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CoMBINING HYDROLOGIC FORECASTS

By A. Ian McLeod," Donald J. Noakes,” Keith W. Hipel,’
and Robert M. Thompstone*

ABssTRACT: Forecasts of river flows are useful in optimizing the operation of
multipurpose reservoir systems. Using two case studies, the usefulness of com-
bination techniques for improving forecasts is examined. In the first study, a
transfer function-noise model, a periodic autoregressive model, and a concep-
tual model are employed to forecast quarter-monthly river flows. These models
all approach the modeling and forecasting problem from three different per-
spectives, and each has its own particular strengths and weaknesses. The fore-
casts generated by the individual models are combined in an effort to exploit
the strengths of each model. The results of this case study indicate that sig-
nificantly better forecasts can be obtained when forecasts from different types
of models are combined. In the second study, periodic autoregressive models
and seasonal autoregressive integrated moving average models are used to
forecast monthly river flows. Combining the individual forecasts from these
two statistical time series models does not result in significantly better forecasts.

INTRODUCTION

In the design and operation of engineering projects, such as a system
of multipurpose reservoirs, it is both desirable and necessary to ensure
optimum performance of the system. Prior to actual construction, sim-
ulated inputs can be employed to estimate the expected benefits and
costs associated with the project. During operation, accurate forecasts
of the system’s inputs are necessary to ensure that the system is oper-
ated in the most efficient manner. Choosing a model which produces
reliable and accurate forecasts is therefore essential to the successful op-
eration of the system.

The selection of the “best” forecasting procedure is certainly a goal of
any forecasting study. Invariably, however, no one method will produce
optimum forecasts in all cases. The task then becomes one of selecting
the most appropriate forecasting procedure based upon the available in-
formation.

An alternative approach is to combine the forecasts from two or more
procedures in accordance with their relative performance. In this way,
it is hoped that the strengths of each method might be exploited. The
successes achieved by combining economic forecasts have been docu-
mented in several studies (Armstrong and Lusk 1983; Bates and Granger
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1969; Bordley 1982; Granger and Ramanathan 1984; Makridakis, et al.
1982; Newbold and Granger 1974; Winkler and Makridakis 1983). How-
ever, equivalent studies employing hydrologic time series are not avail-
able. Accordingly, the question of combining hydrologic forecasts is ad-
dressed in this paper.

Two case studies are presented. In the first experiment, a transfer
function-noise (TFN) model, a periodic autoregressive (PAR) model and
a conceptual hydrologic model are employed to produce one-step-ahead
quarter-monthly river flow forecasts. These models all approach the
modeling and forecasting problem from different perspectives, and each
has its own particular strengths and weaknesses. The forecasts gener-
ated by the individual models are combined in an effort to exploit the
strengths of each model.

In the second forecasting experiment, two specific statistical time se-
ries models are employed to forecast monthly river flows. The forecasts
from these models are then combined using various procedures.

The specific types of models employed in the two seasonal forecasting
case studies are outlined in the next section. A number of procedures
for combining the individual forecasts are then presented. Finally, the
results of a case study involving quarter-monthly river flows and a case
study employing monthly river flows are discussed.

FORECASTING MODELS

Periodic Autoregressive (PAR) Models.—Seasonality of geophysical
data adds a degree of complexity to the selection and development of
an appropriate model to fit to a given time series. Natural geophysical
data are seasonally stationary. That is, river flows or temperatures for a
particular season of the year are statistically similar from year to year,
but may vary drastically across seasons. Hydrologists have also found
that geophysical time series exhibit an autocorrelation structure which
depends not only on the time lag between observations but also the
season of the year (Moss and Bryson 1974). For example, if snowmelt is
an important factor in runoff which might occur in either March or April,
the correlation between observed river flows for these months may be
negative, whereas it is usually positive at other times of the year. These
characteristics offer a challenge to the practitioner while at the same time
providing a convenient structure for the modeler to exploit. A family of
PAR models specifically designed to account for these characteristics is
briefly described in this section. A more detailed explanation of PAR
models is given by Noakes (1984) and Noakes, et al. (1985).

