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Box-Jenkins modeling of time series data can be improved and simplified by adhering to contemporary
modeling procedures. This paper gives the theory and techniques of the application of many recent
advances that have been made at the identification, estimation, and diagnostic check stages of model
development. The inverse autocorrelation function and the inverse partial autocorrelation function are
demonstrated to be useful identification tools for both nonseasonal and seasonal models. Parameters can
be estimated more efficiently by employing the modified sum of squares technique. At the estimation stage
it is also possible to obtain a maximum likelihood estimate for a Box-Cox power transformation. The
Akaike information criterion is introduced to formalize mathematically the concept of model parsimony.
When checking for model adequacy, knowing the distribution of the residual autocorrelation allows for a
sensitive test for residual whiteness. Diagnostic checks are given for verifying the assumption of homosce-
dasticity of the model residuals. In practice, heteroscedasticity and nonnormality of the residuals can

often be removed by a Box-Cox transformation.

INTRODUCTION

In Box and Jenkins' [1970] book on time series analysis they
describe a family of linear stochastic models that are now
commonly referred to as either Box-Jenkins or Arima (autore-
gressive integrated moving average) models. This work is in
fact a culmination of the research of many prominent statisti-
cians, starting with the pioneering work of Yule [1927].

When applying a Box-Jenkins model, or in general any type
of stochastic model, to a particular problem it is recommended
that the three stages of model development be adhered to [Box
and Jenkins, 1970; Box and Tiao, 1973]. The first step is to
identify the form of model that may fit the given data. At the
estimation stage the model parameters are calculated by em-
ploying the method of maximum likelihood. Then the model is
checked for possible inadequacies. If the diagnostic checks
reveal serious anomalies, appropriate model modifications can
be made by repeating the identification and estimation stage.

Since 1970 there have been numerous theoretical and techni-
cal application advances in Arima modeling. The purpose of
this paper is to show recent innovations that have been made
at the identification, estimation, and diagnostic check stages
for both seasonal and nonseasonal Arima models. In an ac-
companying paper labeled part 2 [McLeod et al., 1977] the
utility of the methods described in this paper is illustrated by
practical applications to actual time series. Although Arima
models have previously been applied to hydrologic data [Car/-
son et al., 1970; McMichael and Hunter, 1972; McKerchar and
Delleur, 1974; Tao and Delleur, 1976], the authors maintain
that the procedures outlined in this paper substantiate and
simplify the modeling process and thereby further enhance the
use of Box-Jenkins modeling in water resources. Furthermore,
the contemporary modeling methods that are discussed are
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amenable for use in transfer function-noise model building
and intervention analysis [Hipel et al., 1975; Hipel et al., 1977;
Hipel, 1975; Box and Tiao, 1975].

Following a brief theoretical description of Arima difference
equations, the three stages of Arima model building are dis-
cussed. Theoretical development is given where necessary, and
the technique of application of all the methods considered is
clearly explained for both nonseasonal and seasonal models.
In the appendix the various subdivisions of the three stages of
Arima modeling are summarized.

ARIMA PROCESS

Let zy, 2o 23, ", Zi—ys 26y Zee1s * ¢, 2y be a discrete time
series measured at equal time intervals. A seasonal Arima
model for z, is written as [Box and Jenkins, 1970]

dBYP(BHN[(1 — BY(1 — BYzN] ~ u} = 6(B)O(B*)a, (la)
or

HB)P(B N w, — u) = H(B)O(B")a, (16)
where

z» some appropriate transformation of z, such as a Box-
Cox transformation [McLeod, 1974; Box and Cox,
1964] (no transformation is a possible option);

1 discrete time;

s seasonal length, equal to 12 for monthly river flows;

B backward shift operator defined by Bz, = z,_,/* and
Bz, N =z, M

u mean level of the process, usually taken as the average
of the w, series (if D + d > 0 often u = 0);

a, normally independently distributed white noise residual
with mean 0 and variance ¢,* (written as NID (0, 0,2));

$(B) =1— 9,8 — ¢,B* — -+ — ¢,B” nonseasonal autore-

gressive (AR) operator or polynomial of order p such
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that the roots of the characteristic equation ¢(B) = 0
lie outside the unit circle for nonseasonal stationarity

and the ¢,, i = 1, 2, -+, p are the nonseasonal AR
parameters;
(1 — B)' = V¢ nonseasonal differencing operator of order 4

to produce nonseasonal stationarity of the dth differ-
ences, usually d = 0, 1, or 2;

®(B°) = 1 — &,B° — $,B* — --- — &,B"® seasonal AR
operator of order P such that the roots of ®(B8%) = 0'lie
outside the unit circle for seasonal stationarity and the
b, i = 1,2, -+, P are the seasonal AR parameters;

(1 — B)’ =V, seasonal differencing operator of order D to
produce seasonal stationarity of the Dth differenced
data, usually D = 0, 1, or 2;

wy = VIV Pz M stationary series formed by differencing z,
series (n = N — d — sD is the number of terms in the w,
series);

6By=1-0,8—0,B— -+ ~ ¢$,BY nonseasonal moving

average (MA) operator or polynomial of order g such
that the roots of 8(B) = 0 liec outside the unit circle

for invertibility and 6,, i = 1, 2, - -+, g are the nonsea-
sonal MA parameters;
OB) =1 — 0,8 — @B — -+ — OuB* seasonal MA

operator of order @ such that the roots of @(B*) = 0
lie outside the unit circle for invertibility and the @,
i=1,2, -, Q are the seasonal MA parameters.

