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Recent Box-Jenkins techniques are employed to determine both nonseasonal and seasonal models for
actual time series. The applied examples are carefully explained in order to demonstrate the utility of the
new procedures that have been developed for use at the identification, estimation, and diagnostic check
stages of model development. Even though more methods are now available for model building, it is
demonstrated that this fact enhances rather than complicates the model construction phases. Further-
more, for all three applications considered, better models are obtained than it was previously possible to
obtain. A new technique is described for optimal forecasting of the original time series when the data have
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been transformed by a nonlinear transformation.

INTRODUCTION

Improved Box-Jenkins modeling procedures are available to
simplify model construction. As is explained by Hipel et al.
[1977a], new methods have been developed for use at the
identification, estimation, and diagnostic check stages of
model development. The purpose of this paper is to demon-
strate the relative ease with which improved models can be
obtained in practical applications by employing recent mod-
eling procedures.

A constrained nonseasonal autoregressive integrated mov-
ing average (Arima) model is determined for average annual
river flows, a nonmultiplicative Arima process is fit to a yearly
sunspot number series, and a multiplicative seasonal Box-
Jenkins model is found for modeling monthly international
airline passenger data. In all three cases, better models are
obtained than those previously cited in the literature, It is
shown at the identification stage how a simultaneous in-
spection of the autocorrelation function (ACF), partial auto-
correlation function (PACF), inverse autocorrelation function
(IACF), and inverse partial autocorrelation function (IPACF)
leads to a quick but usually accurate initial design for a tenta-
tive model to estimate. All four identification procedures are
used for identifying both the nonseasonal and the seasonal
model. At the estimation stage, more efficient parameter esti-
mates are procured by using the modified sum of squares
method [McLeod, 1976a). In particular, better parameter esti-
mates than those calculated by using the unconditional sum of
squares technique [Box and Jenkins, 1970, chapter 7] are ob-
tained for the moving average (MA) terms of the seasonal
Arima model that is fit to the airline passenger data. The
Akaike information criterion (AIC) is used for model discrimi-
nation purposes [Akaike, 1974] for both the yearly river flow
and the sunspot model. The independence assumption of the
model residuals is tested by a sensitive diagnostic check. This
is accomplished by calculating significance intervals [McLeod,
19766] for the estimates of the residual autocorrelation func-
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tion (RACF). Other diagnostics tests are employed to deter-
mine whether the homoscedasticity and normality assump-
tions are also fulfilled [Hipel et al., 1977a; McLeod, 1974}.

This paper clearly demonstrates for practical applications
the exact use of the contemporary model-building methods
discussed in an accompanying paper labeled part 1 [Hipel et
al., 1977a). However, if necessary the reader is urged to refer to
part 1 (in this issue) for an account of the general rules of the
application of the modeling procedures or for a theoretical
description of the techniques.

In some time series applications the given data are often
transformed by a nonlinear transformation such as a Box-Cox
transformation. By employing the methods of Granger and
Newbold [1976] it is now possible to obtain minimum mean
square error (mmse) forecasts of the original series when the
data have been changed by a nonlinear transformation. The
procedure for obtaining mmse forecasts of the untransformed
data when there has been a Box-Cox square root transforma-
tion is described for the sunspot model. If there has been a
natural logarithmic transformation of the data, then the tech-
nique of procuring mmse forecasts of the original observations
is presented with the airline passenger model.

SAINT LAWRENCE RIVER

Average annual river flows from 1860 to 1957 for the Saint
Lawrence River at Ogdensburg, New York, are available from
a report by Yevyevich [1963). Carlson et al. [1970] fita (1,0, 0)
model to these data. However, by employing the contempo-
rary approaches to model construction given in part 1 [Hipel et
al., 1977a) the authors derive a better model for the Saint
Lawrence River flows.

In order to identify the form of the model to estimate, the
plots of the ACF, PACF, IACF, and IPACF that are drawn
in Figures 1-4, respectively, are examined. The ACF does not
truncate but rather damps out, suggesting the presence of
autoregressive (AR) terms. The 10%, 5%, and 1% significance
intervals for the graph of the PACF are for values of the
PACF at lags greater than p if the process is (p, 4, 0). Notice
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Fig. 1. ACEF for the Saint Lawrence River.

that the PACF possesses a significant value at lag 1 and has a
value at lag 3 that just touches the 5% significance limit. This
effect is more clearly illustrated by the IACF which has defi-
nite large values at lags 1 and 3. It may therefore be appropri-
ate to entertain a (3, 0, 0) model with ¢, constrained to zero as
a possible process to fit to the Saint Lawrence River data.
Although there is a rather large value of the PACF at lag 19
and of the IACF at lag 18, this could be due to chance alone.
The IPACF appears to be attenuating rather than truncating.
However, for this particular example the ACF definitely
damps out, and therefore one would suspect that the IPACF is
behaving likewise, thereby indicating the need for AR terms.
On the graph for the IPACF (Figure 4) the 10%, 5%, and 1%
significance intervals are for values of the IPACF at lags
greater than ¢ if the process is (0, d, q).