LetZ,,t=1,2, ..., be aseasonal time series with period s. The time
index t may be regarded as a function of the year T (T =1, 2, ..., N),
and the season m (m =1, 2, ..., s). Thus, the time index may be written
ast = (T — 1)s + m. The PAR (p;, p2, ..., p;) model is conveniently
described by

GMIBHZN = W) = v o 1)

where $™(B) = 1 — &{”B — ... — "B’ is the autoregressive (AR)
operator for season m; B is the backward shift operator such that BZ, =
Ziyand B"Z, = Z_,; e = p is the mean for period m; and a4, is ap-
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proximately NID[0, 0°™]. The superscript m obeys modulo arithmetic (i.e.,
p® = pe* = =+ The superscript \ is the exponent of an appropriate
Box-Cox transformation. The Box-Cox transformation (Box and Cox 1964)
is given by

20 _ A'[Z, + constant —1]; A #0
In (Z; + constant); A =0

The reasons for transforming the data include stabilizing the variance
and improving the normality assumption of the white noise series 4, .
In hydrologic application, a Box-Cox transformation will often rectify
problems associated with the untransformed series. In particular, a log-
arithmic transformation of the data is common in the analysis of hy-
drologic time series. For the river flow data employed in this study, the
log transformation was found to be best.

Several procedures are available for determining the orders of the AR
models to be fitted to each season (Noakes, et al. 1985). In this paper,
plots of the seasonal partial autocorrelation functions (PACF) were ex-
amined to determine the orders of each seasonal AR model. Estimates
of the model parameters were then obtained by solving the seasonal
Yule-Walker equations. This model will be referred to as the PAR/PACF
model (Noakes, et al. 1985).

Transfer Function-Noise (TFN) Models.—Detailed developments of
the general TEN model are given in a number of publications (Box and
Jenkins 1970; Box and Tiao 1975; Hipel, et al. 1975; Hipel and McLeod
1987; Hipel, et al. 1977). To be brief, only the general form of the model
and the actual TEN model employed in the study are presented in this
paper.

The general TEN model may be written in the form (Box and Jenkins
1970; Box and Tiao 1975; Hipel, et al. 1975; Hipel and McLeod 1987;
Hipel, et al. 1977)

Y=l x )+ Ny o 3)

where t is discrete time; y, is the response variable; N, is the stochastic
noise component, which may be autocorrelated; and f(k, x, t) is the dy-
namic component of y,. The dynamic term includes a set of parameters
k and a group of covariate series x. When required, both y, and x, may
be transformed using a suitable Box-Cox transformation. The same Box-
Cox transformation need not be applied to all of the series.

Once a given series has been transformed, it is necessary to remove
any trends or seasonality in the data. A common procedure employed
in hydrology for monthly sequences is to deseasonalize the series by
subtracting the estimated monthly mean and dividing by the estimated
monthly standard deviation for each data point (Yevjevich 1972).

Two input covariate series were employed in the TFN model devel-
oped in this paper. These series consisted of deseasonalized rainfall and
snowmelt data. The output from the model was deseasonalized loga-
rithmic river flows. The TEN model had the form (Thompstone 1983)

Ye=vi(B)xis T va(B)Xea + Ny 4)
where y; is the transformed deseasonalized flow at time t; x, is the de-
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TABLE 1.—Parameter Estimates for TFN Model

PARAMETERS
81 w0, o1,
Rainfall | Snowmelt | Rainfall | Snowmelt | Rainfall | Snowmelt
Calcula- series, series, series, series, series, series,
tions j=1 j=2 j=1 j=2 j=1 j=2 &y &2 6
(1) (2) 3) (4) (5) (6) 7) (8) (9) (10)
Estimated
value 0.6248 0.5793 0.2326 0.1023 ~0.2690 | —0.0460 | 1.3112 | —0.3817 | 0.7124
Associated
standard
error 0.0328 0.0895 0.0159 0.0131 0.0178 0.0168 | 0.1231 0.0916 | 0.1129

seasonalized rainfall at time f; and x,, is the deseasonalized snowmelt
at time t. The transfer functions v{B) were identified as (Thompstone
1983)