The notation (p, d, ¢) X (P, D, Q), is used to represent the
seasonal Arima model of (1). The first set of brackets contains
the orders of the nonseasonal operators and the second pair of
brackets has the orders of the seasonal operators. For ex-
ample, a stochastic seasonal noise model of the form (1, 1, 2)
X (0, 1, 1)s with no data transformation is written as

(I = ¢:B){{(1 — BY1 = B)z.] — u)
=(1 = 6,B ~ 6,8°)1 — 0,8, (2)

If the model is nonseasonal, only the notation (p, d, gq) is
needed because the seasonal operators are not present.

When a seasonal model is stationary and requires no differ-
encing (i.e., D = 0 and d = 0), it is often referred to simply as
an Arma (autoregressive moving average) process. The nota-
tion (p, ¢) X (P, Q); is used to represent this type of model. If
an Arma model is nonseasonal, the notation (p, q) is used to
indicate the orders of the AR and MA operators, respectively.
A pure nonseasonal AR process of order p with no differ-
encing is often denoted by AR(p). Likewise. a nonseasonal
MA process of order ¢ is sometimes written as MA(q). Of
course an AR(p) model can be represented equivalently by the
notation (p, 0) or (p, 0, 0), while an MA(q) process can also be
denoted by (0, g) or (0, 0, ¢).

METHOD OF ANALYSIS
1. Identification

The purpose of the identification stage is to determine the
differencing required to produce stationarity and also the or-
der of both the seasonal and the nonseasonal AR and MA
operators for the w, series. Although each identification tech-
nique is discussed separately, in practical applications the out-
put from all the techniques is interpreted and compared to-
gether in order to design the type of model to be estimated.

If at the estimation stage it is decided that the data should be
transformed by a Box-Cox transformation, in many cases this

does not change the form of the model. However, this is not
true in general, and as is pointed out by Granger and Newbold
[1976], certain transformations can change the type of model
to estimate. Therefore even though it is often not necessary to
perform the identification stage for the transformed data, a
researcher should be aware that in other instances this may not
be the case. When a transformation does change the type of
model to be used, diagnostic checks would detect this fact and
then the transformed data can be properly identified.

In a typical Arima modeling application it is preferable that
there be a minimum of about 50 data points in the w, series in
order to get reasonably accurate maximum likelihood estimates
(mle) for the parameters. Therefore proceed with the identi-
fication stage only if at least the minimum required informa-
tion is available.

a. Plot of the original series. A visual inspection of a plot
of the time series may reveal one or more of the following
characteristics: (1) seasonality, (2) trends either in the mean
level or in the variance of the series, (3) persistence, (4) long-
term cycles, or (5) extreme values and outliers.

b.  Autocorrelation function (ACF). The ACF p, measures
the amount of linear dependence between observations in a
time series that are separated by lag k. Box and Jenkins [1970,
pp. 32-36] recommend a specific estimation procedure to de-
termine an estimate r, for p, and also give approximate stand-
ard errors for the ACF estimates. To use the ACF in model
identification, calculate and then plot r, against lag k up to a
maximum lag of roughly N/4.

The first step is to examine a plot of the ACF to detect the
presence of nonstationarity in the z, series. When the data are
nonseasonal, failure of the ACF to damp out indicates that
nonseasonal differencing is needed. For seasonally correlated
data with the seasonal length equal to s the ACF often follows
a wave pattern with peaks at s, 2s, 3s, and other integer
multiples of s. As is shown by Box and Jenkins [1970, pp.
174-175], if the estimated ACF at lags that are integer multi-
ples of the seasonal length s do not die out rapidly, this may
indicate that seasonal differencing is needed to produce
stationarity. Failure of other ACF estimates to damp out may
imply that nonseasonal differencing is also required.

Once the data have been differenced just enough to produce
nonseasonal stationarity for a nonseasonal time series and
both seasonal and nonseasonal stationarity for seasonal data,
then check the ACF of the w, series to determine the number
of AR and MA parameters required in the model. The w,
series is also used at the other steps of the identification pro-
cedure. Of course if no differencing is required, the w, series is
simply the z, series. The ACF for w, should not exceed a
maximum lag of approximately n/4. For a seasonal model a
maximum lag of about 5s (where 55 < n/4) is usually suf-
ficient.

If a series is white noise, then r, is approximately NID (0,
1/n). This result allows one to test whether a given series is
white noise by checking to see if the ACF estimates are signifi-
cantly different from zero. Simply plot confidence limits on the
ACF diagram and see if a significant number of r, values fall
outside the chosen confidence interval.

When the w, series is not white noise, then the following
general rules may be invoked to help determine the type of
mode] required.

Nonseasonal model: For a pure MA (0, d, q) process, r,
cuts off and is not significantly different from zero after lag g.
When the model is pure MA, after lag g [Bartlett, 1946],
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q
Varrk—;i-<l+22rﬂ> k>gq 3)

i=1

If r, tails off and does not truncate, this suggests that AR
terms are needed to model the time series.