For the case of the Saint Lawrence River data the IACF
most vividly defines the type of model to estimate. However,
the remaining three identification graphs reinforce the con-
clusions drawn from the TACF. Although it is suspected that a
(3, 0, 0) model with ¢, constrained to zero should be esti-
mated, a (1, 0, 0) and a (3, 0, 0) model are examined for
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Fig. 2. PACF for the Saint Lawrence River.
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Fig. 3. TACF for the Saint Lawrence River.

comparison purposes. Carlson et al. [1970] choose a (1, 0, 0)
model to estimate for the Saint Lawrence River flows because
they only employ the ACF for identification purposes. This
illustrates the importance of having many identification pro-
cedures so that the proper model is not missed just because one
of the identification methods does not explicitly portray the
best model to fit.

Table 1 lists the maximum likelihood estimates of the pa-
rameter and the standard errors for a(1, 0, 0) model, a(3,0,0)
model, and a (3, 0, 0) model without the ¢, parameter. The
parameter estimates are calculated by using the modified sum
of squares technique {McLeod, 19764].

Model discrimination can be accomplished by comparing
parameter estimates to their standard errors, by using the AIC
or by performing the likelihood ratio test. In order to employ
the first procedure, first consider the models listed in Table 1.
Notice that for both the (3, 0, 0) model and the (3, 0, 0) model
without ¢, the estimte ¢, for ¢, is more than twice its stand-
ard error. (The circumflex denotes an estimate of the theoreti-
cal statistic below it.) Therefore it can be argued that even at
the 1% significance level, ¢, is significantly different from
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TABLE 1. Parameter Estimates for the Saint Lawrence River
Arima Models
Maximum Likelihood Standard
Parameter Estimate Error
(1,0, 0) Model
L 0.7114 0.0714
0a 419.66
{3, 0,0) Model
N 0.6584 0.0991
o —-0.0863 0.1192
®s 0.2180 0.0991
0q 408.94
(3,0, 0) Model without ¢,
@, 0.6219 0.0839
b3 0.1771 0.0840
q 410.15

zero and should be included in the model. Consequently, the
(1, 0, 0) model should not be utilized to model the Saint
Lawrence River flows. Furthermore, because the standard er-
ror for ¢, for the (3, 0, 0) model is greater than ¢,, for model
parsimony the (3, 0, 0) model without ¢, is the proper model
to select.

When the AIC is employed for model selection, it is not
necessary to select subjectively a significance level, as is done in
hypothesis testing. By using (11) in the paper by Hipel et al.

[1977a] the AIC for the (1, 0, 0) model, the (3,0, 0) model, and

the (3, 0, 0) model without ¢, are calculated, respectively, as
1176.00, 1175.50, and 1172.07. The (3, 0, 0) model without ¢,
has the minimum AIC, and therefore the AIC also indicates
that this model should be chosen in preference to the others.

The likelihood ratio test given by Hipel et al. [1977a] in (13)
can be utilized to choose between the (1, 0, 0) model and the
(3, 0, 0) model with ¢, = 0. By substituting n = 97, k = 1, the
residual variance of the (1, 0, 0) model for 6,Xk), r = 2, and
the residual variance of the (3, 0, 0) model with ¢, = 0 for
6.%(r), the calculated x? statistic has a magnitude of 4.58. For
1 d.f. this value is significant at the 5% significance level.
Therefore this test indicates that the (3, 0, 0) model with ¢, =
0 should be selected in preference to the (1, 0, 0) model.