(w0, — ml,jB)‘
(1-3,8) "

where og;, o;; and ,; are the model parameters which must be esti-
mated from the data. The stochastic noise component was identified as
an AR moving average (ARMA) process of the form (Thompstone 1983)

. (1-6B
T =B - B

where 6, is the first order moving average (MA) parameter; ¢; is the ith
AR parameter; and g4, is white noise assumed to be NID(0, o2). Estimates
of the model parameters and their associated standard errors are given
in Table 1.

Conceptual Hydrologic Model.—The conceptual model developed in
hydrology attempts mathematically to model the complex physical pro-
cesses involved in the hydrological cycle. The conceptual model em-
ployed in this paper was originally developed by S. I. Solomon and As-
sociates (1974), and subsequently modified by Kite (1978). The model is
a lumped parametric conceptual model and simulates the relationship
between river flow and daily meteorological data. Inputs consist of total
daily precipitation, minimum and maximum daily temperatures, and the
previous day’s flow.

Kite (1978) has previously compared this model with several larger
well-known hydrologic models and found its performance comparable
with the more complex models. With minor modifications, this model
has been employed by Alcan Limited in Quebec to produce forecasts of
daily river flows into their reservoir system (Thompstone 1983). Alcan’s
model is referred to as the PREVIS model in this paper.

Thompstone (1983) has noticed that the daily forecasts from the PREVIS
model tend to be consistently higher or lower than the observed flows
during certain periods. In an effort to compensate for this behavior, a
crude smoothing has been applied to the PREVIS forecasts. A correction
factor based on the average forecast error for the past few days is applied

v(B) =

t
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to the PREVIS forecasts. These smoothed forecasts are referred to as
PREVIS/S forecasts.

Seasonal Autoregressive Integrated Moving Average (SARIMA
Models). —The linear stochastic models described in the book by Box
and Jenkins (1970) constitute a class of processes which is flexible and
comprehensive enough to be useful in a wide range of applications. The
success of these models has led to a corresponding increase in their pop-
ularity and subsequent use for modeling hydrologic time series (Hipel
and McLeod 1987).

The SARIMA model for a discrete equispaced set of measurements Z; ,
Zy, ..., Z, can be written as

SBYD(B)1 — BY(1 — BY(Z, = ) = 0BYOBI, « oo oveeeeeeeeii )

where t is discrete time; s is the number of seasons per year; p is the
mean level of the process Z,; and 4, is the noise component of the sto-
chastic model assumed to be NID(0,¢?2). The terms ¢&(B) and ®(B’) are
the nonseasonal AR operator of order p and the seasonal AR operator
of order P, respectively. Similarly, 8(B) and ©(B°) are the nonseasonal
and seasonal MA operators of order g and Q, respectively. The nonsea-
sonal differencing operator (1 — B)! is of order d, and the series is sea-
sonally differenced D times using (1 ~ B%)". The SARIMA models are
usually represented by the notation (p,d, q)(P, D, Q), where the first set
of parentheses contains the orders of the nonseasonal operators, and the
second set the orders of the seasonal operators.

ComBINING FORECASTS

There are certainly countless ways of combining forecasts from dif-
ferent forecasting procedures to arrive at a combined forecast. The sim-
plest is probably to weigh each forecast equally. If there are k forecasts
available, the combined forecast f, would be

where f; is the forecast produced by the ith model; w; is the weighting
factor for the ith forecast; and w; = w; = 1/k for all i and j.