Seasonal model: 'When the process is a pure MA (0, d, g) X
(0, D, Q), model, r, truncates and is not significantly different
from zero after lag g + sQ. For this case the variance of #, after
lag ¢ + sQ is [Bartlert, 1946}

] Qq+3Q
Varrk—;<l+2 er{") k>q+sQ 4)

If r, attentuates at lags that are multiples of s, this implies
the presence of a seasonal AR component. The failure of the
ACEF to truncate at other lags may imply that a nonseasonal
AR term is required.

c.  Partial autocorrelation function (PACF). The theoreti-
cal PACF ¢y, for an AR process of order k satisfies the Yule-
Walker equations [Box and Jenkins, 1970, chapter 3]. For
model identification calculate and plot the estimates ¢xy 0f Ppn
against lag k. (The circumflex denotes an estimate of the
theoretical statistic below it.) The @, are usually calculated
for 20 to about 40 lags (where 40 < n/4). For seasonal models,
higher lags of the PACF may be required for identification.

The following general rules may prove helpful for inter-
preting the PACF of the w, series.

Nonseasonal model: For a pure AR (p, d, 0) process, ¢x
truncates and is not significantly different from zero after lag p.
After lag p, ¢, is approximately NID (0, 1/n).

If ¢y tails off, this implies that MA terms are required.

Seasonal model:  'When the process is a pure AR (p, d, 0) X
(P, D, 0), model, ¢, cuts off and is not significantly different
from zero after lag p + sP. After lag p + sP, ¢y, is approxi-
mately NID (0, 1/n).

If ¢, damps out at lags that are multiples of s, this suggests
the incorporation of a seasonal MA component into the
model. The failure of the PACF to truncate at other lags may
imply that a nonseasonal MA term is required.

d. [Inverse autocorrelation function (IACF). Cleveland
[1972] defines the IACF of a time series as the ACF associated
with the inverse of the spectral density function of the series.
The IACF pi, can also be specified in an alternative equivalent
manner. Consider the Box-Jenkins (p, d, ¢) X (P, D, @), model
given by (16). The IACF of the w, series is defined to be the
ACF of the (g, d. p) X (Q, D, P); process that is written as

H(BYO(B*)(w: — u) = ¢(B)p(B*)a, (5)

To obtain an estimate ri, for pi, at lag k, Cleveland [1972]
suggests employing either an AR or a smoothed periodogram
estimation procedure. If the AR approach is adopted, the first
step is to model the w, series by a finite AR process of order r
given by

r

(w, —p)>=a + 21 Ti(we i — 1) (6)
where =; is the ith AR parameter when the model is written in
inverted form. Estimates #,, wherei = 1,2, - -+, r, for r, can be
determined from the Yule-Walker equations or from the mle
of an AR process of order r. The estimates ri,, of the IACF can
then be obtained from

r—-k r
riy = (‘Wk + ‘;riﬁ'u—k)/ (l + Z 7?'12) )
i=1 i=1

To utilize the IACF for model identification, calculate and
plot ri, versus lag k. A recommended procedure is to choose
about four values of » between 10 and about 40 (where r <
n/4) and then to select the most representative graph from the
set for use in identification. When the model is seasonal the
IACF may be calculated for greater than 40 lags if more
information is needed for proper identification. Because a
selection procedure is required to choose an appropriate IACF
plot, the authors suggest that an alternative estimation tech-
nique be developed in the future.

If the w, series is white noise, then ri, is approximately NID
(0, 1/n). When the data are correlated, the following proper-
ties of the IACF may be helpful for model identification.

Nonseasonal model: When the process is a pure AR (p, d,
0) model, riy, cuts off and is not significantly different from zero
after lag p. In practice, the authors have found the IACF
useful for identifying AR models which have some of the AR
parameters equal to zero. At the same lags at which the AR
parameters are zero the IACF often has values that are not
significantly different from zero. Cleveland [1972, pp. 283, 284]
substantiates the foregoing fact and shows by a worked ex-
ample that the PACF fails to detect the AR parameters that
are zero in a pure AR process.

If ri, attenuates, this suggests the presence of a MA com-
ponent.

Seasonal model: For a pure AR (p, d, 0) X (P, D, 0),
process, ri, truncates and is not significantly different from
zero after lag p + sP.

If ri, damps out but is still significant at lags s, 2s, 3s, etc., a
seasonal MA component may be needed in the model. An
additional nonseasonal MA component will cause ri, to damp
out for values between | and s, s and 2s, etc., where decreasing
but prominent peaks occur at s, 2s, 3s, etc., due to the seasonal
MA term.

e. [Inverse partial autocorrelation function (IPACF). The
IPACF is defined in this paper as the PACF of (5). The
‘inverse Yule-Walker equations’ are given by

r , ) N r
1 Pl pPlg Py -y Plry p1,
pi 1 piy e i 2| | Dlxe ply
= - |8
Lpik « Ple-z Dix.a " | [ @i | L pie ]

where pi, is the IACF of the w, series and ¢iy, is the jth
coefficient in a MA process of order & such that ¢i., is the last
coeflicient.

The coefficient ¢iy, is called the IPACF. To get an estimate
Glrx FOT Biyns replace pi, by the sample IACF ri, and solve the
inverse Yule-Walker equations for ¢i,e. For model identi-
fication plot ¢iy, against lag k for the same number of lags as
were chosen for the IACF.

Some of the inherent properties of the IPACF are listed
below.