The likelihood ratio test can also be employed to test
whether a (3, 0, 0) model without ¢, gives as good a fit as the
(3,0, 0) model. Simply substitute into (13) [Hipel et al., 1977a],
n = 97, k = 2, the residual variance of the (3, 0, 0) model
with ¢, = 0 for 6,%(k), r = 3, and the residual variance of the
(3,0, 0) model for ,%r). The calculated x? statistic possesses a
value of 0.0569. For 1 d.f. this value is certainly not significant
even at the 50% significance level. Therefore the constrained
model without ¢, gives an adequate fit and should be used in
preference to the (3, 0, 0) model in order to achieve model
parsimony. The Arima difference equation for the best model
is written as

(1 — 0.62198 — 0.1771B%)(z; — 6842.25) = a, n

where 6842.25 is the mle of the mean of the z; series.
Diagnostic checks are done to insure that the proper model
is selected by checking that assumptions of Arima modeling
such as independence, constant variance, and normality of the
residual a, are satisfied. The model in (1) passes all diagnostic
checks. The critical assumption of independence can be
checked by various methods. However, a sensitive testing pro-
cedure is to plot the RACF along with the chosen significance
intervals. Figure 5 shows a plot of the RACF for the (3, 0, 0)
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model with ¢, = 0. As is the case for all the plots in the
application section that possess significance intervals, the 10%,
5%, and 1% intervals are drawn in Figure 5. Although the
RACF at lag 18 is rather large, it still lies within the 1%
significance interval. This larger value could be due to inherent
random variation or to the length of the time series used to
estimate it. However, the important values of the RACF for
the lower lags all lie well within the 10% significance interval.
Therefore the RACF indicates that the chosen model for the
Saint Lawrence River satisfies the independence assumption.
This fact is also confirmed by the x? distributed portmanteau
statistic U, that is listed in (17) by Hipel et al. [1977a]. The
calculated magnitude of U, is 13.46 for 18 d.f.

The less important modeling assumptions of homoscedastic-
ity and normality of the residuals are also satisfied. The x
statistic for changes in variance depending on’the current level
of the series [Hipel et al., 1977a] has a magnitude of 0.000081
and a standard error of 0.000341, while the x statistic for
trends in the variance over time [Hipel et al., 1977a] possesses
a value of 0.002917 with a corresponding standard error of
0.00504. Because in both instances the standard error is greater
than the x statistic, then based upon the information used, it
can be assumed that the residuals are homoscedastic. The
skewness statistic g, for the residuals [Hipe! et al., 1977a,
equation (23)] has a value of —0.1482 and a standard error of
0.3046. The kurtosis statistic g, [Hipel et al., 1977a, equation
(24)] possesses a value of —0.3240 and a standard error of
0.4974. Due to the fact that the standard errors for both g, and
g: are greater than the corresponding statistic, the normality
assumption is reasonably well satisfied. Because the residuals
are normally distributed and homoscedastic, a Box-Cox trans-
formation of the given data is not required.

The flows used for the Saint Lawrence River are in cubic
meters per second. However, if the flows had been in cubic feet
per second and a model had been fit to these data, all the AR
parameters and standard errors would have been identical
with the metric model in (1). Only the mean level of the series
and ¢,* would be different. In general, no matter what units of
measurement are used the AR and the MA parameter esti-
mates and the standard errors will remain the same (for both a
nonseasonal and a seasonal model), while the mean level and
a.% will be different.
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Fig. 5. RACF for the (3, 0, 0) model with ¢, = O for the Saint

Lawrence River.
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Fig. 6. ACF of the yearly sunspot numbers.

The type of model fit to the Saint Lawrence River data
reflects the actual physical situation. The Great Lakes all flow
into the Saint Lawrence River, and due to their immense size
they are capable of over-year storage. If there is an unusually
wet or an unusually dry year, the Great Lakes dampen the
effect of extreme precipitation on the flows of the Saint Law-
rence River. Because of this the average annual flows are
correlated, and the correct model is an AR process rather than
white noise.

ANNUAL SUNSPOT N UMBERS

The yearly Wolfer sunspot number series is available from
1700 to 1960 in the work of Waldmeier [1961]. This series is
examined in this paper because of the historical controversies
regarding the selection of a suitable model to fit to yearly
sunspot numbers and also because sunspot data are of prac-
tical importance to geophysicists. Recently, climatologists
have discovered that sunspot activity may be important for
studying climatic change because of its effect upon global
temperature variations [Schneider and Mass, 1975]. Also sun-
spots have long been known to affect the transmission of
electromagnetic signals.
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Fig. 7. PACEF of the yearly sunspot numbers.
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Fig. 8. 1ACF of the yearly sunspot numbers.

Yule [1927] was the first applied statistician who considered
employing an AR process of the order of 2 to model yearly
sunspot numbers. Moran [1954] examined various types of
models for predicting annual sunspot numbers and expressed
the need for a better model than an AR(2) process. Box and
Jenkins [1970, p. 239] fit an AR(3) model to yearly sunspot
data. The authors of this paper recommend an AR(9) process
with ¢,-¢s constrained to zero to model the annual sunspot
series.

