{p(YjOt)}- K = vart 

This is the measure of complexity that is used in TIC (Takeuchi, 1976). Burnham and Anderson 
(1998) (page 244) pointed out that 

p* = tr(JE), (6) 

where E = J-1 KJ-1 is the familiar 'sandwich' approximation to the variance-covariance matrix 
of the 0(y) (Huber, 1967). If pt(y) = p(yl0t), i.e. one of the models is true, then K = J and 
p* = p, the number of independent parameters in e. 

For example, in a fixed effect ANOVA model 

Yi i N(Oi, 1 i= l,...,p, 

with r1 s known, 

do {y, 0t, 0(y)} = Ti(Yi - 0t)2 
i 

whose expectation under pt (Y) is p* = Si Ti Et (Yi - t)2. If the model is true, Et (Yi - t)2 = -1 

and so p* = p. 
Ripley (1996) (page 140) showed how this procedure may be extended to 'regularized' models 

in which a specified prior term p(O) is introduced to form a penalized log-likelihood. Replacing 
log(p) by log{p(yIO)} + log{p(0)} in equations (5) yields a more general definition of p* that 
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was derived by Moody (1992) and termed the 'effective number of parameters'. This is the 
measure of dimensionality that is used in NIC (Murata et al., 1994): the estimation of p* is 
generally not straightforward (Ripley, 1996). 

In the random-effects ANOVA example with Oi ~ N(,, A-1), b and A known, let pi = 
Tri/(i + A) be the intraclass correlation coefficient in the ith group. We then obtain 

* = PiTi Et(Yi - 0t)2, (7) 

which becomes 

P* = i (8) i 

if the likelihood is true. 

2.5. A Bayesian measure of model complexity 
From a Bayesian perspective, the unknown Ot may be replaced by a random variable 0. Then 
de{y, 0, 0(y)} can be estimated by its posterior expectation with respect to p(Oly), denoted 

PD{Y, E, 0(Y)} = EOly[de{y, 0, 0(y)}] 

= Eel,[-2 log{p(yl0)}] + 2 log[p{ylO(y)}]. (9) 

PD {y, , O(y)} is our proposal as the effective number of parameters with respect to a model with 
focus 0: we shall usually drop the arguments {y, 0, 0(y)} from the notation. In our examples 
we shall generally take 6(y) = E(0Oy) = 0, the posterior mean of the parameters. However, we 
note that it is not strictly necessary to use the posterior mean as an estimator of either de or 0, 
and the mode or median could be justified (Section 2.6). 

Taking f(y) to be some fully specified standardizing term that is a function of the data alone, 
PD may be written as 

PD = D()- D(O) (10) 

where 

D(0) = -2 log{p(yl0)} + 2 log{f(y)}. 

We shall term D(0) the 'Bayesian deviance' in general and, more specifically, for members of 
the exponential family with E(Y) = t(0O) we shall use the saturated deviance D(0) obtained by 
setting f(y) = p{yl\p(0) = y}: see Section 8.1. 

Equation (10) shows that po can be considered as a 'mean deviance minus the deviance of the 
means'. A referee has pointed out the related argument used by Meng and Rubin (1992), who 
showed that such a difference, between the average of log-likelihood ratios and the likelihood 
ratio evaluated at the average (over multiple imputations) of the parameters, is the key quantity 
in estimating the degrees of freedom of a test. 

For example, in the random-effects ANOVA (2) with b and A known, 

D(0) = Ei(yi- i) 
i 
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which is -2 log(likelihood) standardized by the term -2 log{f(y)} = Si log(27r/Ti) obtained 
from setting Oi = yi. Now Oi Iy N{piyi + (1 - pi)+, ii-1 } and hence it can be shown that the 
posterior distribution of D(O) has the form 

D(O) E Pi X2(1, (Yi - )2(1 - pi)A}, 

where X2(a, b) is a non-central X2-distribution with mean a + b. Thus, since pi\ = (1 - pi)ri, 
we have 

D(O) = E Pi + Ei(1 - i)2 - 2 

D(0) = ril - pi -)2 

and so 

PD = Ei = (11) 
i ( 'i + A' 

The effective number of parameters is therefore the sum of the intraclass correlation coefficients, 
which essentially measures the sum of the ratios of the precision in the likelihood to the precision 
in the posterior. This exactly matches Moody's approach (8) when the model is true. 

If b is unknown and given a uniform hyperprior we obtain a posterior distribution 0 ~- 

N{y, (A E pi)- }, where y = E piyi/E pi. It is straightforward to show that 

D(O) = Epi + AEpi(l - pi)(yi - y)2 + Epi(l -i)/E Pi, 

D(O) = A E pi(l - pi)(yi - y)2, 

and so PD = Zpi + pi(l - pi)/E pi. If the groups are independent, A = 0, pi = 1 and PD = P. 
If the groups all have the same mean, A -* oo, pi -? 0 and PD -- 1. If all group precisions are 

equal, PD = 1 + (p - l)p, as obtained by Hodges and Sargent (2001). 

2.6. Some observations on PD 

(a) Equation (10) may be rewritten as 

D(O) = D(O) + PD, (12) 

which can be interpreted as a classical 'plug-in' measure of fit plus a measure of complexity. 
Thus our Bayesian measure of fit, D(O), could perhaps be better considered as a measure 
of'adequacy', and we shall use these terms interchangeably. However, in Section 7.3 we 
shall suggest that an additional penalty for complexity may be reasonable when making 
model comparisons. 

(b) Simple use of the Bayes theorem reveals the expression 

PD = EolY 2log - 
) 

2 log p(Y) } 
which can be interpreted as (minus twice) the posterior estimate of the gain in information 
provided by the data about 0, minus the plug-in estimate of the gain in information. 
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(c) It is reasonable that the effective number of parameters in a model might depend on 
the data, the choice of focus E and the prior information (Section 2.1). Less attractive, 
perhaps, is that PD may also depend on the choice of estimator 0(y), since this can 
produce a lack of invariance of po to apparently innocuous transformations, such as 
making inferences on logits instead of probabilities in Bernoulli trials. Our usual choice 
of the posterior mean is largely based on the subsequent ability to investigate approximate 
forms for po (Section 3), and the positivity properties described below. A choice of, say, 
posterior medians would produce a measure of model complexity that was invariant to 
univariate 1-1 transformations, and we explore this possibility in Section 5. 

(d) It follows from equation (10) and Jensen's inequality that, when using the posterior mean 
as an estimator O(y), po > 0 for any likelihood that is log-concave in 0, with 0 being 
approached for a degenerate prior on 0. Non-log-concave likelihoods can, however, give 
rise to a negative po in certain circumstances. For example, consider a single observation 
from a Cauchy distribution with deviance D(0) = 2 log{1 + (y - 0)2}, with a discrete 
prior assigning probability 1/11 to 0 = 0 and 10/11 to 0 = 3. If we observe y = 0, 
then the posterior probabilities are changed to 0.5 and 0.5, and so 0 = 1.5. Thus PD = 
D(0) - D(0) = log(10) - 2 log(13/4) = log(160/169) < 0. Our experience has been that 
negative poD indicate substantial conflict between the prior and data, or where the pos- 
terior mean is a poor estimator (such as a symmetric bimodal distribution). 

(e) The posterior distribution that is used in obtaining PD conditions on the truth of the 
model, and hence PD may only be considered an appropriate measure of the complexity 
of a model that reasonably describes the data. This is reflected in the finding that PD in 
the simple ANOVA example (11) will not necessarily be approximately equivalent to the 
classical p* (7) if the assumptions of the model are substantially inaccurate. This good 
model assumption (Section 2.2) is further considered when we come to comparisons of 
models (Section 7.3). 

(f) Provided that D(0) is available in closed form, PD may be easily calculated after an MCMC 
run by taking the sample mean of the simulated values of D(0), minus the plug-in estimate 
of the deviance using the sample means of the simulated values of 0. No 'small sample' 
adjustment is necessary. This ease of computation should be contrasted with the frequent 
difficulty within the classical framework with deriving the functional form of the measure 
of dimensionality and its subsequent estimation. 

(g) Since the complexity depends on the focus, a decision must be made whether nuisance 
parameters, e.g. variances, are to be included in O or integrated out before specifying the 
model p(y 0). However, such a removal of nuisance parameters may create computational 
difficulties. 

PD has been defined and is trivially computable by using MCMC methods, and so strictly 
speaking there is no need to explore exact forms or approximations. However, to provide insight 
into the behaviour of PD, the following three sections consider the form of PD in different 
situations and draw parallels with alternative suggestions: note that we are primarily concerned 
with the 'preasymptotic' situation in which prior opinion is still influential and the likelihood 
has not overwhelmed the prior. 

3. Forms for PD based on normal approximations 

In Section 2.1 we argued that focused models are essentially non-hierarchical with a likelihood 
p(yI0) and prior p(0). Before considering particular assumptions for these we examine the form 
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of PD under two general conditions: approximately normal likelihoods and negligible prior 
information. 

3.1. PD assuming a normal approximation to the likelihood 
We may expand D(0) around Eoly(0) = 0 to give, to second order, 

~TD- 1 

T (-0) 
D(0)> D(e)+(80_)TD + (0- ) a22 (0- ), (13) 

= D( - 2(0 - 
)TL 0) L( o- 0) (14) 

where L = log{p(yl0)} and L' and L" represent first and second derivatives with respect to 0. 
This corresponds to a normal approximation to the likelihood. 

Taking expectations of equation (14) with respect to the posterior distribution of 0 gives 

Eely{D(0)} I D(0) - E[tr{(0 - 
0)TL(0 

- 0)}] 

= D(0) - E[tr{Lo(0 - 0)(0 - )T}] 

= D(0) - tr[L' E{(O - 0)(0 - )T}] 

= D(0) + tr(-L'V) 

where V = E{(0 - 0)(0 - O)T} is the posterior covariance matrix of 0, and -L' is the observed 
Fisher information evaluated at the posterior mean of 0. Thus 

PD tr(-LoV), (15) 

which can be thought of as a measure of the ratio of the information in the likelihood about 
the parameters as a fraction of the total information in the likelihood and the prior. We note 
the parallel with the classical p* in equation (6). 

We also note that 

L' : Qe Pe 

where Q" = a2 log{p(0ly)}/a02 and P" = &2 log{fp()}/a022, and hence approximation (15) can 
be written 

PD " tr(-QoV) - tr(-P'V). 

Under approximate posterior normality V-1 - _Q' and hence 

PD - P- tr(-P V) (16) 

where p is the cardinality of O. 
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3.2. PD for approximately normal likelihoods and negligible prior information 
Consider a focused model in which p(O) is assumed to be dominated by the likelihood, either 
because of assuming a 'flat' prior or by increasing the sample size. Assume that the approximation 

ely - N(O, -L'o) (17) 

holds, where 0 = 0 are the maximum likelihood estimates such that LS = 0 (Bernardo and 
Smith (1994), section 5.3). From equation (14) 

D(0) ~ D(O) - (0 - )TL(e _ 0) 

D(0) + XP, (18) 

since, by approximation (17), -(0 - 0)TLA(0 - 0) has an approximate x2-distribution with p 
degrees of freedom. 

Rearranging approximation (18) and taking expectations with respect to the posterior 
distribution of 0 reveals that 

PD = Eoly{D()} - D(O) ; p, 

i.e. PD will be approximately the true number of parameters: this approximation could also be 
derived by letting P' -> 0 in approximation (16). This approximate identity is illustrated in 
Section 8.1. 

We note in passing that we might use MCMC output to estimate the classical deviance D(0) 
of any likelihood-based model by 

D(O) = Eoly{D(O)} - p. (19) 

Although the maximum likelihood deviance is theoretically the minimum of D over all feasible 
values of 0, D(0) will generally be very badly estimated by the sample minimum over an MCMC 
run, and so the estimator given by equation (19) may be preferable. 

4. PD for normal likelihoods 

In this section we illustrate the formal behaviour of PD for normal likelihoods by using exact and 
approximate identities. However, it is important to keep in mind that in practice such forms are 
unnecessary for computation and that PD should automatically allow for fixed effects, random 
effects and unknown precisions. 

4.1. The normal linear model 
We consider the general hierarchical normal model described by Lindley and Smith (1972). 
Suppose that 

y N(A 1 , C1), (20) 
0 - N(A20, C2) 

where all matrices and vectors are of appropriate dimension, and C1 and C2 are assumed known 
and 0 is the focus: unknown precisions are considered in Section 4.5. Then the standardized 
deviance is D(0) = (y - A 0)TC11 (y - A 0), and the posterior distribution for 0 is normal with 
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mean 0 = Vb and covariance V: V and b will be left unspecified for the moment. Expressing 
y - Al0 as y - Al0 + AI0 - A 0 reveals that 

D(0) = D(0) - 2(y - AO)TC Al(0 - 0) + (0- O)TATC-IA1(O - 0). 

Taking expectations with respect to the posterior distribution of 0 eliminates the middle term 
and gives 

D = D(O) + tr(ATC1 A1 V), 

and thus PD = tr(A C-1 A1 V). We note that ATC-1 IA is the Fisher information -L", V is the 

posterior covariance matrix and hence 

PD = tr(-L"V): (21) 

an exact version of approximation (15). It is also clear that in this context PD is invariant to 
affine transformations of 0. 

If b is assumed known, then Lindley and Smith (1972) showed that V-1 = ATCi 1A1 + C2 
and hence from equation (21) 

PD =P - tr(C2 V (22) 

as an exact version of approximation (16); then 0 < PD < p, and p - PD is the measure of the 

'shrinkage' of the posterior estimates towards the prior means. If (C2 
1 V)- = A TC-1 A1 C2 + Ip 

has eigenvalues Ai + 1, i = 1, .., p, then 

P Ai 
PD A + (23) 

i=1/ i + 1' 

and hence the upper bound for po is approached as the eigenvalues of C2 become large, i.e. 
the prior becomes flat. It can further be shown, in the case AI = In, that PD is the sum of the 

squared canonical correlations between data Y and the 'signal' 0. 

4.2. The 'hat' matrix and leverages 
A revealing identity is found by noting that b = AT C- y and the fitted values for the data are 
given by y = Al0 = A1Vb = A1 VATC1 iy. Thus the hat matrix that projects the data onto the 
fitted values is H = A1 VATC11, and 

PD = tr(A C 1 A1 V) = tr(A1 VA C1 ) = tr(H). (24) 

This identity also holds assuming that < is unknown with a uniform prior, in which case Lindley 
and Smith (1972) showed that V-1 = AT C 1A + C21 - C2 A2(ATC2 1A2)- ATC2 . 

The identification of the effective number of parameters with the trace of the hat matrix 
is a standard result in linear modelling and has been applied to smoothing (Wahba, 1990) 
(page 63) and generalized additive models (Hastie and Tibshirani (1990), section 3.5), and is 
also the conclusion of Hodges and Sargent (2001) in the context of general linear models. The 
advantage of using the deviance formulation for specifying PD is that all matrix manipulation 
and asymptotic approximation is avoided: see Section 4.4 for further discussion. Note that tr(H) 
is the sum of terms which in regression diagnostics are identified as the individual leverages, the 
influence of each observation on its fitted value: we shall return to this identity in Section 6.3. 
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Ye (1998) considered the independent normal model 

Yi - N(Oi, 7--1) 

and suggested that the effective number of parameters should be Ei hi, where 

hi(O) = E( (25) 

the average sensitivity of an unspecified estimate Oi to a small change in yi. This is a generalization 
of the trace of the hat matrix discussed above. In the context of the normal linear models, it is 
straightforward to show that Eylo(O) = HO, and hence PD = tr(H) matches Ye's suggestion for 
model complexity. Further connections with Ye (1998) are described in Section 7.2. 

4.3. Example: Laird-Ware mixed models 
Laird and Ware (1982) specified the mixed normal model as 

y - N(Xa + Z3, C1), 
3 - N(O, D), 

where the covariance matrices Cl and D are currently assumed known. The random effects are 
/, and the fixed effects are a, and placing a uniform prior on a we can write this model within 
the general Lindley-Smith formulation (20) by setting 0 = (a, 3), AI = (X, Z), / = 0 and C2 
as a block diagonal matrix with oo in the top left-hand block, D in the bottom right and 0 
elsewhere. 

We have already shown that in these circumstances PD = tr{ ATC~1 A1 (ATC1- A1 + C21)-1} 
and substituting in the appropriate entries for the Laird-Ware model gives PD = tr(V* V-1), 
where 

V* I x c I 

(XTC-1 X XTC-1 Z 

XZTCllX ZTCl lZ+D 
1 1 Vh is te p X zof te + D 1- 

which is the precision of the parameter estimates assuming that D-~ = 0, relative to the precision 
assuming informative D. 

4.4. Frequentist approaches to model complexity: smoothing and normal non-linear 
models 
A common model in semiparametric regression is 

y N(Xa + , T-1C1), 

3 - N(0, A- ID), 

where p is a vector of length n of function values of the nonparametric part of an interpolation 
spline (Wahba, 1990; van der Linde, 1995) and Cl and D are assumed known. Motivated 
by the need to estimate the unknown scale factors r-1 and A-l, for many years the effective 
number of parameters has been taken to be the trace of the hat matrix (Wahba (1990), page 
63) and so, for example, r-1 is the residual sum of squares divided by the 'effective degrees 

This content downloaded from 129.100.58.76 on Sun, 11 Jan 2015 19:18:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


594 D. J. Spiegelhalter, N. G. Best, B. P Carlin and A. van der Linde 

of freedom' n - tr(H). In this class of models this measure of complexity coincides with PD. 
Interest in regression diagnostics (Eubank, 1985; Eubank and Gunst, 1986) and cross-validation 
to determine the smoothing parameter T/A (Wahba (1990), section 4.2) also drew attention to 
the diagonal entries of the hat matrix as leverage values. 