Nonseasonal model: 1f the process is a pure MA (0, d, q)
model, ¢y, truncates and is not significantly different from
zero after lag ¢g. After lag g, ¢iy, is approximately NID (0,
1/n). ,

When @iy, dies off rather than cuts off, this suggests that AR
terms are required.
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Seasonal model: For a pure MA (0, d, q) X' (0, D, Q),
model, iy, truncates and is not significantly different from
zero after lag g + sQ. After lag g + 5Q, diry is approximately
NID (0, 1/n).

If Giny, attenuates at lags that are multiples of s, this may
indicate the presence of a seasonal AR component. When the
IPACF fails to cut off at other lags, this implies the need for a
nonseasonal AR term.

S Cumulative periodogram white noise test. As was men-
tioned previously, the ACF is an accepted means of checking
whether the given data are white noise. The PACF, IACF, and
IPACF can also be employed in this capacity. However, the
cumulative periodogram provides another means of checking
for white noise {Bartlett, 1966; Box and Jenkins, 1970, pp.
294-298].

In addition to verifying whether a series is uncorrelated, the
cumulative periodogram also detects certain types of correla-
tion. In particular, it is an effective procedure for finding
hidden periodicities.

g.  Summary of the identification techniques. A plot of the
original data portrays an overall view of how the time series is
generally behaving. However, the ACF, PACF, IACF, and
IPACF transform the given information into a format
whereby it is possible to detect the number of AR and MA
terms required in the model. In general the ACF and the
IPACF truncate for pure MA processes, while the PACF and
TACF cut off for AR models. For mixed processes, all four
functions attenuate.

The ACF and the IPACF possess similar general properties,
while the PACF and the IACF have common attributes. How-
ever, the four functions are defined differently, and none of
them behave exactly in the same fashion. In practice the au-
thors have found that if the PACF fails to detect a certain
property of the time series, then the IACF often may be more
sensitive and thereby may clearly display the presence of that
property and vice versa. A similar situation exists between the
ACF and the IPACF. In actual applications it is necessary to
consider simultaneously the output from all the functions in
order to ascertain which model to estimate.

The incorporation of the IACF and the IPACF into the
identification stage simplifies and substantiates this procedure
because it is easier and more accurate to determine the proper
Arima model to estimate. It is recommended that all the
identification plots be programed for instantaneous display on
a cathode ray terminal. In this way the identification stage can
usually be completed in a few minutes. The capability of
making an immediate copy of any results portrayed on a
screen provides a convenient method of keeping a permanent
record.

2. Estimation

a. Maximum likelihood estimates (mle) for the model pa-
rameters. Box and Jenkins [1970, chapter 7] suggest that the
approximate mle for the Arima model parameters be obtained
by employing the unconditional sum of squares method. When
using this technique the unconditional sum of squares function
is minimized to get least squares parameter estimates.

Recently, McLeod [1976a] has described a modified sum of
squares method which provides parameter estimates that are
closer approximations than those of Box and Jenkins [1970,
chapter 7] to the exact maximum likelihood estimates. The
modified sum of squares function is minimized in order to
obtain the improved parameter estimates.

By utilizing simulation experiments, McLeod [1976a] dem-

onstrates inherent assets of the modified estimation procedure.
Some general conclusions regarding the advantages of the
modified sum of squares method over the unconditional sum
of squares technique are that (1) the modified method is more
efficient, (2) the modified method gives better parameter esti-
mates for shorter series, and (3) significantly improved param-
eter estimates are obtained for MA parameters. An additional
advantage of the modified sum of squares method is that it is
an exact mle procedure for AR processes.

Various optimization techniques are available to minimize
functions such as the unconditional sum of squares function
and the modified sum of squares function, Some of the optimi-
zation algorithms that have been extensively applied include
(1) the Gauss linearization [Draper and Smith, 1966, chapter
10], (2) the steepest descent [Draper and Smith, 1966, chapter
10], (3) the Marquardt algorithm (combination of (1) and (2))
[Marquardt, 1963], and (4) conjugate directions [Powell, 1964,
1965]. McLeod [1976a] recommends the use of conjugate di-
rections to minimize the modified sum of squares function.
This approach is employed for obtaining parameter estimates
for the applications in part 2 {McLeod et al., 1977)]. Improve-
ments of the modified procedure over the unconditional sum
of squares method are illustrated by the worked examples.

At the estimation stage, estimates are almost always calcu-
lated for the AR and MA parameters and o,% unless the exact
value of a parameter is known in advance. For this situation
the known parameter can be fixed, and only the remaining
parameters are estimated. This is the usual approach taken for
the parameter u of the w, series. In practice the mle for u rarely
differs from the arithmetic mean of the w, series, and u is
usually assigned this value. If the data are differenced at least
once either seasonally or nonseasonally, then u usually has a
value of zero. However, when it is suspected that a trend
component is present, u can be estimated [Box and Jenkins,
1970, pp. 91-93].

b. Box-Cox transformations. In Box-Jenkins modeling
the residual a, are assumed to be independent, homoscedastic
(i.e., variance is a constant), and usually normally distributed.
The independence assumption is the most important of all,
and its violation can cause drastic consequences [Box and
Tiao, 1973, p. 522). However, if the constant variance and
normality assumptions are not true, they are often reasonably
well satisfied when the observations z, are transformed by a
Box-Cox transformation {McLeod, 1974, p. 14; Box and Cox,
1964].