Other researchers have determined stochastic sunspot mod-
els when the basic time interval is smaller than 1 year. For
example, Whittle [1954] considered a unit of time of 6 months
and developed a bivariate AR scheme to fit to the observed
sunspot intensities in the northern and southern solar hemi-
spheres. Granger [1957] proposed a special two-parameter
curve for the monthly sunspot numbers, but unfortunately,
this curve is not useful for forecasting.

The inherent stochastic characteristics of the yearly Wolfer
sunspot series complicate the identification of an Arima modei
to fit to the data. For example, the fact that Granger [1957]
found that the periodicity of sunspot data follows a uniform
distribution with a mean of about 11 years is one reason that
historically researchers have had difficulties in modeling sun-
spot numbers. However, an examination of the graphs of the
sunspot ACF, PACF, 1ACF, and IPACF that are displayed,
respectively, in Figures 6-9 does yield some insight into the
type of model required to model the sunspot numbers. The
ACF follows an attenuating sine wave pattern that reflects the
random periodicity of the data and possibly indicates the need
for nonseasonal and/or seasonal AR terms in the model. The
behavior of the PACF could also signify the need for some
type of AR model. In addition to possessing significant values
at lags 1 and 2, the PACF also has rather large values at lags
6-9. The TACF has a large magnitude at lag 1, which suggests
the importance of a nonseasonal AR lag 1 term in any eventual
process that is chosen to estimate. The damping out effect in
the first four lags of the IPACF could be a result of a non-
seasonal AR component.

When an AR(2) process is fit to the yearly sunspot numbers,
the independence, normality, and homoscedasticity assump-
tions of thé residuals are not satisfied. The RACF possesses
large values at lags 1, 2, 4, 9, 10, and 11, while the portmanteau
statistic U/, has a magnitude of 27.42 for 9 d.f. These facts
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Fig. 9. IPACEF of the yearly sunspot numbers.

signify that the residuals are not uncorrelated and that a bet-
ter model is therefore required. The x statistic for changes
in variance depending on the current level of the series, the x
statistic for trends in the variance over time, the skewness
statistic g;, and the kurtosis statistic g all possess a magnitude
that is more than twice their corresponding standard errors.
This indicates that a Box-Cox transformation is needed to
remove heteroscedasticity and nonnormality of the residuals.
By substituting A = 0.5 and const = 1.0 into (9) in the work of
Hipel et al. [1977a] a Box-Cox transformation causes the resid-
uals to be homoscedastic and approximately normally distrib-
uted. The parameter constant is set equal to 1 because there
are some zero values in the sunspot time series. A data trans-
formation usually cannot correct residual correlation, and a
different type of model than an AR(2) process is therefore
required to rectify the situation.

If an AR(3) model with A = 0.5 and const = 1.0 is esti-
mated, the @, parameter has a magnitude of —0.1032 and a
standard error of 0.0616. Because ¢, is less than twice its
standard error, for the sake of model parsimony it should not
be incorporated into the model. Note that Box and Jenkins
[1970, p. 239, Table 7.13] obtain a parameter estimate for ¢,
that is just slightly more than twice its standard error.
However, Box and Jenkins do not employ a data transforma-
tion to remove heteroscedasticity and nonnormality and only
use the Wolfer sunspot series from 1770 to 1869.

The RACF for the residual estimates of the AR(3) model
possesses a large value at lag 9. This fact implies that it may be
advisable to estimate an AR(9) process with ¢;-¢s constrained
to zero. The estimates and standard errors for this model are
listed in Table 2, while the difference equation is written in (2):
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(1 — 1.2434B + 0.51928% — 0.19548°%)

(2™ — 11.77) = q, )
where 2z, = (1/0.5)[(z, + 1.0)°* — 1.0] and 11.77 is the mle of
the mean of the z,'™ series for the constrained AR(9) model.

The model in (2) satisfies all the modeling assumptions of
the residuals. A plot of the RACF in Figure 10 shows that the
residuals are uncorrelated. All of the estimated values of the
RACEF fall within the 5% significance interval. The x? distrib-
uted portmanteau statistic U, has a value of 18.85 for 22 d.f.
Therefore the U, statistic also confirms that the residuals are
not correlated. The diagnostic checks for homoscedasticity
and normality of the residuals reveal that these assumptions
are also fulfilled. The model in (2) therefore adequately models
the yearly Wolfer sunspot numbers. Other types of constained
models were examined, but the AR(9) process with ¢s—¢s
constrained to zero is the only model that was found to be
satisfactory.