Links to partially Bayesian interpolation models have been provided by Kimeldorfand Wahba 
(1970) and Wahba (1978, 1983) and further work built on these ideas. For example, another 
large class of models can be formulated by using the following extension to the Lindley-Smith 
model: 

y - N{g(O), T- 1 C }, 
0- N(A2b, A- D) 

where g is a non-linear expression as found, for example, in pharmacokinetics or neural net- 
works: in many situations A20 will be 0 and C1 and D will be identity matrices. Define 

q(0) = (y- g(o))TC-1 (y- g(0)), 

r(0) = (0 - A20)TD-1 ( - A20) 

as the likelihood and prior residual variation. MacKay (1992) suggested estimating r and A by 
maximizing the 'type II' likelihood p(yIA, r) derived from integrating out the unknown 0 from 
the likelihood. Setting derivatives equal to 0 eventually reveals that 

-1 = q() 
n - PD 

=- r(9) 

PD 

which are the fitted likelihood and prior residual variation, divided by the appropriate effective 
degrees of freedom: PD = tr(H) is the key quantity. 

These results were derived by MacKay (1992) in the context of 'regularization' in complex 
interpolation models such as neural networks, in which the parameters 0 are standardized and 
assumed to have independent normal priors with mean 0 and precision A. Then expression (16) 
may be written 

PD P - Atr(V). (26) 

However, MacKay's use of approximation (26) requires the evaluation of tr(V), whereas our 
PD arises without any additional computation. We would also recommend including A and T in 
the general MCMC estimation procedure, rather than relying on type II maximum likelihood 
estimates (Ripley (1996), page 167). In this and the smoothing context a fully Bayesian analysis 
requires prior distributions for r-1 and A-1 to be specified (van der Linde, 2000), and this will 
both change the complexity of the model and require a choice of estimator of the precisions. 
We shall now illustrate the form of PD in the restricted situation of unknown r-1. 

4.5. Normal models with unknown sampling precision 
Introducing unknown variances as part of the focus confronts us with the need to choose a 
form for the plug-in posterior estimates. We may illustrate this issue by extending the general 
hierarchical normal model (20) to the conjugate normal-gamma model with an unknown scale 
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parameter T in both the likelihood and the prior (Bernardo and Smith (1994), section 5.2.1). 
Suppose that 

y - N(A1i, r-1'C), 

0 - N(A20, r-1C2), 

and we focus on (0, r). The standardized deviance is D(O, r) = r q(0) - n log(r), where 

q(0) = (y- A10)TCll(y - A10) 

is the residual variation. Then, for a currently unspecified estimator ?, 

PD = Ee,rly(D0, T) - D(O, T) 

= Erly[EOer,y{rq(0)} - n log(r)] - {r q(O) - n log(r)} 
= tr(H) + q(0)(r - r) - n{log(r) - log(T)} (28) 

where H = AT C1A1 (A TC-1 A + C21)-1 is the hat matrix which does not depend on r. Thus 
the additional uncertain scale parameter adds the second two terms to the complexity of the 
model. 

A conjugate prior T ~ gamma(a, b) leads to a posterior distribution Tly ~ gamma(a + n/2, 
b + S/2), where 

S = (y - A1A2b)T(Cl + ATC2A1)-(y - A1A2b). 

It remains to choose the estimator r to place in equation (28), and we shall consider two options. 
Suppose that we parameterize in terms of r and use 

a+n/2 
b + S/2' 

making the second term in equation (28) 0. Now if X - gamma(a, b), then E{log(X)} 
= +(a) - log(b) where 4' is the digamma function, and so log(T) = 0(a + n/2) - log(b + S/2). 
Hence the term contributing to PD due to the unknown precision is 

pD -tr(H)= -n ( a + -log a+ )} 

2a- 1 2a - 3 
2a + n 

using the approximation +(x) t log(x) - 1/2x - 1/12x2. This term will tend to 1 + 1/3n as prior 
information becomes negligible and hence will be close to the 'correct' value of 1 for moderate 

sample sizes. 
If we were to parameterize in terms of log(r) and to use r = exp{log(r)}, the third term in 

equation (28) is 0 and the second term can be shown to be 1 - O(n-1). Thus for reasonable 

sample sizes the choice of parameterization of the unknown precision will make little difference 
to the measure of complexity. However, in Section 7 we shall argue that the log-scale may be 
more appropriate owing to the better approximation to likelihood normality. 
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5. Exponential family likelihoods 

We assume that we have p groups of observations, where each of the ni observations in group i 
has the same distribution. Following McCullagh and Nelder (1989), we define a one-parameter 
exponential family for the jth observation in the ith group as 

log{p(yijlOi, O))} = wi{Yyii - b(9i)}/() + c(Yij, c), (29) 

where 

=i = E(YijlOi, )) = b(i), 

V(YijlOi, )) = bt(i))/wi, 

and wi is a constant. If the canonical parameterization E is the focus of the model, then writing 
bi = Eoily{b(0i)} we easily obtain that the contribution of the ith group to the effective number 
of parameters is 

Pi = 2niwi{bi - b(0i)}/). (30) 

These likelihoods highlight the issue of the lack of invariance of PD to reparameterization, since 
the mean parameterization p will give a different complexity pi. This is first explored within 

simple binomial and Poisson models with conjugate priors, and then exact and approximate 
forms of PD are examined for generalized linear and generalized linear mixed models. 

5.1. Binomial likelihood with conjugate prior 
In the notation of equation (29), 4 = 1, wi = 1 and 0 = logit(,) = log{,u/(l - pu)}, and the 

(unstandardized) deviance is 

D(pi) = -2yi log(p) - 2(ni - yi) log(l - pi) 

where yi = Ejyij. A conjugate prior ji = {1 + exp(-0i)}-1 ~ beta(a, b) provides a posterior 
pi - beta(a + yi, b + ni - yi) with mean (a + yi)/(a + b + ni). Now, if X ~ beta(a, b), then 

E{log(X)} = 4(a) - b(a + b) and E{log(l - X)} = 0(b) - 0(a + b) where b is the digamma 
function, and hence it can be shown that 

D(pi) = D(0i) = -2yi /(a + Yi) - 2(ni - yi) b(b + ni - yi) + 2ni b(a + b + ni) 

D(,Li) = -2yi log(a + Yi) - 2(ni - yi) log(b + ni - yi) + 2ni log(a + b + ni) 

D(Zi) = -2yi 0(a + Yi) + 2yi 0(b + ni - yi) 
+ 2ni log[1 + exp{6(a + yi) - (b + ni- yi)}], 

D(/fmed) = D(0med) = -2yi log(_med) - 2(ni - Yi) log(l - med) 

where /med denotes the posterior median of pi. 
Exact PDi S are obtainable by subtraction, and Fig. 1 shows how the value of PD, depends on 

the parameterization, the data and the prior. We may also gain further insight into the behaviour 
of PDi by considering approximate formulae for the mean and canonical parameterizations by 
using O(x) m log(x) - 1/2x - log(x - ?). This leads to 

AI yi i+ - Yi ni 
+ ,7 D a + yi b+ni- yi a + b + ni 

pO a ni' (31) 
ma t + ni 2ob 

We make the following observations. 
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5.1.1. Behaviour of PD 
For all three parameterizations, as the sample size in each group increases relative to the effective 
prior sample size, its contribution to PD, tends towards 1. 

5.1.2. Agreement between parameterizations 
The agreement between parameterizations is generally reasonable except in the situations in 
which the prior sample size is 10 times that of the data. While the canonical parameterization 
has PDi 1/11, the mean and median give increased pDi for extreme prior means. 

5.1.3. Dependence on data 
With the exception of the sparse data and weak prior scenario for which the approximate formu- 
lae do not hold, the canonical p9Oi does not depend on the data observed and is approximately 
the ratio of the sample size to the effective posterior sample size. When the mean and median 
forms depend on data (say when ni = 1 and a + b = 10), poi is higher in situations of prior-data 
conflict. 

5.2. Poisson likelihood with conjugate prior 
In the notation of equation (29), X = 1, wi = 1 and 0 = log(,u), and the (unstandardized) 
deviance is D(Qi) = -2yi log(,ui) + 2nifti. A conjugate prior [Li = exp(0i) - gamma(a, b) gives 
a posterior Li - gamma(a + yi, b + ni) with mean (a + yi)/(b + ni). If X - gamma(a, b), then 
E{log(X)} = 4(a) - log(b) and hence we can show that 

a + yi 
D(ui) = D(Oi) = -2yi{o(a + yi) - log(b + ni)} + 2nib + 

b + ni 
a + yi 

D(Q7i) = -2yi{log(a + yi) - log(b + ni)} + 2ni + 

b+ni 
D(Oi) =-2yi{fb(a + Yi) - log(b + ni)} + 2ni P{b + } 

D(lmed) = D(0med) = -2yi log(tmed) + 2niti,. 

Exact PD s are obtainable by subtraction. Fig. 2 shows how the value of PD, relates to the param- 
eterization, the data and the prior. Using the same approximation as previously, approximate 
PD S for the mean and canonical parameterizations are 

PAi b yi/(a + yi), 

Di ni/(b + ni). 

5.2.1. Behaviour of PDi 
For all three parameterizations, as the sample size in each group increases relative to the effective 
prior sample size, its contribution to PDo tends towards 1. 

5.2.2. Agreement between parameterizations 
The agreement between parameterizations is best when there is no conflict between the prior 
expectation and the data, but it can be substantial when such conflict is extreme. The median 
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estimator leads to a po, that is intermediate between those derived from the canonical and mean 

parameterizations. 

5.2.3. Dependence on data 
Except in the situation of a single yi = 0 with weak prior information, the approximation for 
the canonical pE is very accurate and so pI. does not depend on the data observed. There can 
be a substantial dependence for the mean parameterization, with p, being higher when the 

prior mean underestimates the data. 

5.2.4. Conclusion 
In conclusion, for both binomial and Poisson data there is reasonable agreement between the 
different poDi provided that the model provides a reasonable fit to the data, i.e. there is not 

strong conflict between the prior and data. The canonical parameterization appears preferable, 
both for its lack of dependence on the data and for its generally close approximation to the 
invariant PD, based on a median estimator. Thus we would not normally expect the choice of 

parameterization to have a strong effect, although in Section 8.3 we present an example of a 
Bernoulli model where this choice does prove to be important. 

5.3. Generalized linear models with canonical link functions 
Here we shall focus on the canonical parameterization in terms of Oi, both for the reasons 
outlined above and because its likelihood should better fulfil a normal approximation (Slate, 
1994): related identities are available for the mean parameterization in terms of pi = ,u(i). We 

emphasize again that the approximate identities that are derived in this and the following section 
are only for understanding the behaviour of PD in idealized circumstances (i.e. known precision 
parameters) and are not required for computation in practical situations. 

Following McCullagh and Nelder (1989) we assume that the mean pi of yij is related to a set 
of covariates xi through a link function g(Qi) = xTa, and that g is the canonical link 0(p). The 
second-order Taylor series expansion of D(Oi) around D(Oi) yields an approximate normal distri- 
bution for working observations and hence derivations of Section 3 apply. We eventually obtain 

PD " tr{XTWX V(aly)} 

where W is diagonal with entries 

Wib 
Wi= -nib (i), 

the generalized linear model iterated weights (McCullagh and Nelder (1989), page 40): 0 is 
assumed known. 

Under an N(ao, C2) prior on a, the prior contribution to the negative Hessian matrix at the 
mode is just C21, so under the canonical link the approximate normal posterior has variance 

V(aly)= (C2- + XTWX)- 

again producing PD as a measure of the ratio of the 'working' likelihood to posterior information. 

5.4. Generalized linear mixed models 
We now consider the class of generalized linear mixed models with canonical link, in which 
g(tji) = xTa + ZT,3, where 3 - N(0, D) (Breslow and Clayton, 1993) and D is assumed known. 
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Using the same argument as for generalized linear models (Section 5.3), we find that 

PD " tr[(X, Z)TW(X, Z)V{(a, I3)ly}] tr(V*V-l), 

where 

V* -XTW-IX XTW-iZ\ 
= 

(ZTW-IX ZTW-IZJ 

fxTw-1 x XTW-lz 
- ZTW-X ZTW-1Z + D-l 

This matches the proposal of Lee and Nelder (1996) except their D-1 is a diagonal matrix of 
the second derivatives of the prior likelihood for each random effect. 

6. Diagnostics for fit and influence 

6.1. Posterior expected deviance as a Bayesian measure of fit or 'adequacy' 
The posterior mean of the deviance Eoly{D(0)} = D(0) has often been used to compare models 
informally: see, for example, Dempster (1974) (reprinted as Dempster (1997a)), Raghunathan 
(1988), Zeger and Karim (1991), Gilks et al. (1993) and Richardson and Green (1997). These 
researchers have, however, not been explicit about whether, or how much, such a measure might 
be traded off against increasing complexity of a model: Dempster (1997b) suggested plotting 
log-likelihoods from MCMC runs but hesitated to dictate a model choice procedure. We shall 
discuss this further in Section 7.3. In Section 2.6 we argued that D(0) already incorporates some 

penalty for complexity and hence we use the term 'adequacy' and 'Bayesian fit' interchangeably. 

6.2. Sampling theory diagnostics for lack of Bayesian fit 
Suppose that all aspects of the model were assumed true. Then before observing data Y our 
expectation of the posterior expected deviance is 

Ey(D) = Ey[Eoey{D(0)}] (32) 

= Ea(Eylo[-2 logp(YIl)} + 2 log{f(Y)}]) 

by reversing the conditioning between Y and 0. If f(Y) = p{Y\9(Y)} where 0(Y) is the standard 
maximum likelihood estimate, then 

E (-21, P(YIO) 
^ 2lo p{Y\e(Y)}I- 

is simply the expected likelihood ratio statistic for the fitted values 0(Y) with respect to the true 
null model 0 and hence under standard conditions is approximately E(X2) = p, the dimension- 

ality of 0. From equation (32) we therefore expect, if the model is true, the posterior expected 
deviance (standardized by the maximized log-likelihood) to be Ey (D) E (p) = p, the number 
of free parameters in 0. This might be appropriate for checking the overall goodness of fit of the 
model. 

In particular, consider the one-parameter exponential family where p = n, the total sample 
size. The likelihood is maximized by substituting yi for the mean of yi, and the posterior mean of 
the standardized deviance has approximate sampling expectation n if the model is true. This will 
be exact for normal models with known variance, but in general it will only be reliable if each 
observation provides considerable information about its mean (McCullagh and Nelder (1989), 
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page 36). Note that comparing D with n is precisely the same as comparing the 'classical' fit 
D(0) with n - PD, the effective degrees of freedom. 

It is then natural to consider the contribution Di of each observation i to the overall mean 
deviance, so that 

D = E i = Edr2 
i i 

where dri = ?fDi (with the sign given by the sign of yi - E(yi 10)) termed the Bayesian deviance 
residual, defined analogously to McCullagh and Nelder (1989), page 39. See Section 8.1 for an 

application of this procedure. 

6.3. Leverage diagnostics 
In Section 4.1 we noted that in normal linear models the contribution PDi of each observation 
i to PD turned out to be its leverage, defined as the relative influence that each observation has 
on its own fitted value. For yi conditionally independent given 0, it can be shown that 

PDi = -2(Eoy log{P( Yi)} -log{p(Olyi)} _=-V{ pwL(O) p(O) 

which reflects its interpretation as the difficulty in estimating 0 with yi. 
It may be possible to exploit this interpretation in general model fitting, and as a by-product 

of MCMC estimation to obtain estimates of leverage for each observation. Such diagnostics are 
illustrated in Section 8.1. 

7. A model comparison criterion 

7.1. Model 'selection' 
There has been a long and continuing debate about whether the issue of selecting a model as a 
basis for inferences is amenable to a strict mathematical analysis using, for example, a decision 
theoretic paradigm: see, for example, Key et al. (1999). Our approach here can be considered 
to be semiformal. Although we believe that it is useful to have measures of fit and complexity, 
and to combine them into overall criteria that have some theoretical justification, we also feel 
that an overformal approach to model 'selection' is inappropriate since so many other features 
of a model should be taken into account before using it as a basis for reporting inferences, e.g. 
the robustness of its conclusions and its inherent plausibility. In addition, in many contexts it 
may not be appropriate to 'choose' a single model. Our development closely follows that of 
Section 2. 

A characteristic that is common to both Bayesian and classical approaches is the concept of 
an independent replicate data set Yrep, derived from the same data-generating mechanism as 
gave rise to the observed data. Suppose that the loss in assigning to a set of data Y a probability 
p(Y\0) is L(Y, 0). We assume that we shall favour models p(YI0) for which L(Y, 0) is expected 
to be small, and thus a criterion can be based on an estimate of EyrepIO {l(Yrep, 0). 

A natural, but optimistic, estimate of this quantity is the 'apparent' loss L{y, 0(y)} that 
is suffered on repredicting the observed y that gave rise to 0(y). We follow Efron (1986) in 
defining the 'optimism' that is associated with this estimator as CG, where 

Eyreplt[?{ Yrep, O(y)}] = ?{y, 0(y)} + co{y, t, 0(y)}. (33) 
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Both classical and Bayesian approaches to estimating the optimism ce will now be examined 
when assuming a logarithmic loss function L(Y, 0) = -21og{p(YIO)}: as in Section 2, the 
classical approach attempts to estimate the sampling expectation of ce, whereas the Bayesian 
approach is based on a direct calculation of the posterior expectation of ce. 