The normality assumption of the residuals is usually not
critical for obtaining good parameter estimates. As long as the
a, are independent and possess finite variance, reasonable esti-
mates (called Gaussian estimates) of the parameters can be
obtained [Hannan, 1970, p. 372]. McLeod [1974, pp. 76-85]
demonstrates this fact by Monte Carlo experiments. Simulated
data from specified models with known parameters are gener-
ated for the a, distributed as uniform, double exponential,
contaminated normal, and normal. For the first three cases,
Gaussian estimates of the parameters for the generating model
fit to the simulated data are very close to the known values. Of
course this is also true for the mle of the parameters for the
normal case.

" In practice it is advantageous to satisfy the normality as-
sumption reasonably well. First, it can be expected that pa-
rameter estimates will be at least slightly improved if a suitable
transformation of the z, is reflected to the g, by causing them
to become approximately normally distributed. Second, with-
out the normality assumption, calculation of confidence inter-
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vals for the forecasted data would be impossible for practical
use. Finally, if both heteroscedasticity and nonnormality of
the residuals are present, then both these flaws can often be
rectified simultaneously by a suitable Box-Cox transforma-
tion.

Consider power transformations of the form

zM = A [(z, + const)* — 1] A& 0

)

2N = In (2, + const) A=0

where const is a constant. The log likelihood of all the AR and
MA parameters, o.% u (if this parameter is chosen to be
estimated), A, and const, is approximately [McLeod, 1974, p.
14]

N

n. mss
Le~—Z1n 22 4 (A - »
e In . +A-1

2 t=d+sD+1

In (z; + const) (10)

where mss is the modified sum of squares [McLeod, 1976a].
When using the estimation procedure of Box and Jenkins
[1970, chapter 7], the mss is replaced by the sum of squares.

Various approaches are available when determining the val-
ues of a Box-Cox transformation. Sometimes it is known in
advance that the time series observations of a given phenome-
non require a certain type of transformation. For this situation
it is appropriate to specify fixed values for both A and the
constant prior to the identification and estimation stages. For
example, the authors have found in practice that it is often
necessary to transform average monthly river flow data by
using natural logarithms. Therefore A is set equal to zero, and
the constant is also assigned a value of zero if no zero observa-
tions are present in the series. If there are one or more zero
values in the series, the constant can be given a small positive
value so that it is possible to take naturat logarithms.

In certain instances a chosen standardized transformation,
such as a natural logarithm or a square root, may fail to
remove heteroscedasticity and/or nonnormality of the residu-
als. It may therefore be desirable to compute a mle of A. The
first step is to choose a value for the constant that causes all the
values of the given series to be greater than zero. Then A can be
estimated simultaneously with the other model parameters.

Caiculation of the best Box-Cox transformation for a par-
ticular model involves a significant increase in computer time
in comparison with the computer time used when X is not
estimated for that model. Therefore it is not recommended
that A be estimated unless diagnostic checks for the residuals
indicate that the normality and/or constant variance assump-
tions are not satisfied.

When it is desired to economize on computer time or when a
computer package does not have the capability of estimating
A. itis still possible to select reasonable values for this parame-
ter. Assign the constant a value such that all values of the
series have magnitudes greater than zero. Then calculate the
log likelihood for, say, A = 0, +£0.5, and 1.0, and choose the
X value that gives the largest likelihood.

c.  Akaike information criterion (AIC). Box and Jenkins
[1970] stress the need to use as few model parameters as
possible (i.e., the model should be parsimonious) so that the
model passes all the diagnostic checks. The AIC [dkaike,
1974] is a mathematical formulation of the parsimony crite-
rion of model building.

When there are several competing models to choose from,
select the model that gives the minimum of the AIC defined by

AIC = =2 In (maximum likelihood) + 2k (1)

where k is the number of AR and MA parameters to estimate.
H u and/or A are also estimated, then k is increased by 1 for
each extra parameter.

In certain instances the use of the AIC replaces the need for
hypothesis testing. Therefore the requirement of subjective
judgment for choosing the level of significance in hypothesis
testing and the use of statistical tables are explicitly formulated
as estimation problems. For example, in part 2 [McLeod et al.,
1977] it is questioned whether an AR(3) model is appropriate
to model the average annual flows of the Saint Lawrence River
at Ogdensburg, New York. Because mle possess a limiting
normal distribution [Pierce, 1972], by using the estimated
standard errors and subjectively choosing a level of signifi-
cance, hypothesis testing can be done for the model parame-
ters. It is shown that ¢, is not significantly different from zero
and therefore should be eliminated from the model. Alterna-
tively, the AIC may be employed for this decision process. For
this particular example the AIC also selects an AR model of
the order of 3 with ¢, constrained to zero in preference to an
AR(3) model.

In the recent past the AIC has been applied to various types
of stochastic problems. Akaike {1974, 1972b] has employed the
AlC to select a final Arima model among competing Box-
Jenkins models fit to the time series under consideration. The
AI1C has also been utilized to choose the number of independ-
ent variables required in a regression analysis [4kaike, 19724],
to decide upon the number of factors needed in a factor
analysis [Akaitke, 1972a], and to determine the order of a
Markov chain process [Tong, 1975].