An alternative approach to modeling the sunspot series by a
constrained model is to consider a multiplicative Box-Jenkins
seasonal process. The large values of the PACF at lags 1 and 2
in Figure 7 indicate the need for the nonseasonal AR parame-
ters ¢, and ¢,. The behavior of the ACF in Figure 6 could be
due to a seasonal AR component. On the basis of these facts
and other previously mentioned information it is appropriate
to estimate the parameters of a(2, 0, 0) X (1, 0, 0), model. The
parameter estimates and standard errors for this seasonal
model with A = 0.5 and const = 1.0 are given in Table 3. The
multiplicative seasonal Arima difference equation is written in

3y

TABLE 2. Parameter Estimates for the Constrained Sunspot Model TABLE 3. Parameter Estimates for the Seasonal Sunspot Model
Maximum Likelihood Standard Maximum Likelihood Standard
Parameter Estimate Error Parameter Estimate Error
N 1.2434 0.0470 N 1.3783 0.0456
o] -0.5192 0.0458 @2 ’ —-0.6770 0.0460
[N 0.1954 0.0249 b, 0.2142 0.0616
g, 2.0569 Ga 2.1958
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(1 — 1.3783B + 0.6770B2)(1 — 0.21428°)
cZM - 1062) =a  (3)

where z,/* = (1/0.5)[(z; + 1.0)>* — 1.0} and 10.62 is the mle of
the mean of the 2,V series for the seasonal model.
Unfortunately, the seasonal model in (3) does not fare well
with the whiteness checks. As is shown in Figure 11, the
RACF possesses a large value at lag 10 that lies well outside
the 1% significance interval. The RACF estimates at lags 4 and
12 are also outside the 1% significance interval, while the
RACF at lag 11 just touches the 1% significance limit. The U,
statistic has a value of 43.35 for 22 d.f. This fact also indicates
that the seasonal model is inadequate to model properly the
sunspot data. Other diagnostic checks reveal that the homo-
scedasticity and normality assumptions are reasonably well
satisfied. Although the authors examined other types of mul-
tiplicative seasonal Arima models, the process in (3) could not
be improved upon by another multiplicative seasonal model.
From the foregoing discussion regarding a process to model
the sunspot data it is evident that the constrained AR(9)

630.1
Thousands
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Jan Jan. Dec.
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Fig. 12. Total monthly international airline passenger data.
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process gives the best fit. The AIC can also be employed to
verify which is the best model to select. The AIC for the
AR(2), the AR(3), the seasonal Arima (2,0, 0) X (1,0, 0), and
the constrained AR(9) model without ¢,—¢5 are calculated to
be, respectively, 1332.02, 1331.30, 1323.51, and 1288.63. For
all four types of models the data are transformed by setting A
= 0.5 and const = 1.0. The constrained AR(9) process has the
minimum AIC, and therefore according to the AIC decision-
making procedure this model should be selected in preference
to the other three. Because the constrained AR(9) model is
chosen in preference to a seasonal model, it is also referred to
as a nonmultiplicative model.

An important application of Arima models in water re-
sources is forecasting. Box and Jenkins [1970, chapter 5] de-
scribe how to obtain mmse forecasts for Arima models if the
original data have not been transformed by a nonlinear trans-
formation. The same technique also applies for forecasting
transformed values if the Arima model has been fit to trans-
formed data. Recently, Granger and Newbold [1976] discussed
a mmse method of forecasting the original series when there
has also been a nonlinear transformation.

Let z,*'(k) denote a mmse forecast at origin ¢ for lead time &
for the transformed series. The exponent of z,*'(k) could, for
example, indicate some type of Box-Cox transformation. A
naive approach to obtain a forecast for the original untrans-
formed series would be to take the inverse transformation of
2,M(k). However, Granger and Newbold [1976] describe an
optimal procedure for procuring a forecast z,(k) at origin ¢ for
lead time k for the untransformed series.

As an illustrative example, consider the sunspot series model
where there is a Box-Cox transformation with A = 0.5 and
const = 1.0. This transformation is written as

M = (1.0/M)(z, + const)* — 1.0] (4)

where A = 0.5 and const = 1.0. Granger and Newbold {1976, p.
197] give the mmse forecast of the untransformed series as

z(k) = [0.5z;%(k) + 1.0]2 = [1.0 + Var (k)] (5)

where z,(k) is the mmse forecast of the original series, z, ™ (k } is
the mmse forecast of the z,/»' series obtained by using the
methods of Box and Jenkins [1970, chapter 5], and Var (k) is
the variance of the forecast error of z, *'(k) [Box and Jenkins,
1970, p. 128, equation (5.1.16)].

AIRLINE PASSENGER DATA

Total monthly international airline passenger data from
1949 to 1960 are listed by Box and Jenkins [1970, p. 531].
Although Box and Jenkins determine a model for the airline
passenger data, the same model is reformulated in this paper
to demonstrate the usefulness of the contemporary methods
described by Hipel et al. [1977a] for seasonal model construc-
tion.