It would be expected that a “better”” combination of forecasts could be
obtained if the statistical properties of the forecast errors were consid-
ered. Winkler and Makridakis (1983) point out that if the covariance ma-
trix of the forecast errors from k methods (X) is known, then the optimal
weights are given by

where the o; terms are the elements of 37!, In practice, 2 is not known
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and must be estimated. Estimates of the weights in Eq. 9 can be cal-
culated from the inverse of %, where

t—1
$i= v D el (10)

h=t—v

¢! is the percentage error for method i at time t; and v is the number
of previous forecast errors employed to calculate w;.

In the study concerning the combination of economic forecasts by
Winkler and Makridakis (1983), these authors found that estimating 3!
and calculating the weights using Eq. 9 gave the poorest results. One
of the preferred procedures in their study was to ignore the correlation
between the forecast errors. In this case the forecast weights were cal-
culated as

B = e 11)

P t=1 -1
SER
j=1 Lh=t—v

where ¢ and v are as defined previously. This approach ensures that
all of the estimated weights are greater than or equal to zero.

An alternative approach to calculating the combining weights when
seasonal data are considered is presented in this paper. In this proce-
dure, the model residuals are employed to calculate the residual variance
for each season. If two forecasts are to be combined, then the weights
are calculated for each season such that

N
E [a;(2+)(k41)s]2
k=1

Wi =N N
[a;('l+)(k—l)s]2 + 2 [aﬁ)(kq)s]z
k=1

k=1

N
2 [a/(i)(k—l)s]z
k=1

and w,; = g U (13)

2 [ﬂ/('lg(k—l)s]z + E a/('%-)(k—l)s]2
k=1 k

=1

where w,; is the weight assigned to forecasting procedure 1 for the jth
season; w,; is the weight assigned to forecasting procedure 2 for the jth
season; a) is the residual at time t for the ith model; N is the number
of years of data; and s is the number of seasons per year. Since the data
are seasonal, the forecast error variance might be expected to be sea-
sonal, and it is hoped that this procedure will account for this season-
ality.

ComBINING QUARTER-MONTHLY RIVER FLOow FORECASTS

The Lac St. Jean reservoir is part of the hydroelectric system operated
by Alcan Limited in Québec. The electricity generated by this system is
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TABLE 2.—RMSEs of Quarter-Monthly Forecasts Produced by Individual Models

Model RMSE

(1 @
TEN 0.2790
PAR/PACF 0.3009
PREVIS 0.3894
PREVIS/S 0.3537

used at Alcan’s aluminum smelter in Arvida, Québec. In order to ensure
a constant and adequate supply of power, it is necessary to schedule
releases from the reservoir in an optimum fashion. Thus, forecasts of
the quarter-monthly inflows into the reservoir are required so that the
desired outflow and hydraulic head are available for power generation.

The available data in this study were 30 yrs of quarter-monthly river
flows from 1953 to 1982 inclusive. A split sample experiment was con-
ducted with models being calibrated using the first 27 yrs of data
(Thompstone 1983). These models were then employed to generate fore-
casts for the last three years of data. The river flow data employed in
this study were transformed using a logarithmic transformation (Thomp-
stone 1983).

The RMSE’s (rms error) of the logarithmic forecast errors for the in-
dividual models are presented in Table 2. The TEN model had the small-
est RMSE of all the models considered. As such, this value will be used
as a basis of comparison of the various techniques employed to combine
the individual forecasts.

In the study, the weights for combining the individual forecasts were
calculated using both Eq. 9 and Eq. 11 with v = 4, 8, and 12. Since the
model residuals were not employed, the first v forecasts were combined
using equal weights. The weights were then recalculated for each sub-
sequent forecast using the previous v forecast errors.