Parzen [1974] introduces a criterion for selecting the order
of an AR process to fit to a time series if the series is generated
by an AR scheme of finite order. However, Parzen’s criterion
can be shown to be asymptotically equivalent to the AIC.
Because the AIC can also be used for AR processes as well as
for many other types of stochastic models, the authors recom-
mend implementation of the AIC in preference to Parzen’s
approach.

3. Diagnostic Checks

One class of diagnostic checks is devised to test model
adequacy by overfitting (section 3a). This test assumes that the
possible types of model inadequacies are known in advance.

However, most diagnostic tests deal with the residual as-
sumptions in order to determine whether the a, are independ-
ent (section 3b), homoscedastic (section 3¢), and normally
distributed (section 3d). Residual estimates are needed for the
tests used in checking the three aforementioned residual as-
sumptions. The estimates for a, are automatically calculated at
the estimation stage along with the mle for the parameters.

A data transformation cannot correct dependence of the
residuals because the lack of independence indicates the pres-
ent model is inadequate. Rather, the identification and estima-
tion stages must be repeated in order to determine a suitable
model. If the less important assumptions of homoscedasticity
and normality are violated, they can often be corrected by a
Box-Cox transformation of the data.

a. Overfitting.  Overfitting involves fitting a more elabo-
rate model than the one estimated to see if including one or
more parameters greatly improves the fit. Extra parameters
should be estimated for the more complex model only where it
is feared that the simpler model may require more parameters.
For example, the PACF and the IACF may possess decreasing
but significant values at lags 1, 2, and 9. If an Arma (2, 0)
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model is originally estimated, then a model to check by over-
fitting the model would be

(1 = ¢:1B — ¢:8° — 98Nz, — 1} = @, (12)

A mle estimate of ¢, three or four times its standard error
would definitely indicate that the more elaborate model should
be selected. For this case the AIC and also the remaining tests
in this diagnostic check stage would also point out the complex
model as the best one to use. Box and Newbold [1971] show
another interesting application of overfitting. The practitioner
must take care to avoid model redundancy which could occur
if the AR and MA components were simultaneously enlarged.

Another method of testing model adequacy by overfitting,
which was originally suggested by Whirtle [1952], is to fit a
high-order AR model of order r (where 20 < r < 30). Suppose
the original model has k = p + P + ¢ + Q parameters
estimated and estimated residual variance ¢,%k). Then it is
shown [McLeod, 1974, p. 39] that the likelihood ratio statistic
is

nln (64°(k)/5a%(r)) = x*(r = k) (13)

where a,%(r) is the residual variance estimate for an AR proc-
ess of order r. If the calculated x*(r — k) from (13) is greater
than x*(r — k) from the tables at a chosen significance level,
then a model with more parameters is needed.

The likelihood ratio test in (13) can also be used to deter-
mine if a model containing fewer parameters gives as good a fit
as the full model. Specific examples are given in part 2
{McLeod et al., 1977] for the Saint Lawrence River data. The
AIC can also be employed to decide whether a model with less
parameters is preferable to a model with more parameters.

b. Tests for whiteness of the residuals. To determine
whether the residual a, are white noise, an appropriate pro-
cedure is to examine the residual autocorrelation function
(RACF). Because the distribution of the RACF which is
shown in the theorem below is now known, new sensitive
testing techniques are available for checking the independence
assumption of a,.

The theorem for the RACF is developed as follows.
The ACF r.(d) of the calculated residuals can be determined

by
rk(é) = Z <dza‘pk/z d12> (14)
t=k+1 t=1
Define the vector of the first L value of the RACF as
1(d) = [n(d), r(d), - - -, ru(d)) (15)

Denote by ¥, (P) the coefficient of B* in the Maclaurin series
expansion of [®(B®)]"! in powers of B, and similarly define
Ui(®), ¥x(©), and Y,(8). Then it can be proved for large
samples [McLeod, 1976b} that

r(d) = N[O, (1/n)U] (16)
where U = 1, — X'I'X, 1, is the identity matrix, I =~ X'X is
the large-sample information matrix, and X = [{;,_;(®P),
Ui (), U ss(©), U, (0)] are the i, j entries in the four parti-
tions of the X matrix. The dimensions of the matrices X,
W, (@), o @), (@), and ¢y (6) are, respectively, L X
(P+p+Q0+q),LXP LXp LXQ andL Xgq.

Previously, Box and Pierce [1970] obtained this result for the
nonseasonal AR case, but the theorem listed here is valid for a
general seasonal Box-Jenkins model, transfer function-noise
models, and intervention processes.
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There are two useful applications of the RACF distribution
theorem. A sensitive diagnostic check is first to plot the RACF
along with the asymptotic significance intervals for the RACF
that are obtained from the diagonal entries of the matrix
(1/m)U. 1f some of the RACF are significantly different from
zero, this may mean that the present model is inadequate. The
important RACF to examine are the RACF at the first few
lags for a nonseasonal model and the RACF at the first couple
of lags and also at lags that are multiples of s for a seasonal
model. If the present model is insufficient, a proper model can
be selected either by changing the model as suggested by Box
and Jenkins [1970, p. 299} or by repeating the identification,
estimation, and diagnostic check stages of model construction.