A plot of the airline passenger data in Figure 12 reveals
important information about the observations. The periodic
peaks in the data reflect the seasonality of the observations.
The series is seasonal due to a high travel period during the
summer months and a lesser peak travel time in the spring. It is
obvious from the general magnitude increase of all the data
with time that there is a linear trend component present. In
some instances a physical understanding of the process being
analyzed allows for the incorporation of deterministic com-
ponents into the model to account for seasonality and/or
trends. For instance, seasonality may be modeled by a Fourier
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Fig. 13. ACF of the logarithmic airline data.

series, while trend might be accounted for by a polynomial.
However, for the airline passenger data a pure stochastic sea-
sonal Arima model is fit to the data. This model stochastically
accounts for the inherent properties of the given data.

Another important characteristic of the raw data is that the
variance increases with time. This fact is detected by noticing
the escalating amplitude of the seasonal wave pattern. A
change in variance over time of the original data would even-
tually be mirrored by heteroscedasticity in the residuals of the
model fit to the data. To rectify the situation from the start,
natural logarithms are taken of the data.

The ACF of the logarithmic airline data that are plotted in
Figure 13 demonstrates that the logarithmic data are seasonal
due to the pronounced peaks of the ACF at lags that are
multiples of 12. Because the ACF attenuates very slowly, this
indicates the need for seasonal and/or nonseasonal differ-
encing. Figure 14 illustrates that seasonal differencing removes
the seasonal wave pattern in the ACF but fails to cause the
ACF to damp out more rapidly than it does in Figure 13.
When calculating the ACF in Figure 14, or in general when
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Fig. 14. ACF of the seasonally differenced logarithmic airline data.
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ACF of the nonseasonally differenced logarithmic airline
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Fig. 15.

computing the ACF of any series that has been differenced, the
mean of the w, series is not removed. This procedure precludes
missing any deterministic component that may still be present
even after differencing. As is demonstrated in Figure 15, non-
seasonal differencing of the logarithmic airline data fails to
remove large but slowly decaying values of the ACF at lags
that are multiples of 12. Therefore it is appropriate to differ-
ence the logarithms of the observations both seasonally and
nonseasonally. Figure 16 illustrates that no further differ-
encing of the logarithmic data is required because the ACF
appears to more or less truncate after lag 12.

In order to identify the number of AR and MA terms
required in the model of the nonseasonally and the seasonally
differenced logarithmic airline data, the graphs of the ACF,
the PACF, the IACF, and the IPACF that are shown in
Figures 17-19, respectively, are interpreted simultaneously.
Notice that both the ACF and the IPACF have significant
values at lags 1 and 12, This indicates that possibly both a
nonseasonal and a seasonal MA term are required. The IACF
plot reinforces these conclusions. There are rather large values
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Fig. 16. ACEF of the nonseasonally and seasonally differenced airline
data.
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Fig. 17. PACF of the differenced logarithmic airline data.

of the 1ACF for the first four lags and also some large values
just after lags that are multiples of 12. This implies the pres-
ence of a nonseasonal MA component. Because the IACF
attenuates at lags that are multiples of 12, this fact implies that
a seasonal MA term is also needed. A possible process to try
for modeling the logarithmic airline data is therefore a (0, 1, 1)
X (0, 1, 1), model.

The plot of the PACF does not delineate as clearly as the
other identification graphs the type of model to estimate.
Because of the significant values of the PACF at lags 1 and 12
it seems that both an AR nonseasonal and an AR seasonal
term are required. However, these conclusions contradict pre-
vious results. A closer inspection of the PACF reveals that
some larger values at lags 3 and 4 could suggest the need for a
nonseasonal MA term. There is not a significant value of the
PACF at lag 24, but a rather large value at lag 36 may imply an
attenuating effect due to a seasonal MA component. For this
particular example the PACF contributes little to the identi-
fication and actually adds some confusion concerning which
model to estimate. However, when all four graphs are exam-
ined as a unit, it is obvious that the (0, 1, 1) X (0, 1, 1),; model
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Fig. 18. IACF of the differenced logarithmic airline data.
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Fig. 19. IPACF of the differenced logarithmic airline data.

is the proper process to estimate. When considering other time
series applications the PACF usually enhances the identi-
fication procedure.

In practice, the authors have discovered that the utilization
of all the identification procedures used in this paper greatly
simplifies model identification, especially for seasonal Arima
processes. Unfortunately, Box and Jenkins [1970, chapter 9] do
not explain explicitly how to use the PACF for seasonal model
identification. This could be the reason that McMichael and
Hunter [1972] and McKerchar and Delleur [1974] fail to em-
ploy the PACF for seasonal Arima model identification and
therefore appear to have some difficulty in determining which
models to estimate.

