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SUMMARY
The large sample distribution of the residual autocorrelations in the ARMA model is
derived. The main advantage of this derivation over that of Box and Pierce (1970) is
that it extends directly to more general situations. Generalizations of the derived
distribution are presented for the residual autocorrelations in the multiplicative
seasonal ARMA model and for the autocorrelations of a subseries of the residuals.
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1. INTRODUCTION

Box AND JENKINS (1970) have described methods of fitting parametric time series models by
model selection and estimation followed by model criticism through significance tests and
diagnostic checks on the adequacy of the fitted model. The residual autocorrelations are
useful at the model criticism stage since possible departures from the key assumption that the
white noise disturbances in the specified model are uncorrelated may be detected. In Section 2
the large sample distribution of the residual autocorrelations in the autoregressive-moving
average (ARMA) model is derived. This derivation is broadly similar to that of Box and Pierce
(1970) and Durbin (1970), but nevertheless its advantage over these two approaches is that it
extends directly to other important situations of interest such as SARMA and intervention
analysis models. Also, McLeod (1977b) uses a method similar to that of Section 2 to obtain
the large sample distribution of the residual cross-correlations in univariate ARMA models.
The distribution of the residual autocorrelations in the multiplicative seasonal ARMA (SARMA)
model is given in Section 3. An application to the intervention analysis model is described in
Section 4.

2. RESIDUAL AUTOCORRELATIONS IN THE ARMA MODEL

2.1. Introduction
Suppose that the time series w,, ¢ =1,...,n, is generated by the ARMA time series model

d(B)w, = 0(B)a,, 1)
where
¢B)=1—¢B—...—$,B?, O6(B)=1— 6,B—...—0,B9,

and B is the backshift operator on z. The white noise series, g, is assumed to be independent
and identically distributed with mean 0 and variance 1 and the ARMA model is assumed to be
stationary, invertible and not redundant. Let = (¢y, ..., $p, 0y, ..., ) be the p+g dimensional
vector of true model parameters and let = (y..., qf;, bs,...,6p) be any value in the
admissible parameter space.

For any such {3, the estimated white noise series, d;, can be approximately calculated by

dy= 0,4 _3+...+ 0,4, g+ w—d Wy —...—PpW_p, (P+1<I<n), () |
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where d;=0(t<p). Alternatively, a better approximation is obtained by the back-
forecasting algorithm of Box and Jenkins (1970). If the true value, B, were known, the white
noise series, a,, could be calculated apart from a transient error (which is O(é) as ¢->co for
some 0< ¢<1) from equation (2). The white noise autocorrelations,

r() = ga,a,+,,/t=%laf (=12..), A3)

are (Hannan, 1970, p. 229) asymptotically jointly normal with mean 0 and covariances
cov (r(l),r(k)) = 8/n, @

where 9, = 1 or 0 according as / = k or I/# k. Moreover it is easily seen that the effect of the
aforesaid transient error on r(l) is O(1/n) as n—oo.

Let 8 denote an asymptotically efficient estimate of B such as the least squares estimate of
Box and Jenkins (1970) and let 4, denote the value of g, when 8 = 3. Then, if the model is
correct, the residual autocorrelations,

n—l n
=5 dtdt+z/ Ea u-12.) ®

will have mean 0. On the other hand, for an incorrect model some of the residual auto-
correlations will have nonzero means. This suggests that a test of whether some of the
residual autocorrelations are significantly different from O will be useful in model criticism.

In large samples, it is well known (Hannan, 1970, pp. 345-348) that 8 is normally
distributed with mean @ and covariance matrix I-1/n where,

'yu'u(i —j ) 'yuu(i —j ) q
p q

where the (i, j) element in each partitioned matrix is indicated and y,,, Yuu> Youw Vuor are the
theoretical auto- and cross-covariances defined by

$(B)v,=—a, )
0(B)u; = a, ®
You(K) = E(v;011), )
Yuulk) = E(uwythy 1), (10)
Youlk) = EQth11), (11)
Yur(k) = Youl —K). (12)

2.2. Distribution of the Residual Autocorrelations
For any fixed m>1, let
r=(r(),...,r(m)) 13)

and
£ = (PQ), ..., A(m)). (19
Theorem 1. The large sample distribution of # is normal with mean vector 0 and covariance

matrix
var (f) = (1 —-XI1XT)/n, (15
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where 1 is the m x m identity matrix, I is defined by equation (6) and

X = (—¢i4| 6:-)m, (16)
p q
where the coefficients ¢’ and 6’ are defined by
1/$(B) = X. 4, B, an
i=0
1/68) = 3 0,8 (18)
i=0

and ¢; = 0 =0 for I<0. The coefficients ¢; and 6; are readily computed using the recursive
procedure of Box and Jenkins (1970, pp. 132-134).
The proof of Theorem 1 is based on the following three lemmas.

Lemma 1. For any fixed m,

r()=c(D+0,(/n) (A<iI<m), 19
where
o = Saan (20)

Proof. Since the means of ¢(/) and ¢(0) are 0 and 1 respectively and the asymptotic variances
and covariance of ¢(!) and ¢(0) are O(1/n), equation (19) follows from the Taylor series
expansion of r(J) as a function of (c(7), ¢(0)) about (0, 1).

Lemma 2. Let 3 be the least squares estimate of @ obtained by minimizing

S@® = 3 1)
Then
B—B =TI15,4+0,(1/n), 22

where the ith element of the vector s, is
{ —Zauyn  (1<i<p),
(X A

—Xau_, in (p+1<i<p+q).