7.2. Classical criteria for model comparison 
From the previous discussion, approximate forms for the expected optimism 

1(0t) = Eylot[ce{Y, Ot, 0(Y)}] 

will, from equation (33), yield criteria for a comparison of models that are based on minimizing 

EyreplOt[C{Yrep, 0(y)}] = L{y, 0(y)} + fr(t). (34) 

Efron (1986) derived the expression for Tr(Ot) for exponential families and for general loss 
functions. In particular, for the logarithmic loss function, Efron showed that 

71rE(t) = 2 covt (i, Yi), (35) 

where Yi is the fitted value arising from the estimator 0: if 0 corresponds to maximum likelihood 
estimation based on a linear predictor with p parameters, then 7rE(0t) - 2p. Hence Efron's 
result can be thought of as generalizing Akaike (1973), who sought to minimize the expected 
Kullback-Leibler distance between the true and estimated predictive distribution and showed 
under broad conditions that 7r(0t) 2p. 

This in turn suggests that 7rE/2, derived from equation (35), may be adopted as a measure 
of complexity in more complex modelling situations. Ye and Wong (1998) extended the work 
mentioned in Section 4.2 to show that 7rE/2 for exponential families can be expressed as a sum 
of the average sensitivity of the fitted values Yi to a small change in yi: this quantity is termed by 
Ye and Wong the 'generalized degrees of freedom' when using a general estimation procedure. 
In normal models with linear estimators Yi = Oi(y) = Ej hijyj, and so 7r(0t) = 2 tr(H). Finally, 
Ripley (1996) extended the analysis described in Section 2.4 to show that if the model assumed 
is not true then 7r(0t) m 2p*, where p* is defined in equation (4). See Burnham and Anderson 
(1998) for a full and detailed review of all aspects of estimation of 7r(0t). 

These classical criteria for general model comparison are thus all based on equation (34) 
and can all be considered as corresponding to a plug-in estimate of fit, plus twice the effective 
number of parameters in the model. We shall now adapt this structure to a Bayesian context. 

7.3. Bayesian criteria for model comparison 
Gelfand and Ghosh (1998) and Laud and Ibrahim (1995) both attempted strict decision theoretic 
approaches to model choice based on expected losses on replicate data sets. Our approach is 
more informal, in aiming to identify models that best explain the observed data, but with the 

expectation that they are likely to minimize uncertainty about observations generated in the 
same way. Thus, by analogy with the classical results described above, we propose a deviance 
information criterion DIC, defined as a classical estimate of fit, plus twice the effective number 
of parameters, to give 

DIC = D(0) + 2PD (36) 

= D + PD (37) 

This content downloaded from 129.100.58.76 on Sun, 11 Jan 2015 19:18:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


604 D. J. Spiegelhalter, N. G. Best, B. P Carlin and A. van der Linde 

by definition of PD (10): equation (37) shows that DIC can also be considered as a Bayesian 
measure of fit or adequacy, penalized by an additional complexity term po. From the results 
in Section 3.2, we immediately see that in models with negligible prior information DIC will be 

approximately equivalent to Akaike's criterion. 
An approximate decision theoretic justification for DIC can be obtained by mimicking the 

development of Ripley (1996) (page 33) and Burnham and Anderson (1998) (chapter 6). Using 
the logarithmic loss function in equation (33), we obtain 

ce{y, Ot, 0(y)} = EyreplOt{Drep()} 
- D(0) 

where -2log[p{Yrepl0(y)}] is denoted Drep(O) and so on: note in this section that D is an 
unstandardized deviance (f(.) = 1). It is convenient to expand CE into the three terms 

co = Eyreplt{Drep() - Drep(0t)} + Eyrep1t{Drep(0t) - D(0t)} + {D(0) - D(0)}; (38) 

we shall denote the first two terms by C1 and L2 respectively and, since we are taking a Bayesian 
perspective, replace the true 0t by a random quantity 0. 

Expanding the first term to second order gives 

C1(0, 0) EYrep0l{-2( - O)TLrep, - (( - 0) TLp,(0 
- 0)} 

where Lrep,0 = log{p(Yrepl0)}. Since EYrepI(Lrep, ) = 0 from standard results for score statistics, 
we obtain after some rearrangement 

1(0, 0) tr{I(0- 0)(0 - )T} 

where Ie = Eyrepli(-Lep ) is the assumed Fisher information in Yrep, and hence also in y. 
Making the good model assumption (Section 2.2), this might reasonably be approximated by 
the observed information at the estimated parameters, so 

L1(0, 0) - tr{-L(0 - 0)(0 - )T} (39) 

Suppose that under a particular model assumption we obtain a posterior distribution p(Oly). 
Then from approximations (38) and (39) our posterior expected optimism when adopting this 
model and the estimator 0 is 

Eoly(cE) tr[-L' Eoly{( - 0)(0 - 0)T}] + Eoly{L2(Y, 0)} + Eoly{D(0) - D(0)}. 

Using the posterior mean 0 as our estimator makes the expected optimism 

Eely(ce) , tr(-LoV) + Eoly{C2(y, 0)} + PD, (40) 

where V again is defined as the posterior covariance of 0, and po = D - D(0). Now 

?2(Y, 0) = Eyreplo[-2log{p(Yrep 0)}] + 2log{p(y10)}, 

and so Ey[E0y{L2 (Y, 0)}] = Eo[EYeo{L2(Y, 0)}] = 0. We have already shown in approximation 
(15) that PD x tr(-L'V), and hence from expressions (33) and (40) the expected posterior loss 
when adopting a particular model is 

D(0) + Eoly(ce) ) D(0) + 2po = DIC, 

neglecting a term Ely{CL2(y, 0)} which is expected to be 0. This derivation has assumed that 
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D is an unstandardized deviance: common standardization across models will leave unchanged 
the property that differences in DIC are estimates of differences in expected loss in prediction. 

We make the following observations concerning this admittedly heuristic justification of DIC. 
First, for the general normal linear model (20), it is straightforward to show that ?2(y, 0) = 
p - (y- A 10)T C1 1 (y - A 0) where p is the dimensionality of 0, and hence for true 0 has sampling 
distribution p - x2 with mean 0 and variance 2p. This parallels the classical development in 
which Ripley (1996) (page 34) pointed out that the equivalent term is O(^/n): we would hope 
that this factor will tend to cancel when assessing differences in DIC, but this requires further 
investigation. 

Second, this development draws heavily on the approximations in Section 3 and hence 
encourages parameterizations in which likelihood normality is more plausible. 

Third, we are attempting to evaluate the consequences of assuming a particular model, using 
an analysis that is based on that very assumption. This use of the good model assumption 
(Section 2.2) argues for the use of DIC in comparing models that have already been shown to 
be adequate candidates for explaining the observations. 

8. Examples 

PD and DIC have already been applied by other researchers in a variety of contexts, such 
as alternative models for diagnostic probabilities in screening studies (Erkanli et al., 1999), 
longitudinal binary data using Markov regression models (Erkanli et al., 2001), spline models 
with Bernoulli responses (Biller and Fahrmeir, 2001), multistage models for treatment usage 
which combine to form a total DIC (Gelfand et al., 2000), complex spatial models for Poisson 
counts (Green and Richardson, 2000), pharmacokinetic modelling (Rahman et al., 1999) and 
structures of Bayesian neural networks (Vehtari and Lampinen, 1999). The following examples 
illustrate the use of PD and DIC to compare alternative prior and likelihood structures. 

8. 1. The spatial distribution of lip cancer in Scotland 
We consider data on the rates of lip cancer in 56 districts in Scotland (Clayton and Kaldor, 
1987; Breslow and Clayton, 1993). The data include observed (yi) and expected (Ei) numbers of 
cases for each county i (where the expected counts are based on the age- and sex-standardized 
national rate applied to the population at risk in each county) plus the 'location' of each county 
expressed as a list (Ai) of its ni adjacent counties. We assume that the cancer counts within 
each county yi follow a Poisson distribution with mean exp(0i)Ei where exp(0i) denotes the 
underlying true area-specific relative risk of lip cancer. We then consider the following set of 
candidate models for Oi, reflecting different assumptions about the between-county variation in 
(log-) relative risk of lip cancer: model 1, 

0i = ao; 

model 2, 

Oi = ao + yi; 

model 3, 

Oi = ao + 6i; 

model 4, 

Oi = ao + -i + i ; 

model 5, 

Oi = ai. 
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An improper uniform prior is placed on ao, independent (proper) normal priors with large 
variance are specified for each ai (i = 1,..., 56), yi are exchangeable random effects with a 
normal prior distribution having zero mean and precision Ay, and 6i are spatial random effects 
with a conditional autoregressive prior (Besag, 1974) given by 

6i\6\i - normalI (/ 
- 6j, ni jeAi niA6 

A sum-to-zero constraint is imposed on the {6i} for identifiability, and weakly informative 
gamma(0.5,0.0005) priors are assumed for the random effects precision parameters AXy and A6. 
These five models cover the spectrum between the pooled model 1 that makes no allowance for 
variation between the true risk ratios in each county and the saturated model 5 that assumes inde- 
pendence between the county-specific risk ratios (essentially yielding the maximum likelihood 
estimates Oi = log(yi/Ei)). The random-effects models 2-4 allow the county-specific relative 
risks to be similar but not identical, with the autoregressive term allowing for the possibility of 
spatially correlated variation. 

We use the saturated deviance (McCullagh and Nelder (1989), page 34) 

D(O) = 2 E [yi log{yi/ exp(Oi)Ei} - {Yi - exp(Oi)Ei}] 
i 

obtained by taking -2 log{f(y)} = -2Si log{p(y IOji)} = 208.0 as the standardizing factor (see 
Section 2.5). This allows calculation of absolute measures of fit (see Section 6.2). For model 
comparisons, however, it is sufficient to take the standardizing factor as f(y) = 1. For each 
model we ran two independent chains of an MCMC sampler in WinBUGS (Spiegelhalter et al., 
2000) for 15000 iterations each, following a burn-in period of 5000 iterations. As suggested 
by Dempster (1997b), Fig. 3 shows a kernel density smoothed plot of the resulting posterior 
distributions of the deviance under each competing model. Apart from revealing the obvious 
unacceptability of model 1, this clearly illustrates the difficulty of formally comparing posterior 
deviances on the basis of such plots alone. 

o 

o 

0 

o 

0 

I I I I - I I 

O- - 

20 40 60 80 100 360 380 400 

Deviance 

Fig. 3. Posterior distributions of the deviance for each model considered in the lip cancer example: 
model 1; ......, model 2; -------, model 3; - - -, model 4; - -, model 5 
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Table 1. Deviance summaries for the lip cancer data using three alternative parameterizations (mean, 
canonical and median) for the plug-in deviancet 

Model D D(ji) PD DICL' D(0) po DIC0 D(med) p~ed DICmed 

1, pooled 381.7 380.7 1.0 382.7 380.7 1.0 382.7 380.7 1.0 382.7 
2, exchangeable 61.1 18.2 42.9 104.0 17.7 43.4 104.5 17.6 43.5 104.6 
3, spatial 58.3 26.6 31.7 89.9 27.1 31.2 89.5 27.2 31.1 89.3 
4, exchangeable + spatial 57.9 26.1 31.8 89.7 26.5 31.4 89.3 26.6 31.3 89.2 
5, saturated 55.9 0.0 55.9 111.7 3.1 52.8 108.6 1.4 54.5 110.4 

tExchangeable means an exchangeable random effect; spatial is a spatially correlated random effect. 

The deviance summaries proposed in this paper are shown for the lip cancer data in Table 1: 
D is simply the mean of the posterior samples of the saturated deviance; D(i) is calculated by 
plugging the posterior mean of ,ui = exp(Oi)Ei into the saturated deviance; D(0) is calculated 
by plugging the posterior means of the relevant parameters (ao, ai, 7yi and/or 6i) into the linear 
predictor Qi and then evaluating the saturated deviance; D(med) is calculated by plugging the 
posterior median of Oi (or, equivalently, of pi) into the saturated deviance. The results are 
remarkably similar for the three alternative parameterizations of the plug-in deviance. For fixed 
effects models we would expect from Section 3.2 that PD should be approximately the true 
number of independent parameters. For the pooled model 1, PD = 1.0 as expected, whereas, 
forsderng the saturate model 5, ranges from 52.8 to 55.9 depending on the parameterization 
that is used, which is close to the true value of 56 parameters. The models containing spatial 
random effects (either with or without additional exchangeable effects) both have around 31 
effective parameters, whereas the model with only exchangeable random effects has about 12 
additional effective parameters. On the basis of the results of Section 5.2 comparing PD for 
Poisson likelihoods with different priors, this suggests that the spatial model provides stronger 
prior information than does the exchangeable model for these data. 

Turning to the comparison of DIC for each model, we first note that DIC is subject to Monte 
Carlo sampling error, since it is a function of stochastic quantities generated under an MCMC 
sampling scheme. Whereas computing the precise standard errors for our DIC values is a subject 
of on-going research, the standard errors for the D-values are readily obtained and provide a 

good indication of the accuracy of DIC and PD. In any case, in several runs using different initial 
values and random-number seeds for this example, the DIC and pD-estimates obtained never 
varied by more than 0.5. As such, we are confident that, even allowing for Monte Carlo error, 
either of models 3 or 4 is superior (in terms of DIC performance) to models 2 or 5, which are in 
turn superior to model 1. A comparison of DIC for models 3 and 4 suggests that the two spatial 
models are virtually indistinguishable in terms of the overall fit: pragmatically, we might prefer 
reporting model 3 since its DIC is only marginally greater than the more complex model 4. 

Considering now the absolute measure of fit suggested in Section 6.2, we compare the values 
of D in Table 1 with the sample size n = 56. This suggests that all models except the pooled 
model 1 provide an adequate overall fit to the data, and that the comparison is essentially based 
on their complexity alone. 

Following the discussion in Section 6, Fig. 4 shows a plot of deviance residuals dri against 
leverages PDi for each of the five models considered. The broken curves marked on each plot are 
of the form x2 + y = c and points lying along such a parabola will each contribute an amount 
DICi = c to the overall DIC for that model. For models 2-5, parabolas are marked at values 
of c = 1, 2, 5, and any data point whose contribution DICi is greater than 2 is labelled by its 
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Fig. 4. Diagnostics for the lip cancer example-residuals versus leverages (the parabolas indicate contri- 
butions of 1, 2 or 5 to the total DIC (apart from model 1): (a) model 1; (b) model 2; (c) model 3; (d) model 4; 
(e) model 5 

observation number. For model 1, parabolas are marked at c = 1, 10, 50, since the size of the 
deviance residuals and individual contributions to DIC are much larger and, for clarity, only 
points for which DICi is greater than 10 are marked by their observation number. Observations 
55 and 56, the only districts with yi = 0, are clearly identified as potential outliers under each 
of the random-effects models 2-4, as is observation 1 (the district with the highest observed 
risk ratio yi/Ei). A few other observations (2, 3, 4, 53 and 54) have contributions DICi that 
are just larger than 2 under model 2: with the exception of the three districts already discussed, 
these five districts have the most extreme observed risk ratios and so their estimates tend to be 
shrunk furthest under the exchangeable model. Observations 14, 15, 45 and 50 appear to be 
outliers in models 3 and 4 which have a spatial effect, but not in the remaining models. A further 
investigation reveals that the observed risk ratios in these districts are extreme compared with 
those in each of their neighbouring districts. For example district 50 has only six cases compared 
with 19.6 expected, whereas each of its three neighbouring districts have high observed counts 
(17, 16 and 16) relative to those expected (7.8, 10.5 and 14.4). The spatial prior in models 3 and 4 
causes the estimated rate in district 50 to be smoothed towards the mean of its neighbours' rates, 
thus leading to the discrepancy between observed and fitted values, and since the observation still 
exercises considerable weight on its fitted value the leverage is high as well. However, overall we 
might not consider that there is sufficient evidence to cast doubt on any particular observations. 

8.2. Robust regression using the stack loss data 
Spiegelhalter et al. (1996) (pages 27-29) considered a variety of error structures for the oft- 
analysed stack loss data of Brownlee (1965). Here the response variable y, the amount of stack 
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loss (escaping ammonia in an industrial application), is regresssed on three predictor variables: 
air flow xl, temperature x2 and acid concentration X3. Assuming the usual linear regression 
structure 

Pi = /0 + /lZil + 32Zi2 + P3Zi3 

where zij = (xij - x.j)/sd(x.j), the standardized covariates, the presence of a few prominent 
outliers among the n = 21 cases motivates a comparison of the following four error distributions: 
model 1, 

yi ~ normal(i, r-1 ); 

model 2, 

Yi - DE(pi, r-1); 

model 3, 

Yi ~ logistic(pi, r--1); 

model 4, 

Yi - td(Pi, T-1) 

(where DE denotes the double-exponential (Laplace) distribution and td denotes Student's t- 
distribution with d degrees of freedom). 

A well-known alternative to the direct fitting of many symmetric but non-normal error dis- 
tributions is through scale mixtures of normals (Andrews and Mallows, 1974). From page 210 
of Carlin and Louis (2000), we have the alternate td-formulation model 5, 

yi ~ normal ki, ), 

1 2 
=gammad 

d 
wi dXd 

= ga 
2 2) 

Unlike our other examples the form of the likelihood changes with each model, so we must use 
the full normalizing constants when computing -2 log{p(ylp, r)}. 