Table 4 lists the parameter estimates and standard errors for
a(0, 1, 1) X (0, 1, 1),, model fit to the natural logarithms of the
total monthly international airline passenger data. Estimates
are calculated by using both the modified sum of squares
technique [McLeod, 1976a] and the unconditional sum of
squares method [Box and Jenkins, 1970, chapter 7]. Notice
that the better estimates when using the modified sum of
squares method do differ somewhat from the other estimates
even in apparently large samples. In particular, the two esti-
mates for @, differ by approximately 80% of their standard
errors. Furthermore, the new estimation procedure involves
only a slight increase in computations in comparison with the
old method.

The Arima difference equation for the airline modei is writ-
ten as

(1 = BY1 = B%) Inz = (I — 04018B)
(1t — 0.5569B8'%)a, (6)

TABLE 4. Parameter Estimates for the Airline Model

Unconditional Sum
of Squares Method

Modified Sum of
Squares Method

Parameter mle* SEt mle* SEt
4, 0.4018 0.0800 0.3959 0.0802
0, 0.5569 0.0726 0.6135 0.0690
G - 0.03672 0.03664

*The mle stands for maximum likelihood estimate.
+SE stands for standard error.
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A plot of the RACF in Figure 20 for the model in (6) shows
that the independence assumption of the residuals is satisfied.
All the values of the RACF lie within the 10% significance
interval except for the RACF estimate at lag 23, which is still
inside the % significance interval. The x? distributed U, statis-
tic has a value of 21.45 for 22 d.f. and therefore also indicates
that the residuals possess no significant nonwhiteness. Other
diagnostic checks reveal that both the homoscedasticity and
the normality assumption for the residuals are fulfilled. There-
fore on the basis of the information used, the chosen seasonal
Arima model adequately models the airline data.

Although a seasonal (0, 1, 1) X (0, 1, 1),, model is deter-
mined for the logarithmic airline data in this paper, in other
situations it may be advisable to design a model that avoids
differencing. When a model! contains differencing this means
that the process is nonstationary, and therefore if the model is
used for simulation purposes, the generated data are not re-
stricted to any mean level. In engineering applications such
as reservoir design, stationarity of monthly average river
flows is essential in order to avoid massive overdesign. To
overcome this problem, researchers often incorporate a de-
terministic component, or transformation, into the model to
remove seasonality. Then a nonseasonal autoregressive mov-
ing average (Arma) model is fit to the remaining stochastic
component. For example, McMichael and Hunter [1972] de-
scribe how to eliminate seasonality for daily water temperature
and discharge data by employing a Fourier series and other
periodic polynomials for the deterministic component.
McKerchar and Delleur [1974] standardize the data for each
month to eliminate seasonality in average monthly river flow
observations. Hipel [1975] discusses standardization and other
methods of removing seasonality and then explains the proper
procedure for determining an Arma model for the stochastic
component. Tao and Delleur [1976] describe harmonic and
standardization procedures for removing the seasonal com-
ponent from time series.

Forecasting is an important application of airline passenger
data. In many types of time series applications it is often
appropriate to compute the transformation given by

z/» = In (z, + const) )
where 2, is the transformed z, series and const is a constant
that is chosen large enough to make all values of the z,*' series
positive. For the case of the airline passenger model, the
constant is given a value of zero because no zero or negative
values are present in the original series.

When the original z, series is changed by the transformation
in (7). the mmse forecast of the untransformed series at origin ¢
for lead time k is [Granger and Newbold, 1976, p. 197]

z(k) = exp {z:M(k) + [Var (k)/2]} — const ®)

where z,(k) is the mmse forecast of the original series for the
Arima model fit to the data, z,/*(k) is the mmse of the z,»
series obtained by using the approach described by Box and
Jenkins [1970, chapter 5], and Var (k) is the variance of the
forecast error of z,*'(k) [Box and Jenkins, 1970, p. 128, equa-
tion (5.1.16)). In order to derive (8) it is assumed that the
2N (k) forecast is approximately normally distributed. Note
that the normality assumption is not invoked to obtain (4).
If the model in (6) for the airline passenger data is employed
for forecasting, the first step is to obtain mmse forecasts for
z» = In z, by using the methods given by Box and Jenkins
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Fig. 20. RACF of the seasonal model for the airline data.

[1970, pp. 306-313]. Then (8) is utilized to determine mmse
forecasts for the original untransformed z, series.