The forecasts were combined in a pairwise fashion, with the exception
of the two conceptual models (PREVIS and PREVIS/S). The resulting
RMSE’s of the combined forecasts, using Eq. 9 to calculate the combin-
ing weights, are given in Table 3. The subscripts associated with the
RMSE indicate the number of previous forecast errors that were em-
ployed to calculate the weights. For example, when the previous four
forecast errors were used to combine the TFN and PAR/PACEF forecasts,
the resulting RMSE was 0.1418. In most cases, the greater the number

TABLE 3.—RMSEs of Combined Quarter-Monthly Forecast with Combining Weights
Calculated Using Eq. 9

Combination RMSE, RMSE, RMSE,,

) @ ©) 4
TEN + PAR/PACF 0.1418 0.1197 0.1195
TEN + PREVIS 0.7868 0.5243 0.4183
TEN + PREVIS/S 0.9942 0.3183 0.2708
PAR/PACF + PREVIS 0.2432 0.2288 0.2224
PAR/PACF + PREVIS/S 0.2171 0.1858 0.1865
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TABLE 4.-—RMSEs of Combined Quarter-Monthly Forecasts with Combining
Weights Calculated Using Eq. 11

Combination RMSE, RMSE, RMSE,,

(1) (2) (3) 4)
TEN + PAR/PACF 0.1456 0.1236 0.1216
TFN + PREVIS 0.2751 0.2508 0.2474
TEN + PREVIS/S 0.2825% 0.2523 0.2498
PAR/PACF + PREVIS 0.2442 0.2298 0.2222
PAR/PACF + PREVIS/S 0.2144 0.1872 0.1884

*Larger RMSE than TFN forecast errors.

of previous forecast errors employed to calculate the weights, the smaller
the resulting combined RMSE.

The smallest RMSE was obtained when the TFEN and PAR/PACF fore-
casts were combined using the previous 12 forecast errors to calculate
the weights. The resulting RMSE was less than half the value for the
smallest RMSE for the individual models, suggesting that significant
benefits could be obtained by combining the forecasts from these two
models. Conversely, the largest RMSEs were obtained when the TFN
forecasts were combined with the PREVIS or PREVIS/S forecasts. Only
when the previous 12 forecast errors were employed to calculate the
weights did the combined TFN and PREVIS/S forecasts yield a smaller
RMSE than the best individual model. Even then, the difference was
only in the third decimal place.

The resulting RMSE’s of the combined forecasts when Eq. 11 was em-
ployed to calculate the combining weights are given in Table 4. In this
case, only one combination had a larger RMSE than the best individual
model. Once again, the smallest RMSE was obtained when the TFN and
PAR/PACF forecasts were combined using the previous 12 forecast er-
rors to calculate the combining weights. The largest RMSE’s were ob-
tained when the TEN forecasts were combined with the forecasts from
the two conceptual models. These RMSE’s did, however, represent a
significant improvement when compared to the RMSE’s obtained when
Eq. 9 was used to calculate the combining weights.

As a test of combining forecasts from more than two models, the fore-
casts produced by the TEN, PAR/PACF, and PREVIS/S models were
combined using equal weights. The resulting RMSE was 0.1355. Al-
though this does not represent the lowest RMSE, even this naive com-
bination of forecasts produced a RMSE which was less than half the
RMSE of the best individual model.

ComBINING MoNTHLY RivEr FLow FOREcAsTS

The data used in this study comprised 30 monthly unregulated river
flow time series ranging in length from 37 to 68 yrs. The rivers are from
a number of different physiographic regions, and vary in size from rivers
with mean annual flows of less than 2 m®/s to rivers with mean annual
flows exceeding 100 m*/s. The data for the Canadian rivers were ob-
tained from Water Survey of Canada records, and the American river
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TABLE 5.-~Monthly River Flow Time Series