Following Spiegelhalter et al. (1996) we set d = 4, and for each model we placed essentially 
flat priors on the 3j (actually normal with mean 0 and precision 0.00001) and log(r) (actually 
gamma(0.001,0.001) on r) and ran the Gibbs sampler in BUGS for 5000 iterations following a 
burn-in period of 1000 iterations. 

Replacing r and wi by their posterior means where necessary for the D(O)-calculation, the 

resulting deviance summaries are shown in Table 2 (note that the mean parameterization and 
the canonical parameterization are equivalent here, since the mean ui is a linear function of the 
canonical p-parameters). Beginning with a comparison of the first four models, the estimates of 

PD are all just over 5, the correct number of parameters for this example. The DIC-values imply 
that model 2 (double exponential) is best, followed by the t4-, the logistic and finally the normal 
models. Clearly this order is consistent with the models' respective abilities to accommodate 
outliers. 

Turning to the normal scale mixture representation for the t4-likelihood (model 5), the 

pD-value is 7.6, suggesting that the wi random effects contribute only an extra 2-2.5 param- 
eters. However, the model's smaller DIC-value implies that the extra mixing parameters are 
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Table 2. Deviance results for the stack loss data 

Model D D(O) PD DIC 

1, normal 110.1 105.0 5.1 115.2 
2, double exponential 107.9 102.3 5.6 113.5 
3, logistic 109.5 104.2 5.3 114.8 
4, t4 108.7 103.2 5.5 114.2 
5, t4 as scale mixture 102.1 94.5 7.6 109.7 

worthwhile in an overall quality-of-fit sense. We emphasize that the results from models 4 and 
5 need not be equal since, although they lead to the same marginal likelihood for the yi, they 
correspond to different prediction problems. 

Finally, plots of deviance residuals versus leverages (which are not shown) clearly identify the 
observations determined to be 'outlying' by several previous researchers who analysed this data 
set. 

8.3. Longitudinal binary observations: the six-cities study 
To illustrate how the mean and canonical parameterizations (introduced in Section 5 and further 
discussed in Section 9) can sometimes lead to different conclusions, our next example considers a 
subset of data from the six-cities study, a longitudinal study of the health effects of air pollution: 
see Fitzmaurice and Laird (1993) for the data and a likelihood-based analysis. The data consist 
of repeated binary measurements yij of the wheezing status (1, yes; 0, no) of child i at time j, 
i = 1, ..., I, j = 1,..., J, for each of I = 537 children living in Stuebenville, Ohio, at J = 4 
time points. We are given two predictor variables: aij, the age of child i in years at measurement 
point j (7, 8, 9 or 10 years), and si, the smoking status of child i's mother (1, yes; 0, no). Following 
the Bayesian analysis of Chib and Greenberg (1998), we adopt the conditional response model 

Yij - Bernoulli(pij), 

pij = Pr(Yij = 1) = g-l (,uij), 

l'ij = 30 + /Zijl + 02Zij2 + 3Zij3 + bi, 

where Zijk = Xijk - X..k, k = 1, 2, 3, and xijl = aij, xij2 = si and xij3 = aijsi, a smoking-age 
interaction term. The bi are individual-specific random effects, initially given an exchangeable 
N(0, A-1) specification, which allow for dependence between the longitudinal responses for 
child i. The model choice issue here is to determine the most appropriate link function g(.) 
among three candidates, namely the logit, the probit and the complementary log-log-links. 
More formally, our three models are model 1, 

g(pij) = logit(pij) = log{pij/(l - pij)}, 

model 2, 

g(Pij) = probit(pij) = (- (pij), 

and model 3, 

g(Pij) = cloglog(pij) = log{-log(1 - pij)}. 
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Table 3. Results for both parameterizations of the Bernoulli panel data 

Model D Resultsfor the canonical Results for the mean 
parameterization parameterization 

D(O) PD DIC D(O) PD DIC 

1, logit 1166.4 917.7 248.7 1415.1 997.5 168.9 1335.3 
2, probit 1148.6 885.9 262.7 1411.3 989.9 158.7 1307.3 
3, complementary log-log 1180.9 956.5 224.4 1405.3 1013.7 167.2 1348.1 

Since the Bernoulli likelihood is unaffected by this choice, in all cases the deviance takes the 
simple form 

D = -2 E{Yij log(pij) + (1 - Yij) log( - ij)} 
i,j 

Placing flat priors on the 3k and a gamma(0.001,0.001) prior on A, and running the Gibbs sam- 
pler for 5000 iterations following a burn-in period of 1000 iterations produces the deviance sum- 
maries in Table 3 for the canonical and mean parameterizations: the canonical parameterization 
constructs 0 as the mean of the linear predictors 3 and bi, and then uses the appropriate linking 
transformation (logit, probit or complementary log-log) to obtain the imputed means for the pj. 
The mean parameterization simply uses the means of the pij themselves when computing D(O). 
Natarajan and Kass (2000) have pointed out potential problems with the gamma(0.001,0.001) 
prior on A, but in this context the 537 random effects ensure that these findings are robust to 
the choice of prior for A. 

The posterior standard deviation /A- 1 of the random effects is estimated to be 2.2 (standard 
deviation 0.2), which indicates extremely high unexplained overdispersion and hence consider- 
able prior-data conflict: this should warn us of a potential lack of robustness in our procedure. 
We have a sample size of ni = 4 for each of I = 537 individuals, and an average PDi for the 
canonical parameterization of around 0.4-0.5. From approximation (31), this indicates a prior 
sample size a + b of around 4-6. Referring to the evidence in Fig. 1 concerning low prior and 
observation sample sizes (ni = 1; a + b = 1), we might expect the mean parameterization to 
display decreased complexity compared with the canonical, and this is borne out in the results. 
DIC prefers the complementary log-log-link under the canonical parameterization, but the 
probit link under the mean parameterization. We repeat that we prefer the canonical results 
because of the improved normality of the likelihoods and their lack of dependence on observed 
data: however, none of the models explain the data very well, and the lack of consensus suggests 
caution in using any of the models. 

9. Discussion 

Here we briefly discuss relationships to other suggestions and give some guidance on the practical 
use of the techniques described in this paper. 

9.1. Relationship of PD and DIC to other suggestions 
9.1. 1. Cross-validation 
Stone (1977) showed the asymptotic equivalence of model comparison based on cross-validation 

This content downloaded from 129.100.58.76 on Sun, 11 Jan 2015 19:18:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


612 D. J. Spiegelhalter, N. G. Best, B. P Carlin and A. van der Linde 

and AIC, whereas Wahba (1990) (page 52) showed how a generalized cross-validation criterion 
leads to the use of n - tr(H) as a denominator in the estimation of residual mean-squared error. 
We would expect our measure of model complexity PD to be strongly related to cross-validatory 
assessment, but this requires further investigation. 

9.1.2. Other predictive loss functions 
Kass and Raftery (1995) criticized Akaike (1973) for using a plug-in predictive distribution as 
we have done in Section 7.3, rather than the full predictive distribution obtained by integrating 
out the unknown parameters. A criterion based on this predictive distribution is also invariant 
to reparameterizations. Laud and Ibrahim (1995) and Gelfand and Ghosh (1998) suggested 
minimizing a predictive 'discrepancy measure' E{d(Ynew, y) y}, where Ynew is a draw from 
the posterior predictive distribution p(Ynewly), and we might for instance take d(Ynew, y) = 
(Ynew - y new - y). They showed that their measures also have attractive interpretations as 

weighted sums of 'goodness of fit' and 'predictive variability penalty' terms. However, a proper 
choice of the criterion requires fairly involved analytic work, as well as several subjective choices 
about the utility function that is appropriate for the problem at hand. Furthermore, the one- 
way ANOVA model in Section 2.5 gives rise to a fit term equivalent to D(0), and a predictive 
variability term equal to po + p. Thus their suggestion is equivalent in this context to the 

comparison by our Bayesian measure of fit D which, although invariant to parameterization, 
does not seem to penalize complexity sufficiently. 

In general the use of a plug-in estimate appears to 'cost' an extra penalty of PD. 

9.1.3. Bayes factors 
Bayes factors are criteria based on a comparison of the marginal likelihoods (1) (Kass and 

Raftery, 1995), and a common approximation is the Bayesian (or Schwarz) information criterion 
(Schwarz, 1978), which for a model with p parameters and n observations is given by 

BIC = -2log{p(y0) } + plog(n). 

Bernardo and Smith (1994) (chapter 6) argued that this formulation may only be appropriate 
in circumstances where it was really believed that one and only one of the competing models 
was in fact true, and the crucial issue was to choose this correct model, and that in other 
circumstances criteria based on short-term prediction, such as cross-validation, may be more 
appropriate. We support this view and refer to Han and Carlin (2001) for a review of some 
of the computational and conceptual difficulties in using Bayes factors to compare complex 
hierarchical models. Whether DIC can be justified as a basis for model averaging remains open 
for investigation. 

9.2. Practical issues in using DIC 
9.2.1. Invariance 
PD may be only approximately invariant to the chosen parameterization, since different fitted 
deviances D(0) may arise from substituting posterior means of alternative choices of 0. The 
example in Section 8.3 shows that this choice could be important with Bernoulli data. 

In Section 5 we explored the use of the posterior median as an estimator leading to an invariant 
PD . This has two possible disadvantages: we do not have a proof that PD will be positive and some 
additional computational difficulty in that the full sample needs to be retained. In addition the 
approximate properties based on Taylor series expansions in Section 3 may not hold, although 
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this may be only of theoretical interest. Currently we recommend calculation of DIC on the basis 
of several different estimators, with a preference for posterior means based on parameterizations 
obeying approximate likelihood normality. 

9.2.2. Focus of analysis 
As we saw in the stack loss example of Section 8.2, there may be sensitivity to apparently 
innocuous restructuring of the model: this is to be expected since by making such changes we 
are altering the definition of a replicate data set, and hence one would expect DIC to change. 
For example, consider a model comprising a mixture of normal distributions. If this assumption 
was solely to obtain a flexible functional form, then the appropriate likelihood would comprise 
the mixture. If, however, we were interested in the membership of individual observations, 
then the likelihoods would be normal and the membership variables would contribute to the 
complexity of the model. Thus the parameters in the tefocus of a model should ideally depend on 
the purpose of the investigation, although in practice it is likely that the focus may be chosen 
on computational grounds as providing likelihoods that are available in closed form. 

9.2.3. Nuisance parameters 
Strictly speaking, nuisance parameters should first be integrated out to leave a likelihood 
depending solely on parameters in focus. In practice, however, parameters such as variances 
are likely to be included in the focus and add to the estimated complexity: we would recommend 
posterior means of log-variances as estimators. 

9.2.4. What is an important difference in DIC? 
Burnham and Anderson (1998) suggested models receiving AIC within 1-2 of the 'best' deserve 
consideration, and 3-7 have considerably less support: these rules of thumb appear to work 
reasonably well for DIC. Certainly we would like to ensure that differences are not due to 
Monte Carlo error: although this is straightforward for D, Zhu and Carlin (2000) have explored 
the difficulty of assessing the Monte Carlo error on DIC. 

9.2.5. Asymptotic consistency 
As with AIC, DIC will not consistently select the true model from a fixed set with increasing 
sample sizes. We are not greatly concerned about this: we neither believe in a true model nor 
would expect the list of models being considered to remain static as the sample size increased. 

9.3. Conclusion 
In conclusion, our suggestions have a similar 'information theoretic' background to frequentist 
measures of model complexity and criteria for model comparison but are based on expectations 
with respect to parameters in place of sampling expectations. DIC can thus be viewed as a 

Bayesian analogue of AIC, with a similar justification but wider applicability. It is also applicable 
to any class of model, involves negligible additional analytic work or Monte Carlo sampling 
and appears to perform reasonably across a range of examples. We feel that PD and DIC deserve 
further investigation as tools for model assessment and comparison. 
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Discussion on the paper by Spiegelhalter, Best, Carlin and van der Linde 

S. P. Brooks (University of Cambridge) 
This is a wonderful paper containing a wide array of interesting ideas. It seems to me very much like a first 
step (and in the right direction) and I am sure that it will be seen as both a focus and a source of inspiration 
for future developments in this area. 

As the authors point out, their pD and the deviance information criterion (DIC) statistics have al- 
ready been widely used within the Bayesian literature. Given this history and in the previous absence of 
a published source for these ideas, it is easy to misunderstand what PD actually does. Certainly, before 
reading this paper, but having read several others which use the DIC, I thought that the pD-statistic was 
a clever way of avoiding the problem that Bayesians have when it comes to calculating the number of 
parameters in any hierarchical model. Essentially the problem is one of deciding which variables in the 
posterior are model parameters and which are hyperparameters arising from the prior. However, PD does 
not help us here and that is why we have Section 2.1 explaining that this choice is up to the reader. The 
authors refer to this as choosing the 'focus' for the analysis. Sadly, in many cases the calculation of PD will 
be impossible for the focus of primary interest since the deviance will not be available in closed from (this 
includes random effects and state space models, for example), so this remains an open problem. 

What PD does do is to tell you, once you have chosen your focus, how many parameters you lose (or 
even gain?) by being Bayesian. The number of degrees of freedom (or parameters) in a model is clear from 
the (focused) likelihood. However, by combining the likelihood with the prior we almost always impose 
additional restrictions on the parameter space, effectively reducing the degrees of freedom of our model. 
Take the authors' saturated model of Section 8.1, in which parameters a, ..., ..56 are given a prior with 
some unknown mean p, and fixed variance a2. Clearly, in the limit as a2 goes to 0, we essentially remove 
the 56 individual parameters a, and effectively replace them with a single parameter p. I guess that this is 
fairly obvious with hindsight as is the case with many great ideas. None-the-less it is a credit to the authors 
firstly for seeing it and, more importantly, for actually deriving a procedure for dealing with it. 

This prior-induced parameter reduction can be clearly observed in Fig. 5 in which we plot the value 
of p?D against log(a2) both for a hyperprior , ~ N(0, 1000) and for p, = 0 (the authors are unclear about 
which, if either, they actually use in Section 8.1). We can see that, as a2 decreases, the effective number of 
parameters decreases to either 1 or 0 depending on whether or not , itself is a parameter, i.e. which prior 
is chosen. It is interesting to note the rapid decline in PD for variances between 1 and 0.01, but what is 
particularly interesting about this plot is that, as a2 increases, PD converges to a fixed maximum well 
below 56, the number of parameters in the likelihood. As an experiment, if we take a2 = 1030 or even 
the Jeffreys prior for the pi, a value for PD exceeding 53.1 is never obtained (modulo Monte Carlo error). 
This suggests that we automatically lose three parameters just by being Bayesian, even if we are as vague 
as we could possibly be with our prior. Quoting Bernardo and Smith (1994), page 298, 'every prior spe- 
cification has some informative posterior or predictive implications .... There is no "objective" prior that 
represents ignorance.' Of course, the authors' Table 1 suggests that if we took the median as the basis for 
the calculation of PD then we might obtain different results; indeed we seem to regain several parameters 
this way! Unfortunately, analytic investigation of the pD-statistic is essentially limited to the case where 
we take 0(y) to be the posterior mean, so we have little idea of the extent and nature of the variability 
across parameterizations. This choice is likely to have a significant effect on any inference based on the 
corresponding pD-statistic and further (no doubt simulation-based) investigation along these lines would 
certainly be very helpful. 

As well as the construction of the pD-statistic, the paper also derives a new criterion for model com- 
parison labelled the DIC. The authors provide a heuristic justification for the DIC, but there are clearly 
several alternatives. One obvious extension of the usual Akaike information criterion (AIC) statistic to 
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Fig. 5. Plot of p, for the saturated model of Section 8.1 demonstrating its dependence n the prior variance 
for the random effects: , pD-statistic with an N(O, 1000) hyperprior for : - - - - -, corresponding value 
when we fix /i = 0; ......., number of parameters in the likelihood 

the Bayesian context is to calculate its posterior expectation, EAIC = D(O) + 2p (rather than evaluating it 
at the posterior mode under a flat prior), or to take the deviance calculated at the posterior mean, i.e. 
taking D(0) + 2p. Of course, as with the DIC, posterior medians, modes etc. could also be taken and 
similar extensions could be applied to the corrected AIC statistic and the Bayesian information criterion 
for example. Further, the number of parameters in each of these expressions might be replaced by PD to 
gain even more potential criteria. Table 4 gives the posterior model probabilities and posterior-averaged 
information criteria (based on p, rather than po), including DIC, for autoregressive models of various 
orders fitted to the well-known lynx data (Priestley (1981), section 5.5). We note the broad agreement 
between the DIC, EAIC and EAICC (as is common in my own experience and, I think, expected by the 
authors), but that EBIC locates an entirely different model. We note also that the posterior model prob- 
abilities correctly identify the fact that two models appear to describe the data well and it is the only 
criterion to identify correctly the existence of two distinct modes in the posterior. 

Given the number of approximations and assumptions that are required to obtain the DIC it can only 
really be used as a broad brush technique for discriminating between obviously disparate models, in much 
the same way as any of the alternative information criteria suggested above might be used. However, in 
many realistic applications there may be two or more models with sufficiently similar DIC that it is im- 
possible to choose between the two. The only sensible choice in this circumstance is to model-average (see 
Section 9.1.3). Burnham and Anderson (1998), section 4.2, suggested the use of AIC weights and these 
are also given in Table 4 together with the corresponding weights for the other criteria. Essentially, these 
are obtained by subtracting from each AIC the value associated with the 'best' model and then setting 

Wk oc exp{-AAIC(k)/2} 

where AAIC(k) denotes the transformed AIC-value for model k. These weights are then normalized to 
sum to 1 over the models under consideration. 