CONCLUSIONS

This paper demonstrates that in practical applications, im-
proved Arima models can be obtained readily by using the
recent modeling techniques that are described by Hipel et al.
[1977a]. Although more methods are now available for use at
all three stages of model construction, this does not complicate
the modeling process. Rather, the model-building procedure is
simplified and at the same time strengthened. Utilization of
more types of identification plots allows for a fairly rapid
convergence to a tentative model to estimate. At the estima-
tion stage, better parameter estimates can be calculated by
employing the modified sum of squares technique [McLeod,
1976a]. Rigorous diagnostic checks insure that an appropriate
Arima model is ultimately selected, and therefore the user
should have more confidence in the chosen Arima process. If
problems arise due to heteroscedasticity and/or nonnormality
of the residuals, these shortcomings can often be overcome by
a Box-Cox transformation of the data. Finally, model par-
simony can be insured by utilization of techniques such as the
AIC or the likelihood ratio test.

For the case of the Saint Lawrence River model in (1) a
better model is obtained here than was obtained by Carlson et
al. [1970). This is due to the fact that in addition to the ACF
being examined, the PACF, the IACF, and the IPACF are also
studied at the identification stage. The AIC and other checks
confirm that a (3, 0, 0) model with ¢, constrained to zero is
indeed the proper model to select. Model parsimony is pre-
served, while simultaneously the assumptions of the residuals
are not violated.

An AR(9) model without ¢,-¢, adequately models the an-
nual sunspot numbers. A check for homoscedasticity of the
residuals reveals that it is necessary to employ a Box-Cox
transformation to remove heteroscedasticity. A square root
trapsformation with the parameter A = 0.5 and const = 1.0
rectifies the situation. Diagnostic checks and also the AIC
indicate that the constrained AR(9) process should be selected
in preference to an AR(2), an AR(3), or a multiplicative
seasonal Box-Jenkins model.

The authors agree with the findings of Box and Jenkins
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[1970, chapter 9] that a (0, 1, 1) X (0, 1, 1),, model is the
proper seasonal multiplicative process to fit to the natural
logarithms of the monthly airline passenger data. However, it
is clearly shown in this paper how all the identification plots
can be utilized to determine a tentative seasonal model to
estimate. Furthermore, as is shown in Table 4, the modified
sum of squares estimation method gives better estimates for
the moving average parameters than the estimates obtained
from the unconditional sum of squares technique.

If the original data are changed by a nonlinear transforma-
tion, it is now possible to procure mmse forecasts of the
untransformed series [Granger and Newbold, 1976]. This fore-
casting procedure is described for both a square root and a
natural logarithmic transformation.

Aside from determining nonseasonal or seasonal Arima
models for given data sets the contemporary model-building
procedures given by Hipel et al. [1977a] can be extended for
use in other types of applications. An important consideration
in water resources is how to model the effects of either man-
induced or natural interventions on natural hydrologic varia-
bles. For example, what are the stochastic alterations of a
newly constructed reservoir on the mean level of the down-
stream flow regime? Hipel et al. [1975, 1977b] determine inter-
vention models for water resource applications by employing
similar modeling procedures to those used in this paper.

NOTATION
a, white noise time series.
AR(p) autoregressive process of order p.
B backward shift operator.
const additive constant for a Box-Cox transformation.

d order of the nonseasonal differencing operator.
D order of the seasonal differencing operator.

g estimated residual skewness.

g. estimated residual kurtosis.

In natural logarithm.

mle maximum likelihood estimate.
mmse minimum mean square error estimate.
order of the nonseasonal AR operator.
. d, nonseasonal Arima model.
(p, d, g) X (P, D, Q)s seasonal Box-Jenkins Arima model.

order of the nonseasonal MA operator.
order of the seasonal MA operator.
seasonal length.
discrete time.
U, portmanteau statistic calculated from the estimates
of the RACF up to lag L.
variance of the forecast error of z, (k).
z, discrete time series value at time /.
2™ transformation of z,.
z,(k) mmse forecast of z, at origin ¢ for lead time k.
zM(k) mmse forecast of z* at origin t for lead time k.
6, ith nonseasonal MA parameter.
©; ith seasonal MA parameter.
exponent of a Box-Cox transformation.
.2 variance of a,.
o.4k) residual variance of a process with k parameters.
o.%(r) residual variance for an AR process with r parame-
ters.

P
q)
q)

P order of the seasonal AR operator.
q

Q

)

t

~»
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¢, ith nonseasonal AR parameter.

&, ith seasonal AR parameter.

x constant to be estimated in the homoscedasticity
test for the residuals.

x? chi-squared random variable.
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