Mean annual
River Location Period |12N| flow (m?/s)
(1 2) () 4 (5)
American Fair Oaks, California 1906-60 660 106.18
Boise Twin Springs, Idaho 1912-60 588 33.40
Clearwater Kamish, Idaho 1911-60 600 231.31
Columbia Nicholson, British Columbia | 1933-69 444 108.61
Current Van Buren, Missouri 1922-60 468 53.86
West Branch
Delaware Hale Eddy, New York 1916-60 | 540 30.32
English Sioux Lookout, Ontario 1922-77 | 660 123.31
Feather Oroville, California 1902-77 708 166.51
James Buchanan, Virginia 1911-60 600 68.83
Judith Utica, Montana 1920-60 492 1.44
Mad Springfield, Ohio 1915-60 552 13.92
Madison West Yellowstone, Montana | 1923-60 456 12.88
McKenzie McKenzie Bridge, Oregon 1911-60 | 600 46.94
Middle Boulder |Nederland, Colorade 1912-60 588 1.53
Missinaibi Mattice, Ontario 1921-76 672 103.45
Namakan Lac La Croix, Quebec 1923-77 648 107.46
Neches Rockland, Texas 1914-60 564 68.53
N. Magnetawan |Burke Falls, Ontario 1916-77 732 5.53
Qostanaula Resca, Georgia 1893-1960 | 816 78.10
Pigeon Middle Falls, Ontario 1924-77 636 14.26
Rappahannock | Fredericksburg, Virginia 1908-71 768 45.31
Richelieu Fryers Rapids, Quebec 1932-77 | 468 331.46
Rio Grande Furnas, Minas Gerais, Brazil | 1931-78 576 896.47
Saint Johns Fort Kent, New Brunswick 1927-77 600 29.92
~ Saugeen Walkerton, Ontario 1915-76 | 744 68.10
S.F. Skykomish |Index, Washington 1923-60 | 456 278.10
S. Saskatchewan |Saskatoon, Saskatchewan 1911-63 624 272.10
Trinity Lewiston, California 1912-60 588 46.67
Turtle Mine Center, Ontario 1921-77 672 37.08
Wolf New London, Wisconsin 1914-60 564 49.34

flow series are from the United States Geological Survey. The Brazilian
data were obtained from Eletrobras (the national electric company of
Brazil). The rivers and their mean annual flows for the water year (Oc-
tober—September) are displayed in Table 5.

The general procedure was first to truncate the transformed data sets
by omitting the last 36 observations. All the data in this study were
transformed by taking natural logarithms, which was found to be the
most appropriate Box-Cox transformation (Box and Cox 1964). The log
transformation was needed to ensure that the model residuals were ap-
proximately normally distributed and homoscedastic.

Using the appropriate identification, estimation, and diagnostic check
stages of model development, SARIMA and PAR models were fitted to
the truncated series. The orders of the autoregressive models fitted to
each season for the PAR models were determined by examining plots
of the seasonal partial autocorrelation functions (PACF) (Noakes, et al.
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TABLE 6.—Percentage of Times Model A Gave Values Better than Model B

Model B
PAR/PACF | SARIMA | CMB-SEAS | CMB-3 | CMB-6 { CMB-9 | CMB-12
Model A (%) (%) (%) %) | (%) | (%) (%)
(1) (2 (3) (4) (5) (6) ™) (8)
PAR/PACF 0 70 56.7 60 60 56.7 56.7
SARIMA 30 0 20 16.7 20 20 20
CMB-SEAS 43.4 80 0 46.7 53.3 56.7 56.7
CMB-3 40 83.3 53.3 0 50 46.7 33.3
CMB-6 40 80 46.7 50 0 433 26.7
CMB-9 43.3 80 43.3 53.3 56.7 0 30
CMB-12 43.3 80 43.3 66.7 73.3 70 0

1985). These models, and the forecasts produced by them, are subse-
quently referred to as PAR/PACF models and forecasts in this paper.
The SARIMA and PAR/PACF models were then used to generate 36
one-step-ahead forecasts for the 30 series.

The monthly forecasts produced by the PAR/PACF and SARIMA
models were combined using some of the procedures outlined previ-
ously in this paper. The combining weights were calculated using Eq.
11 with v = 3, 6, 9, and 12. In addition, seasonal combining weights
were calculated using Eqs. 12 and 13. The combined forecasts were com-
pared on the basis of MSE'’s (mean squared errors).