A second but less sensitive test is to calculate and to perform
a significance test for the portmanteau statistic U,. If L is large
enough so that the weights . (®), Yx(d), ¥x(©), and ¥, (f) have
damped out, then

L

U:.="ZIh‘(d)ﬁxz(L—P-P'Q‘fI) a7
where L can usually be given a value from 15 to 25 for
nonseasonal models and a value of 4s for seasonal processes. A
test of this hypothesis can be done for model adequacy by
choosing a level of significance and then comparing the value
of the calculated x? to the actual x2 value from the tables. If the
calculated value is greater, on the basis of the available data
the present model is inadequate, and appropriate changes
must be made. Note that Box and Jenkins [1970, p. 503} have
subtracted one too many degrees of freedom.

An alternative approach that can be used to check for
whiteness of the residuals is to examine the cumulative period-
ogram of the d,. However, when considering the residuals it
should be remembered that this test is known to be inefficient.
Often the cumulative periodogram test fails to indicate model
inadequacy due to dependence of the residuals unless the
model is a very poor fit to the given data. o

¢. Homoscedasticity checks of the residuals. The follow-
ing tests described by McLeod [1974] are useful for determin-
ing whether a transformation of the data is needed by checking
for changes in variance (heteroscedasticity) of the residuals. As
was indicated earlier, the variance of the normally independ-
ently distributed residuals is assumed to be constant (homosce-
dastic). Suppose that g, is NID {0, ¢,%(z)] and that the variance
changes with time as ¢,%(7). Let the stochastic random variable
¢ be NID (0, 6%) and hence have constant variance. Suppose
then that

a, = exp {(x/2K() — K]} { (18)
where x is some constant to be estimated, K(¢) is a function of
time to be specified, and K is the mean of K(¢) and equals
n"z,=l" K(1). The variance of the a, residuals is then

o (1) = Efexp [x(K(1) — K)] {2
= exp {x[K(1) — K]} o* (19)

It can be shown [McLeod, 1974, p. 46] that the natural loga-
rithm of the likelihood LA for o® and x is

Lh=— %ln o? — 5‘7 Z'j: fexp [—x(K(t) — K)]a:?} (20)
and -
%ﬁ - L 2 Ky exp [-x(K() = K)laty @21
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Solve aLh/da* = 0 exactly for ¢?, and substitute for o7 into
(21). Equation (21) is set equal to zero, and the residual
estimates 4, obtained from the estimation stage are used for a,.
This equation is solved for a mle of x by using the Newton-
Raphson method with an initial value of x = 0.

In order to carry out a test of the hypothesis, the first step is
to postulate the null hypothesis that x = 0 and therefore to
assume that the residuals have constant variance. The alterna-
tive hypothesis is that the residuals are heteroscedastic and
that x # 0. By putting K(¢) = ¢ in the previous equations it is
possible to test for trends in variance of the residuals over
time. If K(t) = w, — d,, then one can check for changes of
variance depending on the current level of the series. A likeli-
hood ratio test of the null hypothesis is obtained by computing
the mle of x and comparing it with its standard error. The
variance for the mle x for x is calculated by using the
equation

Var x = —1/(8%Lh/8x?) (22)

Because the mle for x is asymptotically normally distrib-
uted, after a level of significance is chosen it is a straight-
forward procedure to determine whether to accept or to reject
the null hypothesis. This test is also valid for transfer function-
noise, intervention, and regression models. In regression mod-
els the test for heteroscedasticity can indicate whether an im-
portant covariate is missing [Anscombe, 1961; Pierce, 1971].

If model inadequacy is revealed by either of the tests, a
simultaneous estimation procedure can be used to estimate the
seasonal and nonseasonal AR and MA parameters ¢ and x.
This would involve an enormous amount of computer time.
However, in practice, the Box-Cox transformation described
in the estimation stage will often stabilize the variance.

d. Tests for normality of the residuals. Many standard
tests are available to check whether data are normally distrib-
uted. For instance, the graph of the cumulative distribution of
the residuals should appear as a straight line when plotted on
normality paper if the residuals are normally distributed [Dan-
iel and Wood, 1971].

Normally distributed data should possess no significant
skewness. The skewness g, of the residuals is calculated from

(1Ea)/ (L5 a)"
N 43 L 42
&1 n,;ar n/;az

It can be shown that g, is approximately N (0, 6/n).
If the data are normally distributed they should not have a
significant g, kurtosis coefficient that is given as

2ol (5o

n o=
The statistic g, is approximately N (0, 24/n). In practice a Box-
Cox transformation of the data will often remove any signifi-
cant skewness or pronounced kurtosis, thereby reinforcing the
normality assumption of the residuals.

(23)

(24)

CONCLUSIONS

Various new procedures are now available to strengthen the
three stages of Arima model construction. The IACF and the
IPACF are two identification methods that allow for more
versatility when designing an Arima model to estimate. All the
identification techniques can be used for selecting either a
nonseasonal or a seasonal Box-Jenkins modet to fit to the data.
By employing the modified sum of squares method, more
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efficient parameter estimates can be obtained. New diagnostic
checks are available for checking the independence and ho-
moscedasticity assumptions of the model residuals. If the re-
siduals fail to satisfy the constant variance and/or the normal-
ity assumption, often a Box-Cox transformation can rectify
the situation. When there are various possible models avail-
able for modeling the data, the AIC can be utilized to select the
most appropriate model and at the same time to insure model
parsimony.

Because of the nature of stochastic problems that occur in
water resources the use of Box-Jenkins modeling in this par-
ticular field should increase dramatically in the future. The
authors recommend that any researcher who deals with Arima
modeling use the contemporary procedures that are outlined
in this paper. Since all the techniques can be programed, this
means that for practical applications the methods can be im-
plemented easily.