Note the distinct differences between the weights and the posterior model probabilities given in 
Table 4, suggesting that only one or the other can really make any sense. We note here that similar 
comparisons have been made in the context of other examples. In the context of a log-linear contingency 
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Table 4. Effective number of parameters, values of DIC and the posterior expectation of various information 
criteria for fitting an autoregressive model of order k (with k + 1 parameters including the error variance) to 
the lynx datat 

k PD DIC EAIC EBIC EAICc, (K = k) DIC WEAIC EBIC EAIC 

1 1.88 206.66 206.78 209.51 206.81 0.000 0.000 0.000 0.000 0.000 
2 2.85 126.58 127.72 133.19 127.83 0.243 0.000 0.003 0.858 0.011 
3 3.78 127.06 129.27 137.48 129.50 0.016 0.000 0.001 0.101 0.005 
4 4.76 125.52 128.75 139.70 129.12 0.007 0.000 0.002 0.033 0.006 
5 5.70 125.23 129.52 143.20 130.08 0.002 0.000 0.001 0.006 0.004 
6 6.62 126.30 131.68 148.09 132.46 0.001 0.000 0.004 0.000 0.001 
7 7.60 122.34 128.72 147.88 129.78 0.002 0.000 0.002 0.001 0.004 
8 8.61 121.81 129.19 151.08 130.56 0.002 0.000 0.001 0.000 0.003 
9 9.58 122.75 131.16 155.79 132.89 0.001 0.000 0.001 0.000 0.001 

10 10.54 118.94 128.40 155.76 130.53 0.002 0.001 0.002 0.000 0.003 
11 11.33 106.51 117.16 147.26 119.75 0.154 0.431 0.566 0.001 0.624 
12 12.61 106.89 118.27 151.10 121.36 0.268 0.356 0.325 0.000 0.280 
13 13.56 108.74 121.17 156.74 124.81 0.135 0.142 0.076 0.000 0.050 
14 14.46 110.77 124.30 162.61 128.54 0.067 0.051 0.016 0.000 0.008 
15 15.37 112.896 127.42 168.47 132.32 0.000 0.019 0.003 0.000 0.001 

tCriterion entries in bold indicate the model minimizing the relevant criterion, whereas those in italics denote 
alternative plausible models under the rules of thumb discussed in Section 9.2.4. Probabilities 7r or weights w in 
bold denote the top two models in each case. Here, EAICc denotes the posterior mean of the corrected EAIC 
(Burnham and Anderson, 1998), ir(K = k) the corresponding posterior model probability under a flat prior across 
models and the wk the corresponding Akaike weights (or equivalent). The posterior model probabilities were 
kindly provided by Ricardo Ehlers. 

table analysis, King (2001), Table 2.5, found that two models have posterior probability 0.557 and 0.057 
but corresponding DIC weights of 0.062 and 0.682 respectively. Similar examples in which the DIC and 
posterior model probabilities give wildly different results are provided by King and Brooks (2001). Do 
the authors have any feel for why these two approaches might give such different results? Which would 
they recommend be used and do they have any suggestions for alternative DIC-based weights for model 
averaging which might lead to more sensible results? Surely, the only sensible approach is to calculate 
posterior model probabilities via transdimensional Markov chain Monte Carlo methods. When, then, do 
the authors suggest that the DIC might be used? What, in practical terms is the question that the DIC is 
answering as opposed to the posterior model probabilities? 

The incorporation of the DIC-statistic into WinBUGS 1.4 ensures its ultimate success, but I have grave 
misgivings concerning the blind application of a 'default' DIC-statistic for model determination prob- 
lems particularly given its heuristic derivation and the series of essentially arbitrary assumptions and 
approximations on which it is based. The authors 'recommend calculation of DIC on the basis of several 
different estimators'. The option to choose different parameterizations is not available in the beta version 
of WinBUGS 1.4; will it be added to later versions? What about options for the all-important choice of 
focus? What do the authors suggest we do when the same parameterization is not calculable for all models 
being compared? Could not the choice of parameterization for each model adversely influence the results, 
particularly for models with large numbers of parameters (where a small percentage change in PD might 
mean a large absolute change in the corresponding DIC)? 

The paper, like any good discussion paper, leaves various other open questions. For example: why take 
Eoly[do] in equation (9) and not the mode or median; how should we decide when to take 0 to be the mean, 
median, mode etc. as this will surely lead to different comparative results for the DIC; when is PD negative 
and why; in an entirely practical sense, how does model comparison with the DIC compare with that via 
posterior model probabilities and why do they differ-can both be 'correct' in any meaningful way? On 
page 613, the authors write 'PD and DIC deservefurther investigation as tools for model assessment and 
comparison' and I would certainly agree that they do. I have very much enjoyed thinking about some 
of these ideas over the past few weeks and I am very grateful to the authors for the opportunity and 
motivation to do so. It therefore gives me great pleasure to propose the vote of thanks. 
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Jim Smith (University of Warwick, Coventry) 
I shall not address technical inaccuracies but just present four foundational problems that I have with the 
model selection in this paper. 

(a) Bayesian models are designed to make plausible predictive statements about future observables. 
The predictive implications of all the prior settings on variances in the worked examples in Section 
8 are unbelievable. They do not represent carefully elicited expert judgments but the views of a vac- 
uous software user. Early in Section 1 the authors state that they want to identify succinct models 
'which appear to describe the information [about wrong "true" parameter values (see Section 2.2)?] 
in the data accurately'. But in a Bayesian analysis a separation between information in the data 
and in the prior is artificial and inappropriate. For example where do I input extraneous data used 
as the basis of my prior? When do I stop calling this data (and so include it in D(.)) and instead 
call it prior information? This forces the authors to use default priors. 

A Bayesian analysis on behalf of a remote auditing expert (Smith, 1996) might require the selec- 
tion of a prior that is robust within a class of belief of different experts (e.g. Pericchi and Walley 
(1991)). Default priors can sometimes be justified for simple models. Even then, models within a 
selection class need to have compatible parameterizations: see Moreno et al. (1998). However, in 
examples where 'the number of parameters outnumbers observations'-they claim their approach 
addresses-default priors are unlikely to exhibit any robustness. In particular, outside the domain 
of vague location estimation or separating variance estimation (discussed in Section 4), apparently 
default priors can have strong influence on model implications and hence selection. 

(b) Suppose that we need to select models whose predictive implications we do not believe. Surely we 
should try to ensure that prior information in each model corresponds to predictive statements 
that are comparable. Such issues, not addressed here, are considered by Madigan and Raftery 
(1991) for simple discrete Bayesian models. But outside linear models with known variances this is 
a difficult problem. Furthermore it is well known that calibration is a fast function (Cooke, 1991). 
In particular apparently inconsequential deviations from the features of a model 'not in focus' 
tend to dominate D(0) and D(0). A trivial example of this occurs when we plan to forecast X2 
having observed an independent identically distributed XI = 0.01 which under models M1 and 
M2 have respective Gaussian distributions N(100, 10000) and N(0, 0.001). Then, for most priors, 
model M1 is strongly preferred although its predictions about X2 are less 'useful' (Section 2.2). 
The authors' premise that all the models they entertain are 'wrong' allows these calibration issues 
to bite theoretically even in the limit, unlike their asymptotically consistent rivals. The authors, 
however, do no more than to acknowledge the existence of this core difficulty after the example in 
Section 8.3. 

(c) Suppose that problems (a) and (b) do not bite. Then the 'vector of parameters of focus' (POF) 
will have a critical influence on any ensuing inference. How in practice do we specify this? The 
authors state without elaboration that this 'should depend on the purpose of the investigation' 
(Section 9.2.2). But it appears that in practice the POF is calculated on 'computational grounds', 
their software capability driving their inference. 

The high influence of the choice of the POF is illustrated in the example in Section 8.2. Here 
models 4 and 5 are predictively identical but model 5 has a significantly smaller deviance infor- 
mation criterion DIC than model 4. The authors conclude that 'the extra mixing parameters are 
worthwhile': why? In what practical sense is this helpful? This example illustrates that the unguided 
choice of the POF will often be inferentially critical. Incidentally in this example the order of DIC 
is not (as stated) consistent with the thickness of tails of the sample distribution, the thickest-tailed 
distribution being model 4. 

(d) But ignoring all these difficulties there still remains the acknowledged choice of (re)parameteriza- 
tion governing the choice of 0 which initially we shall assume to be the mean. Consider the case 
when the POF 0 is one dimensional with strictly increasing posterior distribution function F(0ly), 
and G, is a distribution function of a random variable with mean p. Then the reparameterization 
of 0 to , = G,j{F(0Iy)} has E(sb) = i. Thus D(0) (or D(X5)) is arbitrary within the range of 
D(.). Thus, contrary to Section (5.1.4), the choice of parameterization of 0 with non-degenerate 
posterior will always be critical. But no general selection guidance is given here. In observation (c) 
of Section 2.6 the authors suggest the use of the posterior median instead of the mean if this can 
be calculated easily from their output: not a solution when the POF is more than one dimensional. 
Even familiar transforms of marginal medians to contrasts and means or means and variances to 
means and coefficients of variation will not exhibit the required sorts of invariance. 
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There may be theoretical reasons to use DIC but I do not believe that this paper gives them. So my 
suggestion to a practitioner would be: if you must use a formal selection criterion do not use DIC. I second 
the vote of thanks. 

The vote of thanks was passed by acclamation. 

Aki Vehtari (Helsinki University of Technology) 
The authors mention that the deviance information criterion DIC estimates the expected loss, with de- 
viance as the loss function. This connection should be emphasized more. It should be remembered that 
the estimation of the expected deviance was Akaike's motivation for deriving the very first information 
criterion AIC (Akaike, 1973). In prediction and decision problems, it is natural to assess the predictive 
ability of the model by estimating the expected utilities, as the principle of rational decisions is based on 
maximizing the expected utility (Good, 1952) and the maximization of expected likelihood maximizes the 
information gained (Bernardo, 1979). It is often useful to use other than likelihood-based utilities. For 
example, in classification problems it is much more meaningful for the application expert to know the 
expected classification accuracy than just the expected deviance value (Vehtari, 2001). Given an arbitrary 
utility function u, it is possible to use Monte Carlo samples to estimate Eo[u(i)] and u(Eo[0]), and then to 
compute an expected utility estimate as 

UDIC = u(EO[0]) + 2{EOe[(0)]- u(Ee[0])}, 

which is a generalization of DIC (Vehtari, 2001). 
The authors also mention the known asymptotic relationship of AIC to cross-validation (CV). Equally 

important is to note that the same asymptotic relationship holds also for NIC (Stone (1977), equation 
(4.5)). The asymptotic relationship is not surprising, as it is known that CV can also be used to estimate 
expected utilities with Bayesian justification (Berardo and Smith (1994), chapter 6, Vehtari (2001) and 
Vehtari and Lampinen (2002a)). Below some main differences between CV and DIC are listed. See Vehtari 
(2001) and Vehtari and Lampinen (2002b) for full discussion and empirical comparisons. CV can use full 
predictive distributions. In the CV approach, there are no parameterization problems, as it deals directly 
with predictive distributions. CV estimates the expected utility directly, but it can also be used to estimate 
the effective number of parameters if desired. In the CV approach, it is easy to estimate the distributions 
of the expected utility estimates, which can for example be used to determine automatically whether the 
difference between two models is 'important'. Importance sampling leave-one-out CV (Gelfand et al., 
1992; Gelfand, 1996) is computationally as light as DIC, but it seems to be numerically more unstable. 
k-fold CV is very stable and reliable, but it requires k times more computation time to use. k-fold CV can 
also handle finite range dependences in the data. For example, in the six-cities study, the wheezing statuses 
of a single child at different ages are not independent. DIC, which assumes independence, underestimates 
the expected deviance. In k-fold CV it is possible to group the dependent data and to handle independent 
groups and thus to obtain better estimates (Vehtari, 2001; Vehtari and Lampinen, 2002b). 

Martyn Plummer (International Agency for Research on Cancer, Lyon) 
I congratulate the authors on their thought-provoking paper. I would like to offer one constructive sug- 
gestion and one criticism. 

Firstly, I have a proposal for a modified definition of the effective number of parameters pD. Starting 
from the Kullback-Leibler information divergence between the predictive distributions at two different 
values of 0 

1(00, 1) = EypOO [log 
p(YrepI 01) 

P [p { P(Yrep I')} 

I suggest that PD be defined as the expected value of 1(0?, 01) when 0? and 01 are independent samples from 
the posterior distribution of 0. This modified definition yields exactly the same expression for PD in the 
normal linear model with known variance. In general, it should give a similar estimate of PD when 0 has 
an asymptotic normal distribution. This version of PD can also be decomposed into influence diagnostics 
when the likelihood factorizes as in Section 6.3. It has the theoretical advantages of being non-negative 
and co-ordinate free. A practical advantage is that PD can be estimated via Markov chain Monte Carlo 
sampling using two parallel chains by taking the sample average of 

log P(Y?p 10?) } p(Y ?)epl1) 
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where the superscript denotes the chain to which each quantity belongs. The Monte Carlo error of this 
estimate is easily calculated and the difficulties discussed by Zhu and Carlin (2000) can thus be avoided. 

For exponential family models, 1(0?, 01) can be expressed in closed form and there is no need to simulate 
replicate observations Yrep. When the scale parameter q is known, the expression for PD, simplifies to 

PD, = niwi cov{0i, ,l(09i)Y} /. 

This gives a surprising resolution to the problem of whether to use the canonical or mean parameterization 
to estimate PD. 

On a more negative note, I am not convinced by the heuristic derivation of the deviance information 
criterion DIC in Section 7.3. I followed this derivation for the linear model of Section 4.1, for which it is 
not necessary to make any approximations. The term with expectation 0, neglected in the final expression, 
is p - PD - D(0). Adding this to DIC gives an expected loss of p + PD which is not useful as a model 
choice criterion. I am not suggesting that the use of DIC is wrong, but a formal derivation is lacking. 

Mervyn Stone (University College London) 
The paper is rather economical with the 'truth'. The truth of pt(Y) corresponds fixedly to the conditions 
of the experimental or observational set-up that ensures independent future replication Yrep or internal 
independence of y = y = (yl,..., Yn) (not excluding an implicit concomitant x). For pt(Y) ; p(yl1t), 0 
must parameterize a scientifically plausible family of alternative distributions of Y under those conditions 
and is therefore a necessary 'focus' if the 'good [true] model' idea is to be invoked: think of tossing a bent 
coin. Changing focus is not an option. 

Any connection of PD with cross-validatory assessment would need truth as pt(y) = pt(yl)... pt(yn). 
If I = log(p)is an acceptable measure of predictive success, A = Ei l(yil_-i) is a one-out estimate of 
Ept(y)[Ei l{Yil,(y)}]. Multiplied by -2, this connects with equation (33) only when the 0-model is true 
with Y1, .., Yn independent. 

Extending Stone (1977) to the posterior mode for prior p(O), with n large, A m LB(y) - II(y) where 

nI(y) = -tr{LH + 1,(~) E (yi)l (yi)T 

and 1(O) = log {p(0)}. If l"(9) is negative definite, the typically non-negative penalty II(y) is smaller for 
the posterior mode than for the maximum likelihood estimate. For the maximum likelihood estimate, 
l"(0) = O gives II(y) estimating p*, but the general form probably gives Ripley's p*. 

If Section 7.3 could be rigorously developed (the use of Ey does look suspicious!), another connection 
(via equation (33)) might be that DIC m -2A. But, since Section 7.3 invokes the 'good model' assumption 
and small l1 - 0l for the Taylor series expansion (i.e. large n), such a connection would be as contrived 
as that of A with the Akaike information criterion: why not stick with the pristine (nowadays calculable) 
form of A-which does not need large n or truth, and which accommodates estimation of 0 at the inde- 
pendence level of a hierarchical Bayesian model? If sensitivity of the logarithm to negligible probabilities 
is objectionable, Bayesians should be happy to substitute a subjectively preferable measure of predictive 
success. 

Christian P. Robert (Universite Paris Dauphine) and D. M. Titterington (University of Glasgow) 
A question that arises regarding this thought challenging paper was actually raised in the discussion of 
Aitkin (1991), namely that the data seem to be used twice in the construction of PD. Indeed, y is used the 
first time to produce the posterior distribution 7r(01y) and the associated estimate 0(y). The (Bayesian) 
deviance criterion then computes the posterior expectation of the observed likelihood p(ylO), 

log {p(ylO)} 7r(d0ly) oc log {p(yI0)} p(yO) 7r(dO), 

and thus uses y again, similarly to Aitkin's posterior Bayes factor 

Ip(yIl) ir(dsly). 

This repeated use of y would appear to be a potential factor for overfitting. 
It thus seems more pertinent (within the Bayesian paradigm) to follow an integrated approach along the 

lines of the posterior expected deviance of Section 6.2, 
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fEyl[-2 log{p(YIO)} + 2 log{f(Y)}]7r(dOly) 

because this quantity would be strongly related to the posterior expected loss defined by the logarithmic 
deviance, 

d(O, 0) = Eylo[log{p(YO) - logp(YI0)}], 

advocated in Robert (1996) and Dupuis and Robert (2002) as an intrinsic loss adequate for model fitting. 
In fact, the connection between ED, the deviance information criterion and the logarithmic deviance would 
suggest the use of this loss d(O, 0) to compute the estimate plugged in PD as the intrinsic Bayes estimator 

0n(y) = arg min{Eoly(Eylo[log{p(YlO)} - log{p(YI0)}])} 
0 

= arg max[Erly{p(YIe)}] 

where the last expectation is computed under the predictive distribution. Not only does this make sense 
because of the aforementioned connection, but it also provides an estimator that is completely invariant 
to reparameterization and thus avoids the possibly difficult choice of the parameterization of the problem. 
(See Celeux et al. (2000) for an illustration in the set-up of mixtures.) 