A summary of the results is presented in Table 6. The CMB-SEAS en-
tries refer to the combined forecasts produced when separate weights
were calculated for each season. The CMB-v entries refer to the com-
bined forecasts when the previous v forecast errors were employed to
calculate the combining weights. The results show that, in general, the
combined forecasts were not an improvement over the PAR/PACEF fore-
casts regardless of the procedure employed to calculate the combining
weights. Conversely, the SARIMA forecasts were almost always im-
proved by combining them with PAR/PACEF forecasts. A comparison of
the various procedures for combining the forecasts seems to indicate that
the more information employed to estimate the combining weights, the
better the forecasts.

CONCLUSIONS

Combining economic forecasts from various models has become com-
mon practice. However, the case studies presented in this paper rep-
resent the first reported experiments dealing with the combination of
river flow forecasts. Since even modest improvements in forecast per-
formance provide the potential for significant increases in social and eco-
nomic benefits, the results presented in this paper should be of partic-
ular interest to individuals operating and managing water resources
systems.

TFN, PAR, and conceptual hydrologic models were employed to fore-
cast quarter-monthly river flows in the first study. The results are far
from conclusive since only one river was considered in the experiment.
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The results are, however, encouraging. It appears that significant im-
provements in forecast performance can be achieved by combining fore-
casts produced by different types of models. The potential gains asso-
ciated with improved forecasts should certainly be incentive enough to
encourage further research in this area.

SARIMA and PAR/PACF models were employed to forecast monthly
river flows in the second experiment. Individually, the PAR/PACF fore-
casts were, in general, significntly better than the SARIMA forecasts
(Noakes, et al. 1985). The combined forecasts did not represent a sig-
nificant improvement over the forecasts produced by the PAR/PACF
models alone. Thus, although the SARIMA model forecasts seasonal
economic data well, this model may not be appropriate for modeling and
forecasting monthly river flows. The PAR model appears to be a more
suitable model for monthly river flows (Noakes, et al. 1985).
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AprPENDIX l.—NoOTATION

The following symbols are used in this paper:

N;
o Ps)

P
p

PAR(p1, p2. -

Pi

=

-~~~

white noise component at time ¢ assumed to
be normally independently distributed with
mean zero and constant variance;

residual at time ¢ for model i;

backward shift operator;

order of the seasonal differencing operator;
order of the nonseasonal differencing opera-
tor;

percentage error for forecasting method i at
time f;

dynamic component of transfer function model;
combined forecast;

forecast using method i;

number of forecasts available to combine;
vector of parameters associated with the trans-
fer function component of the model;
particular season (month) of the year;
number of years of data;

noise component for transfer function model;
periodic autoregressive model with seasonal
orderp, (i =1,2, ..., s);

order of the seasonal autoregressive operator;
order of the nonseasonal autoregressive op-
erator;

order of the autoregressive operator for season
L

order of the seasonal moving average opera-
tor;

order of the nonseasonal moving average op-
erator;

number of seasons per year;

year;

discrete time;

weighting factor for the ith forecast;
weighting factor for forecasting procedure i for
the jth month;

vector of covariates at time ¢;

value of covariate series at time #;

value of the ith covariate series at time f;
response variable at time f;
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time series observation at time #;

transformed observation at time ¢;

ith, jth element of inverse of forecast error co-
variance matrix;

transfer function model parameter;

seasonal moving average operator of order Q;
nonseasonal moving average parameter;
nonseasonal moving average operator of order
q4;

parameter of the Box-Cox transformation;
mean of the series;

number of previous forecasts used to calculate
the combining weights;

jth transfer function;

forecast error covariance matrix;

ith, jth element of X;

variance of a;

seasonal autoregressive operator of order P;
autoregressive operator of order p;
autoregressive operator of order p,, for season
1mi;

transfer function model parameter;
nonseasonal differencing operator of order d;
and

seasonal differencing operator of order D.
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