Often the expenses incurred when developing an Arima
model are insignificant when compared to the costs of various
types of applications of the model and also the penalty costs
that can arise if an incorrect decision is made due to modeling
nature improperly. For example, when a model is employed to
simulate data for the economic design of a water resource
project, it may be relatively expensive to generate on the
computer a sufficient amount of synthetic data. This generated
data can be used as input to the economic design of a project
such as a reservoir. If the synthetic data are produced by a
model that does not fit the data properly, then the final design
for the project will be suspect. Furthermore, possible grave
economic and social consequences could occur once the proj-
ect is constructed. Therefore it is advantageous to use the best
procedures possible when a model is originally fit to the histor-
ical data.

In part 2 [McLeod et al., 1977], Box-Jenkins models are
determined for both nonseasonal and seasonal data. The prac-
tical applications illustrate the effectiveness of the techniques
given in this paper. These methods can also be used for trans-
fer function-noise modeling and intervention analysis.

APPENDIX: STAGES IN BOX-JENKINS MODELING

1. Identification

Plot of the original series

Autocorrelation function (ACF)

Partial autocorrelation function (PACF)

Inverse autocorrelation function (IACF)*

Inverse partial autocorrelation function (IPACF)*
Cumulative periodogram white noise test (to see if the
given series is white noise or correlated and if seasonal
components are present)

2. Estimation

a. Maximum likelihood estimates (mle) for the model pa-
rameters (modified sum of squares technique)*

b. Box-Cox transformations*

¢. Akaike information criterion (AIC)*

3. Diagnostic Checks

a. Overfitting*

b. Tests for whiteness of the residuals (examination of the
residual autocorrelation function (RACF) including the
distribution of the RACF estimates)*

¢. Homoscedasticity checks of the residuals (test to check
for changes in variance of the residuals over time and
also changes depending on the current level of the series
to see if a Box-Cox transformation is needed)*

e RS TR
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d. Tests for normality of the residuals (skewness and kur-
tosis checks to determine if a Box-Cox transformation
is required)

(Recent advances on the sections foilowed by asterisks are
discussed in this paper.)

NOTATION

a, white noise time series value at time ¢.
AR process of order p.
B backward shift operator.
additive constant for a Box-Cox transformation.
d order of the nonseasonal differencing operator.
D order of the seasonal differencing operator.
expected value of z,.
g estimated residual skewness.
g. estimated residual kurtosis.

I large-sample information matrix.
specified function of time in the homoscedasticity
test for the residuals.

K mean of K(¢).

In natural logarithms,
Le log likelihood for Box-Cox transformation.
Lh log likelihood in the homoscedasticity checks.

mle maximum likelihood estimates.
MA(g) MA process of order g.
mss modified sum of squares.

n length of w, series,
normally independently distributed random vari-
able.
normally distributed random variable with mean a
and variance b.
length of z, time series.
order of the nonseasonal AR operator.
nonseasonal Arma model.
(p nonseasonal Arima model.
(p. dY X (P, Q) seasonal Arma model.
(p.d, q) X (P, D, Q)s seasonal Box-Jenkins Arima model.
P order of the seasonal AR operator.
q order of the nonseasonal MA operator.
Q order of the seasonal MA operator.
r. ACF estimate at lag k.
ri, estimate for the IACF pi,.
ACF of 4, at lag k.
vector of ACF for d, up to lag L.
s seasonal length.
t discrete time.
U, portmanteau statistic calculated from the estimates
of the RACF up to lag L.
covariance matrix for r(d).
variance of x.
w, stationary series formed by differencing the z,
series.
X matrix used in the calculation of the information
and covariance matrix.
z, discrete time series value at time ¢.
z; transformation of z, series.
¢, random variable that is NID (0, ¢?).
nonseasonal MA operator of order g.
§; ith nonseasonal MA parameter.
seasonal MA operator of order Q.
®; ith seasonal MA parameter.
A exponent for Box-Cox transformation.
u mean level of the w, series.

o)
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w; ith AR parameter when the model is written in
inverted form.

pr ACF at lag k.

ptr TACF at lag k.

o? variance of the random variable ¢,.

.2 variance of a;.

a.(k) residual variance of a process with k parameters.
o.%(r) residual variance for an AR process of order r.
a.X(1) variance of g, as a function of time.

¢(B) nonseasonal AR operator of order p.

¢, ith nonseasonal AR parameter.

éxx  PACF (kth coefficient for an AR process of order k).

¢ix; Jjth coefficient in a MA process of order k.

dive  1PACF (kth coefficient for a M A process of order k).
$(B*) seasonal AR operator of order P.

&, ith seasonal AR parameter. .
x constant to be estimated in the homoscedasticity
test for the residuals.

x2(k) chi-squared random variable with k degrees of free-
dom.

Yx(®) coefficient of B* in the Maclaurin series expansion
of [®(B%)] .

Yr(¢) coefficient of B* in the expansion of [¢(B)]™".

Ye(®) coefficient of B* in the expansion of [©(B*)] .

Vx(0) coefficient of B* in the expansion of [8(8)]™".

V9 nonseasonal differencing operator of order 4.
V,” seasonal differencing operator of order D.
1, identity matrix.
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