J. A. Nelder (Imperial College of Science, Technology and Medicine, London) 
My colleague Professor Lee has made some general points connecting the subject of this paper to our 
work on likelihood-based hierarchical generalized linear models. I want to make one specific point and 
two general ones. 

(a) Professor Dodge has shown that, of the 21 observations in the stack loss data set, only five have 
not been declared to be outliers by someone! Yet there is a simple model in which no observation 
appears as an outlier. It is a generalized linear model with gamma distribution, log-link and linear 
predictor x2 + log(xI)* log(x3). This gives the following entries for Table 2 in the paper 

98.3 92.1 6.2 104.5 

(I am indebted to Dr Best for calculating these). It is clearly better than the existing models used 
in Table 2. 

(b) This example illustrates my first general point. I believe that the time has passed when it was enough 
to assume an identity link for models while allowing the distribution only to change. We should 
take as our base-line set of models at least the generalized linear model class defined by distribution, 
link and linear predictor, with choice of scales for the covariates in the last named. 

(c) My second general point is that there is, for me, not nearly enough model checking in the paper 
(I am assuming that the use of such techniques is not against the Bayesian rules). For example, if a 
set of random effects is sufficiently large in number and the model postulates that they are normally 
distributed, their estimates should be graphed to see whether they look like a sample from such a 
distribution. If they look, for example, strongly bimodal, then the model must be revised. 

Anthony Atkinson (London School of Economics and Political Science) 
This is an interesting paper which tackles important problems. In my comments I concentrate on regression 
models: the points extend to the more complicated models at the centre of the authors' presentation. 

It is stressed in Section 7.1 that information criteria assume a replication of the observations; in regres- 
sion this would be with the same X-matrix. But, the simulations of Atkinson (1980) showed that, to predict 
over a different region, higher values of the penalty coefficient than two in equation (36) are needed. Do 
the authors know of any analytical results in this area? 

Information criteria for model selection are based on aggregate statistics. Fig. 4 shows an alternative 
and more informative breakdown of one criterion into the contributions of individual observations than 
that given by Weisberg (1981). However, it does not show the effect of the deletion of observations on 
model choice. Atkinson and Riani (2000) used the forward search to analyse the stack loss data, for which 
symmetrical error distributions were considered in Section 8.2. Their Fig. 4.28 shows that the square-root 
transformation is the only one supported by all the data. The forward plot of residuals, Fig. 3.27, is stable, 
with observations 4 and 21 outlying. This diagnostic technique complements the choice of a model using 
information criteria calculated over a set of models that is too narrow. 
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An example of model choice potentially confounded by the presence of several outliers is provided by 
108 observations on the survival of patients following liver surgery from Neter et al. (1996), pages 334 and 
438. There are four explanatory variables. Fig. 6 shows the evolution of the added variable t-tests for the 
variables during the forward search with log(survival time) as the response: the evidence for the impor- 
tance of all variables except x4 increases steadily during the search. Atkinson and Riani (2002) modify 
the data to produce two different effects. The forward plots of the t-tests in Fig. 7(a) show that now xi 
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is non-significant at the end of the search. The plot identifies the group of modified observations which 
have this effect on the t-test for xl. Fig. 7(b) shows the effect of a different contamination, which makes 
X4 significant at the end of the search. 

The use of information criteria in the selection of models is a first step, which needs to be complemented 
by diagnostic tests and plots. These examples show that the forward search is an extremely powerful tool 
for this purpose. It also requires many fits of the model to subsets of the data. Can it be combined with 
the appreciable computations of the authors' Markov chain Monte Carlo methods? 

A. P. Dawid (University College London) 
This paper should have been titled 'Measures of Bayesian model complexity and fit', for it is the models, 
not the measures, that are Bayesian. Once the ingredients of a problem have been specified, any relevant 
question has a unique Bayesian answer. Bayesian methodology should focus on specification issues or on 
ways of calculating or approximating the answer. Nothing else is required. 

Classical criteria overfit complex models, necessitating some form of penalization, and this paper lies 
firmly in that tradition. But with Bayesian techniques (Kass and Raftery, 1995) overfitting is not a problem: 
the marginal likelihood automatically penalizes model complexity without any need for further adjust- 
ment. In particular, Bayesian model choice is consistent in the 'good model' case (Dawid, 1992a). In 
Section 9.2.5 the authors brush aside the failure of their deviance information criterion procedure to 
share this consistency property; but should we not seek reassurance that a procedure performs well in 
those simple cases for which its performance can be readily assessed, before trusting it on more complex 
problems? 

I contest the view (Section 9.1.3) that likelihood is relevant only under the good model assumption: from 
a decision theoretic perspective, we can always regard the 'log-loss' scoring rule S(p, y) := - log{p(y)} 
as a measure of the inadequacy of an assessed density p(.) in the light of empirical data y (Dawid, 1986). 
Moreover, when y is a sequence yn = (yl ..., Yn) of not necessarily independent or identically distributed 
variables, we have 

-log{p(yn)} = E-log{p(yily -)}, (41) 
1=1 

the ith term measuring the performance of the Bayesian probability forecast for yi on the basis of analysis 
of earlier data only (Cowell et al. (1999), chapters 10 and 11). This representation clearly demonstrates 
why unadjusted marginal likelihood offers a valid measure of model fit: each 'test' observation yi is always 
entirely disjoint from the associated 'training' data yi-1. If desired, we can generalize this prequential 
formulation of marginal likelihood by inserting other loss functions (Dawid, 1992b) or using other model 
fitting methods (Skouras and Dawid, 1999). Such procedures exhibit a natural consistency property even 
under model misspecification (Dawid, 1991; Skouras and Dawid, 2000). 

One place where a Bayesian might want a measure of model complexity is as a substitute for p in the 
Bayes information criterion approximation to marginal likelihood, e.g. for hierarchical models. But in 
such cases the definition of the sample size n can be just as problematic as that of the model dimension p. 
What we need is a better substitute for the whole term p log(n). 

Andrew Lawson and Allan Clark (University of Aberdeen) 
We would like to make several comments on this excellent paper. 

Our prime concern here is the fact that the deviance information criterion DIC is not designed to pro- 
vide a sensible measure of model complexity when the parameters in the model take the form of locations 
in some R-dimensional space. In the spatial context, this could mean the locations of cluster centres or, 
more generally, the components of a mixture. Clearly the averaging of parameters in these contexts is 
nonsensical but is a fundamental ingredient of DIC's penalty term D(O). Even if an alternative measure 
of central tendency is used it remains inappropriate to average over configurations where locations in the 
chosen space are parameters (e.g. cluster detection modelling in spatial epidemiology (McKeague and 
Loiseaux, 2002; Gangnon and Clayton, 2002). In the case of the Bayes information criterion, however, it 
might be possible to replace the penalty p ln(n) by an average number of parameters (in a reversible jump 
context) such as p ln(n), where p is the number of parameters and n the sample size. This would at least 
approximately accommodate the varying dimension but would not require the averaging of parameters 
(as compared with DIC). This was suggested in Lawson (2000). 

The second point of concern is the relationship of the goodness of fit to convergence of the Markov chain 
Monte Carlo samplers for which DIC is designed. If posterior marginal distributions are multimodal then 
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the conventional convergence diagnostic will fail (as they will usually find too much variability in individual 
chains), and also DIC will average over the modes. 

We are also somewhat concerned and puzzled by the results for the Scottish lip cancer data set. In 
Table 1, excepting the saturated model, the largest penalty terms are for the exchangeable model and 
not those with either spatial or spatial and exchangeable components. We also note that it is not strictly 
appropriate to fit a spatial-only model without the exchangeable component. 

Finally we note that alternative approaches have recently been proposed (Plummer, 2002). 

Jose M. Bernardo (Universitat de Valencia) 
This interesting paper discusses rather polemic issues and offers some reasonable suggestions. I shall limit 
my comments to some points which could benefit from further analysis. 

(a) The authors point out that their proposal is not invariant under reparameterization and show that 
differences may be large. The use of the median would make the result invariant in one dimension, 
but it is not trivial to extend this to many dimensions. An attractive, general invariant estimator is 
the intrinsic estimator obtained by minimizing the reference posterior expectation of the intrinsic 
loss 6(0, 0) (Bernardo and Suarez, 2002) defined as the minimum logarithmic divergence between 
p(xl0) and p(xl0). Under regularity conditions and moderate or large samples, this is well approx- 
imated by (E[10x] + M[0lx])/2, the average between the reference posterior mean and mode. Other 
invariant estimators may be obtained by minimizing the posterior expectation of 6(0, 0) obtained 
from either a proper subjective prior or an improper prior which, as the reference prior, is obtained 
from an algorithm which is invariant under reparameterization. 

(b) The authors use 'essentially flat' or 'weakly informative' priors, i.e. conjugate-like priors with very 
small parameter values. This is dangerous and is not recommended. There is no reason to believe 
that those priors are weakly informative on the parameters of interest. Indeed, these limiting proper 
priors can have hidden undesirable features such as strong biases (cf. the Stein paradox). Moreover, 
they may approximate a prior function which would result in an improper posterior and using a 
'vague' proper prior in that case does not solve the problem; the answer will then typically be ex- 
tremely sensitive to the hyperparameters chosen for the vague proper prior and, since the Markov 
chain Monte Carlo algorithm will converge because the posteriors are guaranteed to be proper, 
one might not notice anything wrong. If full, credible, subjective elicitation is not possible then one 
should use formal methods to derive an appropriate reference prior. 

(c) The authors' brief comment (in Section 9.2.4) on the calibration of the deviance information crite- 
rion DIC is too short to offer guidance. With Bayes factors, we have a direct interpretation of the 
numbers obtained. The Bayesian reference criterion (Bernardo, 1999) is defined in terms of natural 
information units (and may also be described in terms of log-odds). Is there a natural interpretation 
for DIC? 

(d) The important particular case of nested models is not discussed in the paper. Would the authors 
comment on the behaviour on DIC in that case (and hence on their implication on precise hy- 
pothesis testing)? For instance, what is DIC's recommendation for the simple canonical problem 
of testing a value for a normal mean? It seems to me that, like Akaike's information criterion or 
the Bayesian reference criterion (but not the Bayes information criterion or Bayes factors), DIC 
would avoid Lindley's paradox. Is this so? 

Sujit K. Sahu (University of Southampton) 
This impressive paper shows how the very complicated business of model complexity can be assessed easily 
by using Markov chain Monte Carlo methods. My comments mostly concern the foundational aspects 
of the methods proposed and the interrelationship of the deviance information criterion DIC and other 
Bayesian model selection criteria. 

The paper provides a long list of models and the associated PD, the effective number of parameters. In 
each of these cases PD is interpreted nicely in terms of model quantities. However, there is an unappealing 
feature of PD that I would like to point out in the discussion below. 

Consider the set-up leading to equation (23). Assume further that A1 = 1, C1 = 1 and C2 = r2. Thus 
the likelihood is N(O, 1) and the prior is N(0, T2). Then equation (23) yields that 

1 
PD= + ln2' PD 1 + 11/nT 

Assuming T2 to be finite it is seen that PD increases to 1 as n -+ oo. The unappealing point is that the 
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effective number of parameters is larger for larger sample sizes; conventional intuition suggests other- 
wise. The number of unknowns (i.e. the effective number of parameters) should decrease as more data are 
obtained under this very simple static model. In spite of the authors' views on asymptotics or consistency, 
this point deserves further explanation as it is valid even when small sample sizes are considered. 

In Section 9.1 the relationship between DIC and other well-known Bayesian model selection criteria 
including the Bayes factor is discussed. Although DIC is not to be viewed as a formal model choice crite- 
rion (according to the authors), it is often (and it will be) used to perform model selection; see for example 
the references cited by the authors. In this regard a more precise statement about the relationship between 
the Bayes factor and DIC can be made. I illustrate this with the above simple example taken from the 
paper. 

Assume that the observation model is N(O, 1) and the prior for 0 is N(0, r2). Suppose that model 0 
specifies that Ho : 0 = 0 and model 1 says that H1: 0 7 0. I assume that both n and r2 are finite and thus 
avoid the problems with interpretation of the Bayes factor and Lindley's paradox. Using the Bayes factor, 
model 0 will be selected if 

ny2 < (1 + nr2)log(l + nr2) 
nT2 

In contrast, DIC selects model 0 if 

n2 <(1 + nr2) 2 
2 + nr2 

Clearly, if DIC selects model 0 then the Bayes factor will also select model 0. It is also observed that the 
Bayes factor allows for higher Iyl-values without rejecting the simpler model. In effect DIC is seen to have 
the much discussed poor behaviour of a conventional significance test which criticizes the simpler null 
hypothesis too much and often rejects it when it should not. 

Sylvia Richardson (Imperial College School of Medicine, London) 
I restrict my comments on this far-reaching paper to the use of the deviance information criterion DIC 
for choosing within a family of models and the behaviour of pD as a penalization. 

My first remark concerns the spatial example of Section 8. The DIC-values for the 'spatial' and the 
'spatial plus exchangeable' models are nearly identical. Thus, the authors resort to external pragmatic 
considerations for preferring the simpler model, while the more complex one is not penalized. 

Table 5. Performance of DIC for mixture models with different 
numbers of components 

Resultsfor the following values of k. 

k=2 k=3 k=4 k=5 k=6 

Bimod (n = 200) 
DIC(k) 566.7 567.7 568.5 569.2 570.0 
E(Dly, k) 563.4 563.7 564.1 564.5 565.0 
PD 3.3 4 4.4 4.7 5 

Skew (n = 200) 
DIC(k) 545.5 535.9 535.5 535.7 535.8 
E(Dly, k) 540.3 530.1 530.0 530.2 530.4 
PD 5.2 5.8 5.5 5.5 5.4 

North-south (n = 94) 
DIC(k) 110.5 110.9 110.9 110.5 110.8 
E(Dly, k) 94.2 91.9 89.6 87.7 86.2 
PD 16.3 19.0 21.3 22.8 24.6 
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Fig. 8. Predictive densities for the skew data set: ......, k = 2; , unconditional (results for k = 3,4, 5 
are superimposed) 

Turning to mixture models and the comparison between models with different numbers of components, 
I discuss two situations. The first concerns simple Gaussian mixtures with an unknown number of com- 
ponents; yi - S =iwjf(.IOj), i = 1, ..., n, where f(lIj) is Gaussian. To calculate DIC in this setting, 
let us focus on mixtures as flexible distributions and use the conditional density for a new observation 
Y* : g(Y*) = P(Y*IY, w, 0, k) to calculate the deviance D(g) = -2 E', log{g(yi)} and take its expec- 
tation over the Markov chain Monte Carlo run, conditional on k. We have po(k) = E{D(g)} - D(gk), 
where ̂ k = P(Y* IY, k). 

Two cases of Gaussian mixtures were simulated (one replication): a well-separated bimodal mix- 
ture (bimod), 0.5 N(-1.5, 0.5) + 0.5 N(l.5, 0.5), and an overlapping skewed bimodal mixture (skew): 
0.75 N(0, 1) + 0.25 N(1.5, 0.33), each with 200 data points. 

In the clear-cut bimod case, DIC(k) is lower for k = 2, with a small incremental increase in both 
E(Dly, k) and PD as extra components are being fitted (Table 5). In the more challenging skew case, the 
pattern of DIC-values shows that this data set requires more than two components to be adequately fitted, 
but the values of DIC and PD stay surprisingly flat between three and six components. Note that the pre- 
dictive density plots conditional on k = 3, 4, 5 are completely superimposed (Fig. 8), indicating that more 
than three components can be considered as overfitting the data, in the sense that they give alternative 
explanations that are no better but involve increasing numbers of parameters. 

The second situation is that of spatial mixture models proposed in Green and Richardson (2002) in the 
context of disease mapping. DIC was calculated by focusing on area-specific risk. Referring, for exam- 
ple, to the simple north-south (two-component) contrast defined in that paper, we find that DIC stays 
stable as k increases, decreasing E(Dly, k) values being compensated by increasing pD. On the basis of a 
mean-square error criterion between the estimated and the underlying risk surface, a deterioration of the 
fit would be seen with values of 0.14, 0.15 and 0.16 for k = 2, 3, 4 respectively. 

Thus PD acts as a sufficient penalization only in the simplest case. In other cases, DIC does not distin- 
guish between alternative fits with increasing number of parameters. 

Peter Green (University of Bristol) 
I have two rather simple comments on this interesting, important and long-awaited paper. 

The first concerns using basic distribution theory to give a surprising new perspective on PD in the 
normal case, perhaps identifying a missed opportunity in exposition. 

Consider first a decomposition of data as focus plus noise: 

Y=X+Z 

where X and Z are independent n-vectors, normally distributed with fixed means and variances, and var(Z) 

627 

This content downloaded from 129.100.58.76 on Sun, 11 Jan 2015 19:18:43 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


628 Discussion on the Paper by Spiegelhalter, Best, Carlin and van der Linde 

is non-singular. The deviance is 

D(X) = (Y - X)T var(Z)-l (Y - X) 

and so 

PD = E[D(X)IY] - D(E[XIY]) = tr{var(Z)-1var(ZIY)}, (42) 

using the standard expression for the expectation of a quadratic form. Several results in the paper have 
this form, possibly in disguise. However, 

var(ZIY) = var(Z) - cov(Z, Y) var(Y)-lcov(Y, Z) 
= var(Z) - var(Z) var()-lvar(Z) 
= var(Z) var()-1 var(Y) - var(Z)}, 

yielding the much more easily interpretable 

PD = tr{var(Y)- var(X)}. (43) 

This allows a very clean derivation of examples in Sections 2.5 and 4.1-4.3. For example, in the Lindley 
and Smith model we have var(Z) = C1 and var(X) = A1C2AT, and so 

PD = tr{(AIC2A Cl)AC2A ATC (A C + C21)-1 }, 

as in equation (21) of the paper. 
Turning now to hierarchical models, consider a decomposition into k independent terms 

Y = Z+Z2 + ... + Zk, 

where all Zi are normal, and var(Zk) is non-singular. These represent all the various terms of the model: 
fixed effects with priors, random effects with different structures, errors at various levels; again all means 
and variances are fixed. Then for any level = 1, 2, ...k - 1 we may take the sum of the first / terms as 
the focus and the rest as noise. 

Version (42) of pD above is then not very promising: 

PD(I) = tr{var( Zi) var E Z Y}, 

but expression (43) gives the more compelling 

po(l) = tr {var()-1 var (Z Zi) }. (44) 

Thus PD has generated a decomposition of the overall degrees of freedom n = E tr{var(Y)-var(ZZ)} into 
non-negative terms attributable to the levels I = 1, 2, ..., k, just as in frequentist nested model analysis of 
variance. (We must take care with improper priors in using expression (44), and terms should be treated as 
limits as precisions go to 0.) Of course, expressions (43) and (44) fail to hold with unknown variances or 
with non-normal models, but the observations above do provide further motivation for accepting PD as a 
measure of complexity, and suggest exploring more thoroughly its role in hierarchical models. 

My second point notes that the paper has no examples with discrete 'parameters'. Conditional distri- 
butions in hierarchical models with purely categorical variables can be computed by using probability 
propagation methods (Lauritzen and Spiegelhalter, 1988), avoiding Markov chain Monte Carlo methods, 
so that pD is again a cheap local computation. Presumably marginal posterior modes would be used for 
0. Certainly this is a context where PD can be negative. Can connections be drawn with existing model 
criticism criteria in probabilistic expert systems? 

The following contributions were received in writing after the meeting. 
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Kenneth P. Burnham (US Geological Survey and Colorado State University, Fort Collins) 
This paper is an impressive contribution to the literature and I congratulate the authors on their achieve- 
ments therein. My comments focus on the model selection aspect of the deviance information criterion 
DIC. My perspectives on model selection are given in Burnham and Anderson (2002), which has a focus 
on the Akaike information criterion AIC as derived from Kullback-Leibler information theory. A lesson 
that we learned was that, if the sample size n is small or the number of estimated parameters p is large 
relative to n, a modified AIC should be used, such as AICc = AIC + 2p(p + l)/(n - p - 1). I wonder 
whether DIC needs such a modification or if it really automatically adjusts for a small sample size or large 
p, relative to n. This would be a useful issue for the authors to explore in detail. 

At a deeper level I maintain that model selection should be multimodel inference rather than just infer- 
ence based on a single best model. Thus, model selection to me has become the computation of a set of 
model weights (probabilities in a Bayesian approach), based on the data and the set of models, that sum to 
1. Given these weights and the fitted models (or posterior distributions), model selection uncertainty can 
be assessed and model-averaged inferences made. The authors clearly have this issue in mind as demon- 
strated by the last sentence of Section 9.1.3. I urge them to pursue this much more general implementation 
of model selection and to seek a theoretical or empirical basis for it with DIC. 

There is a matter that I am confused about. The authors say '... we essentially reduce all models 
to non-hierarchical structures' (third page), and 'Strictly speaking, nuisance parameters should first be 
integrated out ...' (Section 9.2.3). Does this mean that we cannot make full inferences about models with 
random effects? Can DIC be applied to random-effects models? It seems so on the basis of their lip cancer 
example (Section 8.1). Can I have a model with fixed effects r, random effects 1, ..., , k, with postulated 
distribution g(l10), 0 as fixed effects (plus priors on all fixed effects) and have my focus be all of r, ) 
and 0? Thus, I obtain shrinkage-type inferences about the bi; I do not integrate out the 0 (AIC has been 
adapted to this usage). 

The authors make a point (page 612) that I wish to make more strongly. It will usually not be appropriate 
to 'choose' a single model. Unfortunately, standard statistical model selection has been to select a single 
model and to ignore any selection uncertainty in the subsequent inferences. 

Maria Delorio (University of Oxford) and Christian P. Robert (Universite Paris Dauphine) 
Amidst the wide scope of possible extensions of their paper, the authors mention the case of mixtures 

k 

ipj f(Xlj), 
j=1 

which is quite interesting, as it illustrates the versatility of the deviance information criterion DIC under 
different representations of the same model. 

In this set-up, if the pjs are known, the associated completed likelihood is 

n k 

L{(l(xl,zi), ..., n,zn)} Oc fI f(xilz,) = l l n f(xilsj). (45) 
i=l j=1 i:z,=j 

Therefore, conditional on the latent variables z = (zl,..., Zn), and setting the saturated deviance f(x) 
to 1, define 

k 

[DIClz] = E E (-4E[log{f(xilj)}lx, z} + 2 log{f(xilj)}]) 
j=l i:z,=j 

where Oj = E(0jlx, z) (under proper identifiability constraints; see Celeux et al. (2000)). The integrated 
DIC is then 

DIC = E [DICIz] Pr(zlx), 
zEZ 

where Pr(zlx) can be approximated (Casella et al., 1999). 
A second possibility is the observed DIC, DIC2, based on the observed likelihood, which does not use 

the latent variables z. (We note the strong dependence of DIC on the choice of the saturated functionf 
and the corresponding lack of clear guidance outside exponential families. For instance, if f(xi) goes from 
the marginal density to the extreme alternative where both 01 and 62 are set equal to xi, DIC2 goes from 
-31.71 to 166.6 in the following example.) 
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Table 6. Comparison of the three different criteria DIC1,DIC2 and 
DIC3 for a simulated sample of 100 observations from 0.5.(5, 1.5) 
+ 0.5X(7.5, 8) with a conjugate prior 01 -.'V(4, 5) and 02 A,/(8, 5), 
and of DIC based on the true complete sample (x, z) and DIC for the 
single-component normal model (with an A/(6, 5) prior and a variance 
set of 6.07) 

Resultsfor the following models: 

Normal Complete, Integrated, Observed, Full, 
(k =1) [DIC I z] DIC1 DIC2 DIC3 

DIC 465.1 413.5 462.6 457.6 447.4 
ADIC -51.6 -2.5 -7.5 -17.6 
PD 0.99 1.96 2.27 1.98 28.06 

-2 0 2 4 6 8 10 12 14 16 

Fig. 9. Histogram of the simulated data set and true density 

A third possibility is the full DIC, DIC3, based on the completed likelihood (45) when it incorporates z 
as an additional parameter, in which case the saturated deviance could be the normal standardized devi- 
ance, although we still use f(x) = 1 for comparison. 

The three possibilities above lead to rather different figures, as shown by Table 6 for the simulated data 
set in Fig. 9; Table 6 exhibits in addition a lack of clear domination of the mixture (k = 2) versus the 
normal distribution (k = 1) (second column), except when z is set to its true value (third column) or 
estimated (last column). Note that, for the full DIC, PD is far from 102; this may be because, for some 
combinations of z, the likelihood is the same. (This also relates to the fact that z is not a parameter in the 
classical sense.) 

David Draper (University of California, Santa Cruz) 
The authors of this interesting paper talk about Bayesian model assessment, comparison and fit, but-if 
their work is to be put seriously to practical use-the real point of the paper is Bayesian model choice: we 
are encouraged to pick the model with the smallest deviance information criterion DIC among the class 
of 'good' models (those which are 'adequate candidates for explaining the observations'). (It is implicit 
that somehow this class has been previously specified by means that are not addressed here-would the 
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authors comment on how this set of models is to be identified in general?) However, in the case of model 
selection it would seem self-evident that to choose a model you have to say to what purpose the model will 
be put, for how else will you know whether your model is sufficiently good? We can, perhaps, use DIC 
to say that model 2 is better than model 1, and we can, perhaps, compare D with 'the number of free 
parameters in 0' to 'check the overall goodness of fit' of model 2, but we cannot use the authors' methods 
to say whether model 2 is sufficiently good, because the real world definition of this concept has not been 
incorporated into their methods. It seems hard to escape the fact that specifying the purpose to which a 
model will be put demands a decision theoretic basis for model choice; thus (Draper, 1999) I am firmly in 
the camp of Key et al. (1999). 

See Draper and Fouskakis (2000) and Fouskakis and Draper (2002) for an example from health policy 
that puts this approach into practice, as follows. Most attempts at variable selection in generalized 
linear models conduct what might be termed a benefit-only analysis, in which a subset of the available 
predictors is chosen solely on the basis of predictive accuracy. However, if the purpose of the modelling is 
to create a scale that will be used-in an environment of constrained costs, which is frequently the case-to 
make predictions of outcome values for future observations, then the model selection process must seek 
a subset of predictors which trades off predictive accuracy against data collection cost. We use stochastic 
optimization methods to maximize the expected utility in a decision theoretic framework in the space of 
all 2P possible subsets (for p of the order of 100), and because our predictors vary widely in how much 
they cost to collect (which will also often be true in practice) we obtain subsets which are sharply different 
from (and much better than) those identified by benefit-only methods for performing 'optimal' variable 
selection in regression, including DIC. 

Alan E. Gelfand (Duke University, Durham) and Matilde Trevisani (University of Trieste) 
The authors' generally informal approach motivates several remarks which we can only briefly develop 
here. First, in Section 2.1, we think that better terminology would be 'focused on p(yIO)' with 'interest in 
the models for 0', as in, for example, the example in Section 8.1 where there is no 0 in the likelihood for any 
of the given models. Even the example in Section 8.2, where 0 does not change across models, emphasizes 
the focus on p(yIO) since f(y) depends on the choice of p. So, here, a relative comparison of the models 
depends on the choices made for thefs. Without a clear prescription forf (once we leave the exponential 
family), the opportunity exists to fiddle the support for a model. 

Though the functional form of the Bayesian deviance does not depend on p(O), DIC and PD will. With 
the authors' hierarchical specification, 

p(y, 0, O) = p(ylO) p(0l\ ) p (p), 

the effective degrees of freedom will depend on p(Cp). But, also, under this specification, rather than p(y 0), 
we can put a different distribution, p(ylo), in focus. Again, it seems preferable not to speak in terms of 
'parameters in focus'. 

Moreover, since p(ylO) and p(ylP) have the same marginal distribution p(y), a coherent model choice 
criterion must provide the same value under either focus. Otherwise, a particular hierarchical specification 
could be given more or less support according to which distribution we focus on. But let DICI, PDi and 
fi(y) be associated with p(ylO) and DIC2, PD2 and f2(Y) with p(ylb). To have DIC1 = DIC2 requires, 
after some algebra, that 

ln{f2(y)} - ln{fi(y)} = PD1 - PD2 + E[ln{p(ylb)ly}] - E[ln{p(yl0)Iy}]. 

Just as the functional form of fi(y) depends only on the form of p(yIO), the form for f2(Y) should 
depend only on p(yl\). Evidently this is not so. For instance, under the authors' example in expression 
(2), fi (y) = 0. The above expression yields the non-intuitive choice 

ln{f2(y)} = Ewi + E ln( - wi) - Avar(?Ply) wi -2 wy- E (yE ly)}2 

where wi = ri/(ri + A). This issue is discussed further in Gelfand and Trevisani (2002). 

Jim Hodges (University of Minnesota, Minneapolis) 
This is a most interesting paper, presenting a method of tremendous generality and, as a bonus, a fine 
survey of related methods. I can think of a dozen models for which I would like to see PD, but I shall ask 
for just one: a balanced one-way random-effects model with unknown between-group precision, in which 
each group has its own unknown error precision, these latter precisions being modelled as draws from, 
say, a common gamma distribution with unknown parameters. Thus the precisions will be shrunk as well 
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as the means, and presumably the two kinds of shrinkage will affect each other. The focus could be either 
the means or the precisions, or preferably both at once. 

One thing is troubling: the possibility of a negative measure of complexity (Section 2.6, comment (d)). 
Hodges and Sargent (2001) is linked (shackled?) to linear model theory, in which complexity is defined 
as the dimension of the subspace of gin in which the fitted values lie. In our generalization, the fitted 
values may be restricted to 'using' only part of a basis vector's dimension, because they are stochastically 
constrained by higher levels of the model's hierarchy. (Basing complexity on fitted values may remove the 
need to specify a focus, although, if true, this is not obvious.) In this context, zero complexity makes sense: 
the fitted values lie in a space of dimension 0 specified entirely by a degenerate prior. Negative complexity, 
however, is uninterpretable in these terms. The authors attribute negative complexity to a poor model fit, 
which suggests that PD describes something more than the fitted values' complexity per se. Perhaps the 
authors could comment further on this. 

Youngjo Lee (Seoul National University) 
It is very interesting to see the Bayesian view of Section 4.2 of Lee and Nelder (1996), which used extended 
or h-likelihood and in which we introduced various test statistics. For a lack of fit of the model we proposed 
using the scaled deviance 

Dr = -2(log{p(ylt)} - log[p{ylt(9O) = y}]) 

with degrees of freedom E(Dr), estimated by n - tr(-L"V) where -L' = V* as in Sections 4.3 and 5.4 of 
this paper. We considered a wider class of models, which we called hierarchical generalized linear models 
(HGLMs) (see also Lee and Nelder (2001a, b)), but some of our proofs hold more widely than this, so 
that, for example, Section 3.1 of this paper is summarized in our Appendix D, etc. For model complexity 
the authors define in equation (9) the scaled deviance 

Dm = -2[1og{p(yl0)} - log{p(yl0t)}]. 

Dr and Dm are the scaled deviances for the residual and model respectively, whose degrees of freedom 
add up to the sample size n. We are very glad that the authors have pointed out the importance of the 
parameterization of 0 in forming deviances. We extended the canonical parameters of Section 5 to arbi- 
trary links by defining the h-likelihood on a particular scale of the random parameters, namely one in 
which they occur linearly in the linear predictor. In HGLMs the degrees of freedom for fixed effects are 
integers whereas those for random effects are fractions. Thus, a GLM has integer degrees of freedom 
Pm = rank(X) because C 1 6 is 0 in Section 5, whereas the estimated degrees of freedom of Dm in HGLMs 
are fractions. Lee and Nelder (1996) introduced the adjusted profile h-likelihood eliminating 0, and this 
can be used to test various structures of the dispersion parameters A discussed in the examples of Section 
8: see the model checking plots for the lip cancer data in Lee and Nelder (2001 b). Lee and Nelder (200 la) 
justified the simultaneous elimination of fixed and random nuisance parameters. It will be interesting to 
have the Bayesian view of the adjusted profile h-likelihood. 

Xavier de Luna (Umea University) 
This interesting paper presents Bayesian measures of model complexity and fit which are useful at different 
stages of a data analysis. My comments will focus on their use for model selection. In this respect, one 
of the noticeable contributions of the paper is to propose a Bayesian analogue, the deviance information 
criterion DIC, to the Akaike information criterion AIC and TIC. Both DIC and TIC are generalizations 
of AIC. The former may be useful in a Bayesian data analysis, whereas the frequentist criterion TIC has 
the advantage of not requiring the 'good model' assumption discussed by the authors. 

Such 'information-based' criteria use measures of model complexity (denoted p* or PD in the paper). 
It should, however, be emphasized that models can be compared without having to define and compute 
their complexity. Instead, out-of-sample validation methods, such as cross-validation (Stone, 1974) or 
prequential tests (Dawid, 1984) can be used in wide generality. Moreover, to use an estimate of p* in a 
model selection criterion, some characteristics of the data-generating mechanism (DGM)-'true model' in 
the paper-must be known. For instance, depending on the DGM either AIC-type or Bayes information 
type criteria are asymptotically optimal (see Shao (1997) for a formal treatment of linear models). Thus, 
when little is known about the DGM, out-of-sample validation provides aformal and general framework 
to perform model selection as was presented in de Luna and Skouras (2003), in which accumulated pre- 
diction errors (defined with a loss function chosen in accordance with the purpose of the data analysis) 
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were advocated to compare and choose between different model selection strategies. When many models 
are under scrutiny, out-of-sample validation may be computationally prohibitive and generally yields high 
variability in the selection of a model. In such cases, different model selection strategies based on p* 
(making-implicitly or explicitly-diverse DGM assumptions) can be applied to reduce the dimension of 
the selection problem. Accumulated prediction errors can then be used to identify the best strategy while 

making very few assumptions on the DGM. 

Xiao-Li Meng (Harvard University, Cambridge, and University of Chicago) 
The summary made me smile, for the 'mean of the deviance - deviance of the mean' theme once injected 
a small dose of excitement into my student life. I was rather intrigued by the 'cuteness' of expressions 
(3.4) and (3.8) of Meng and Rubin (1992), and seeing a Bayesian analogue of our likelihood ratio version 
certainly brought back fond memories. My excitement back then was short lived as I quickly realized that 
all I was deriving was just a masked version of a well-known variance formula. Let D(x, ,p) = (x - p)2 be 
the deviance, a case of realized discrepancy of Gelman et al. (1996); then 

n 

-1 (Xi-)2 D(xi, t) - D(x, i). (46) 
n i=l 

Although equation (46) is typically mentioned (with ,L set to 0) for computational convenience, it is the 
back-bone of the theme under quadratic or normal approximations, or more generally with log-concave 
likelihoods, beyond which assumptions become much harder to justify or derive. (Obviously, equation 
(46) is applicable for posterior or likelihood averaging by switching x and ,i.) 

Section 1 contained a small puzzle. I wondered why Ye (1998) was omitted from the list of 'the most 
ambitious attempts', because Ye's 'data derivative' perspective goes far beyond the independent normal 
model cited in Section 4.2 (for example, it addresses data mining). It also provides a more original and in- 

sightful justification than normal approximations, especially considering that Markov chain Monte Carlo 
sampling is most needed in cases where such approximations are deemed unacceptable. 

Section 2.1 presented a bigger puzzle. The authors undoubtedly would agree that a statement like 'In 
hierarchical modelling we cannot uniquely define a "posterior" or "model complexity" without specifying 
the level of the hierarchy that is the focus of the modelling exercise' is tautological. Surely the 'posterior' 
and thus the corresponding 'model complexity' depend on the level or parameter(s) of interest. So why 
does the statement become a meaningful motivation when the word posterior is replaced by 'likelihood'? 
There is even some irony here, because hierarchical models are models where there are unambiguous 
and uncontroversial marginal likelihoods-both L(0ly) = p(ylO) and L(?ly) = p(ylo) in Section 2.1 are 
likelihoods in the original sense. 

Although limitations on space prevent me from describing my reactions when reading the rest, I do wish 
that DIC would stick out in the dazzling AIC-TIC alphabet contest, so we would all be less compelled 
to look for UIC (unified or useful information criterion?) .... 

The authors replied later, in writing, as follows. 

We thank all the contributors for their wide-ranging and provocative discussion. Our reply is organized 
according to a number of recurring themes, but constraints on space mean that it is impossible to address 
all the points raised. Echoing Brooks's opening remarks, our hope is that discussants and readers will 
be sufficiently inspired to pursue the ideas proposed in this paper and to address some of the unresolved 
issues highlighted in the discussion. 

Modelfocus and definition of deviance 
Our notion of the 'focus' of a model and its relationship to the prediction problem of interest provoked some 

controversy. The crucial role of the model focus is to define the (parameterization of the) likelihood, and we 

appreciate Gelfand and Trevisani's suggestion of the term 'focus on p(ylO)', with interest in the structure of 

0, rather than models 'focused on 0'. In all our examples the likelihood has been taken to be p(ylO) (using 
the notation of Section 2.1) leading to models with a closed form likelihood but an unknown number of 
effective parameters that we propose to estimate by PD. However, as Brooks points out, if the focus is on 

p(yWI) (i.e. integrating over the random effects 0), then in general the likelihood will no longer be available 
in closed form, and other methods must be sought to evaluate p(ylb): in this circumstance the number of 

parameters will be the dimension of / or less, depending on the strength of the prior information on p. 
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Smith and others ask how the model focus should be chosen in practice. We argue that the focus is 
operationalized by the prediction problem of interest. For example, if the random effects 0 in a hierarchi- 
cal model relate to observation units such as schools or hospitals or geographical areas, where we might 
reasonably want to make future predictions for those same units, then taking p(ylO) as the focus is sensi- 
ble. The prediction problem is then to predict a new Yi,, rep conditional on the posterior estimate of Oi for 
that unit. However, if the random effects relate to individual people, say, then we are often interested in 
population-average inference rather than subject-specific inference, so we may want to predict responses 
for a new or 'typical' individual rather than an individual who is already in the data set. In this case, it is 
appropriate to integrate over the Os and to predict Yrep for a new individual conditional on 4, leading to 
a model focused on p(yIoP). A crucial insight is that a predictive probability statement such as p(Yreply) is 
not uniquely defined without specifying the level of the hierarchy that is kept fixed in the prediction-this 
defines the focus of the model. In summary, we feel that the issue of focus with respect to predictive model 
assessment and selection is an issue in hierarchical modelling and not specifically Bayesian. 

When the forms of the likelihoods differ between models being compared, it is clearly vital to be careful 
that any standardizing terms that are used in the deviance are common. As observed by Smith, a compar- 
ison of models with focus at different levels of the hierarchy may not be meaningful as they correspond to 
different prediction problems. 

Features of PD 
Several discussants questioned the definition or performance of pD. As to the definition we maintain our 
claim (in spite of Dawid's comment) that it is in our models that there is a genuine Bayesian interest in 
quantifying the interaction between Y and 0 in probabilistic terms. One can indeed often think of PD in 
terms of dimensionality as Hodges suggests, but in general we prefer to think of it as a feature of thejoint 
distribution of Y and 0. This frees it from the shackles imposed by normal linear model theory. Such a 
measure of interaction or model complexity may, for example, be used to reparameterize hyperparameters 
4 to facilitate an intuitively interpretable specification of model priors on 4 (Holmes and Denison, 1999). 
Still, as suggested by Brooks, PD may turn out to be only a step towards a (better) definition of model 
complexity such as that suggested by Plummer: we feel that the quantity that he proposes is intuitively 
intriguing and that it may be particularly appropriate in exponential families, but we wonder about its 
general validation and justification. 

Our uncertainty about whether to recommend PD as a definition or as an estimate of a quantity still 
to be defined makes it difficult to judge proposals for an 'improvement'. For example, using an invariant 
estimator such as that proposed by Robert and Titterington or Bernardo instead of 0 is tempting as part 
of a definition, but it takes into account only one feature of PD while destroying others such as the trace 
approximation. Similarly the occurrence of a negative value of pD, typically observed if the model fits 
poorly, might resemble a negative estimate for a positive parameter. We take a pragmatic point of view 
and look forward to theoretical progress that provides insight into why PD generally appears to work well. 
Green provides a valuable insight into the interpretation of PD in the normal case, using an attractive 
decomposition of the total predictive variance of the observables. 

Replying to those discussants who were concerned about observing PD < n under 'flat' priors, we re- 
emphasize that PD = n was obtained theoretically only in the normal case or under normal approxima- 
tions. There is no proof that PD = n for general distributions. In the case of Brooks's illustration using the 
Scottish lip cancer data, in which he shows that PD appears to 'lose' two or three (modulo Monte Carlo 
error) parameters under such priors, we point out that two of the 56 observations in this data set are 0 
with small expected values and so contribute negligibly to the Poisson deviance. We have replicated his 
analysis replacing these two observations by non-zero counts, and we found that PD increases by about 2 
to around 55.5. 

We certainly do not recommend the unthinking use of default priors, a concern of Smith and Bernardo: 
on the contrary, one of our main aims is to demonstrate how an informative prior reduces model com- 
plexity. Typically a large number of parameters p relative to a small sample size n is compensated by using 
an informative prior, and the deviance information criterion DIC and PD adjust accordingly without any 
need for additional adjustment for small sample size (see Burnham, and Lawson and Clark's comment on 
the example in Section 8.1). 

There is evidence (Daniels and Kass, 1999, 2001) that, in the absence of missing data, the use of default 
priors for variance components typically has little effect on the posteriors for the main effects in a model. 
Still, Smith and Bernardo observe that the flat priors that may maximize PD are not necessarily weakly in- 
formative, and we agree. Reference priors that are least informative in an information theoretical sense can 
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be easily studied in some of our examples. For example, Fig. 1 displays the performance of the beta(-, ?) 
reference prior (corresponding to a prior sample size of ni = a + b = 1) for the binomial likelihood, 
and the approximation (31) indicates that pe based on the reference prior is greater than pe based on 
the uniform beta(l, 1) prior (which has prior sample size ni = 2). Similarly for a Poisson likelihood the 
reference prior 7r(,i) oc ,/i yields a r(yi + 1, ni) posterior distribution corresponding to a = 2 b -- 0. 
Hence pD, Yi/(yii + 2) and pe, ; ni/ni = 1 might be compared with the values shown in Fig. 2. 

Properties of DIC 
Another main part of the discussion focused on the properties and performance of DIC. Plummer doubted 
the usefulness of the expected loss that DIC approximates, but he has included a standardizing constant in 
the loss function which should not be present (we have made this clearer in the paper). The expected loss in 
the (independent) normal linear case is then p + PD + n log(27ra2): this says that when comparing 'good' 
models with the same a2s the expected loss is minimized with a degenerate prior in which no parameters 
are estimated. This seems entirely reasonable, as all the models have equivalent fit, and so distinction is 
based on complexity alone. Of course in practice either a2 will be estimated or a2 will vary between models, 
and hence the appropriate trade-off between fit and complexity will naturally arise. A practical aspect, 
related to the need for 'good' models in the derivation of DIC, is that the term C2 ignored by DIC will tend 
to be negative with poorly fitting models and hence to inflate DIC: the approximation of DIC to expected 
loss will thus tend automatically to penalize models that are not 'good'. 

Though we agree with Brooks that owing to its heuristic derivation DIC may be considered as a 'broad 
brush technique', we do not regard it to be as arbitrary as the alternatives that he suggests. In particular 
we do not feel that terms of 'fit' and 'complexity' can be arbitrarily combined, but we re-emphasize that 
a measure of model complexity results from correcting overfit due to an approximation of the expected 
loss that 'uses the observations twice'. Similarly we would like to see a justification of Vehtari's estimates 
of expected utilities as valid approximations generalizing DIC. 

Berardo asks for the application of DIC to nested models and hypothesis testing, in particular the 
occurrence of Lindley's paradox. This is an interesting question partially answered by the example dis- 
cussed in Section 8.1 where some of the competing models are nested. The key point is that DIC is 
designed to take into account priors that are concentrated on parameters which are specified in a model, 
thus effectively assigning prior probability 0 to hypothetically omitted parameters (if there are remaining 
parameters). Let us consider Lindley's paradox in the following version: when comparing using the Bayes 
factor X ~ N(po, a2/n) with X ~ N(,, o2/n) where p ~ N(1i, r2), evidence in favour of Ho : ,i = 0AO 
becomes overwhelming as r2 -> o even if x would cause the rejection of Ho at any arbitrary signifi- 
cance level. If c2 is known t is the only parameter in the model. To apply DIC we compare the model 
(X N(t, U2/n) with prior p ~ N(Qo, r2), r2 -> 0, corresponding to Ho with the model with the same like- 

lihood but prior ,t ~ N(/Q1, r2), r2 -> oo. Then D(/) = n( - i)2/ar2, D(-L) = (n/a2){D(t) + var(/Cl)} 
and PD = n/cr2 var(pli|x). For r2 -- 0, PD - 0, t -- io and DIC -+ D(po). Similarly, for 72 -+ 0o, 
PD -+ 1, , -+ x and DIC -- D(x) + 2 = 2. Hence the model with the flat prior-the 'alternative 
hypothesis'-is favoured if D(,o) > 2 or JI/n( - ,0)/acr > 1.414 which corresponds to a rejection of Ho at 
a significance level ca m 0.16-exactly the behaviour of the Akaike information criterion. Thus Lindley's 
paradox is not observed. Similarly Sahu contrasts the prior concentrated on to = 0 with an informative 
prior N(0, 72) which is centered at /o, also. Thus it is reasonable to reject Ho using DIC if the data are 
suitably compatible with the 'alternative' prior. However, we do not accept an assessment of DIC that uses 
Bayes factors as a 'gold standard', since they are dealing with different prediction problems (see below). 

Several discussants (Brooks, Bernardo, Burnham and Smith) were concerned with the lack of calibration 
of DIC. However, unlike the Bayesian reference criterion (Bernardo, 1999), which is based on a Kullback- 
Leibler distance and therefore a relative measure, DIC is an approximation to an absolute expected loss, 
and we cannot calibrate it (externally). Correspondingly, 'coherence' of model choice cannot be required 
in terms of equal DIC-values as Gelfand and Trevisani or Smith claim but can only be discussed in terms 
of model ranking by DIC. Note, by the way, that Plummer's alternative measure of model complexity, as 
well as our PD, are defined relatively, indicating that these measures might be calibrated. 

Finally, we certainly do not claim that applying DIC is an exhaustive tool for model assessment. 
Although we feel that our Fig. 4 is a step in the right direction, additional techniques such as those 
discussed by Nelder and Atkinson are certainly needed for refined analyses. 

Applications 
There were various comments on the interpretation of PD in the Scottish lip cancer analysis (Lawson and 
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Clark, and Richardson) and in mixture models (Richardson, and DeIorio and Robert). Here we tend to 
think of PD as the estimable dimension of the parameter space or, alternatively, as the size of the parameter 
space that is identifiable by the data. We repeat that the spatial model 3 in the lip cancer example (Section 
8.1) provides stronger prior information than the exchangeable model 2 leading to a smaller PD. Only the 
sum of the spatial and exchangeable random effects is uniquely identifiable in model 4 and so PD remains 
virtually unchanged compared with the spatial-only model 3, thus justifying the lack of an additional 
'penalty' for the apparently more complex model. The same is true for mixture models, where increasing 
the number of components does not necessarily increase the identifiable parameter space. We do appreciate 
the discussion of DIC in mixture models introduced by Delorio and Robert, and by Richardson (though 
Richardson does not appear to have calculated DIC as we have defined it, but a different criterion based on 
predictive deviances). DeIorio and Robert's example nicely illustrates a range of possibilities for defining 
DIC in this case, although we re-emphasize that a comparison of models with different focus (e.g. their 
DIC2 versus DIC3) may not be meaningful, and we further note that their integrated DIC (DICi) does 
not correspond to our definition of DIC. 

In response to Lawson and Clark's query about averaging 'location' parameters, we point to Green's 
comment concerning the calculation of PD and DIC for models with discrete parameters, and his sugges- 
tion that marginal posterior modes could be used for 0 in this case. 

We thank Nelder and Atkinson for their refinements to the analysis of the stack loss data (Section 
8.2). We disagree with Smith that our models 4 and 5 for these data are predictively identical since, as 
already discussed, the prediction problem addressed by model 4 integrates over the random effects and 
corresponds to predicting stack loss for a new chimney, whereas model 5 conditions on the random effects 
and corresponds to predicting future stack loss for the 21 chimneys in the data set. 

Alternatives to DIC 
Several discussants (Brooks, Dawid and Sahu) feel that DIC suffers in comparison with more tradi- 
tional Bayesian model selection criteria based on posterior model probabilities and Bayes factors. Here 
we can only repeat that our deliberate intention was to offer an alternative to Bayes factors, which are 
most suitable when the entire collection of candidate models can be specified ahead of time (the 'M 
closed' case of Bernardo and Smith (1994)). In our practical experience, the model-building, criticism 
and rebuilding process is typically an iterative 'M open' one in which the ultimate model collection 
is rarely known ahead of time, and here DIC may emerge as more appropriate. Moreover, Bayes fac- 
tors address how well the prior has predicted the observed data; this prior predictive emphasis ultimately 
leads to the Lindley paradox. DIC instead addresses how well the posterior might predict future 
data generated by the same mechanism that gave rise to the observed data; this posterior predictive 
outlook might be considered intuitively more appealing in many practical contexts. We emphasize that 
these techniques are intended to answer different questions and cannot be expected to give the same 
conclusions: in any case, posterior model probabilities may be highly dependent on within- and between- 
model priors, so their comparison with DIC is not straightforward. On a related point, several discussants 
(Brooks, Burnmham and Draper) mention the possible alternative of model averaging. We do not, however, 
see any justification for transforming DIC-values to relative probabilities, and in any case the prior 
on the model space may be difficult to develop, and might even reasonably be related to model com- 
plexity! 

Dawid wishes for a better definition of p log(n) (instead of just p) for use in the Bayesian information 
criterion (BIC) but previous work has shown that many such definitions are justifiable asymptotically (e.g. 
Volinsky and Raftery (2000)), so this line of research does not appear promising. Regarding the suggestion 
by Lawson and Clark of using p log(n) as a penalty for the BIC, this of course assumes that the number 
of parameters p is a suitable measure of model complexity. But most spatial models of the type that they 
refer to will involve random effects, where such use of the raw parameter count p would be inappropriate; 
indeed, this is precisely the situation that PD was designed to address. 

Vehtari and de Luna argue persuasively on behalf of cross-validation as an alternative to our pos- 
terior predictive approach that avoids a definition of complexity. Whereas no knowledge of the data- 
generating mechanism is required for cross-validation, the data-generating mechanism is necessary in a 
fully Bayesian analysis. Still, cross-validation as an alternative estimation method was also used to estimate 
model complexity by Efron (1986). We certainly acknowledge the potential of this approach, particularly in 
comparisons of different model selection strategies. We agree with Stone concerning further investigation 
of model assessment procedures in which the model is not assumed to be correct, and we refer to Konishi 
and Kitagawa (1996) (whose GIC adds yet further to the alphabet). 
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In conclusion, it is clear that several of the discussants feel that our pragmatic aims are muddying 
otherwise pure Bayesian waters. We feel, however, that the huge increase in the use of Bayesian methods 
in complex practical problems means that full elicitation of informative priors and utilities is simply not 
feasible in most situations, and that reasonably simple and robust methods for prior specification, model 
criticism and model comparison are necessary. We hope that we have made a positive contribution to the 
final concern. 
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