Proof. Let 3S/0@ and 8S/8 denote the vector of partial derivatives of S(B) evaluated at
@ and B respectively. Since 3—p is O,(1/|/n) and the partial derivatives of S(B) of all orders
are O,(y/n), it follows from the Taylor series expansion of S/ about B and evaluated at 3
that

(23)

0= o5+ 75 e BB+ 0, 24
It may be shown that
% %%'—r = nl+0,(Jn). (25)
Evaluating 9S/0p using,
vy = 0dy/ 0 (26)
and
u,_; = 0d,|00;, 27

it is seen that (22) holds.
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Lemma 3. The joint asymptotic distribution of Jn(—@,r) is normal with mean 0 and
covariance matrix

28)

I | ~IXT\ pigq
( —-XI%| 1 >
p+q m

m

where I, X and 1 are as in Theorem 1.

Proof. From Lemmas 1 and 2 any linear combination of the elements of (ﬁ—p,r) is,
apart from terms O,,(1/n), an average of a series of martingale differences and hence, by the
martingale central limit (Billingsley, 1961), Jn times this linear combination is asymp-
totically normal. This proves that Jn(8 —@,r) is asymptotically jointly normal.

The asymptotic covariance of y/(n)s,; (1 <1<p) and J(®) c(j) (1 <j<m) is

lim nE(s,;c(j)) = —lim E(X T a0, ;0,841 = v4,(j—1) = ;s (29)
n->0 N->0 t s
The last equality follows from a well-known fourth moment result (Hannan, 1970, p. 23).
Similarly it may be shown that
lim nE(s,;c(f)) = —0;_; (p+1<i<p+g;1<j<m). (30)
n-o

Thus the asymptotic covariance matrix of Jn(f%—B) and (m)r is —I"1XT. This proves
Lemma 3.

Proof of Theorem 1. For any {3, let

n—l n
) = Ela',a'm/tgldf (1<i<m), @31
where d; is defined in (2). It is easily shown that
%G
5 = Sty Oy)
j
= =i+ 0,(1/Jn) (32
and
%0 _ g 10,/m). (33)

26,

By a Taylor series expansion of (#(1), ..., 7(m)) about 8 = B and evaluated at 3 = ﬁ it follows
from (32) and (33) that

£ =r+X@-)+0,(/n). (34)

Theorem 1 now follows from Lemma 3.

It can be algebraically demonstrated (McLeod, 1977a) that for m large, Theorem 1 is
equivalent to the previous result of Box and Pierce (1970, pp. 1522-1525).

ARMA models with some of the model coefficients ¢, ...,¢,, 6y,...,0, constrained to 0
occasionally arise with seasonal data and with other applications. In this case the large
sample covariance matrix of the residual autocorrelations may be shown to be

var®) = (1-X, ;1 XP)/n, 35)

where I is obtained from the matrix I of equation (6) by deleting rows and columns corre-
sponding to the constrained coefficients and similarly X, is obtained from equation (16) by
deleting columns corresponding to the constrained coefficients.
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2.3. Application to Model Criticisms

The estimated large sample covariance matrix of the estimate 8, say V, is often generated
by the nonlinear least squares algorithm. Alternatively V can be estimated by

= 1-Yn, (36)

where I denotes the value of I in equation (6) when 8 = 8. Thus the estimated large sample
covariance matrix of £ can be conveniently calculated from

{var ()}, = 1/n—X VKT, (37

where X denotes the value of X when @ = f3.

Since often large values of r(!) for some particular lag ! will suggest model inadequency,
a useful model criticism procedure is to plot (/) (1 </<m) and their estimated 95 per cent
confidence intervals. The estimated 95 per cent confidence interval for r(J) is consequently
+196 x {var (f(!))}s- In many situations (see, for example, Box and MacGregor, 1971;
Hipel et al., 1977; McLeod et al., 1977; McLeod, 1977a) this approach yields more 1ns1ght
than the use of only the portmanteau test of Box and Jenkins (1970, p. 290).

If m is large enough so that ¢;= ;=0 for i>m, XT X =1 and so var (f) is idempotent and
of rank m—p—gq. Thus

m
On= ng,lfﬁ(l) (3%)
is y%(m—p—q). Box and Jenkins (1970) suggest using Q,, for a portmanteau test of model
adequency. However, Ljung and Box (1976) and Davies et al. (1977) have found that this
test is quite conservative in small samples (so that the chance of rejecting the null hypothesis
of model adequacy is overestimated).

3. RESIDUAL AUTOCORRELATIONS IN THE SARMA MODEL
3.1. Introduction
The multiplicative seasonal ARMA or SARMA model of order (p,q)(p,qy); for the time
series wy, t = 1,...,n, is defined by
O(B%) $(B) w, = O(B°) (B) a;, (39)
where
O(B) = 1—O B*—...— D, B*P,

O(BY) = 1—- 0, B*—...— 0, B,

s is the length of the seasonal period and ¢(B), 6(B) and g, are defined as in Section 2.1. It is
assumed that the model defined by (39) is stationary, invertible and not redundant. Box and
Jenkins (1970) introduced the SARMA model for describing seasonal time series for which the
seasonal component is stochastically rather than deterministically specified. The SARMA
model has been found to provide a suitable model for many seasonal economic time series
(Box et al., 1976, Cleveland and Tiao, 1976).

When normahty of g, is assumed, the large sample information matrix per observation on
the coefficients ¢y, ..., p, 0y, ors O @y, .0y @ O, @ is

I= (.IL Ii), (40)
Il

where I, and I are the information matrices, defined in equation (6), for the ARMA (p,q) and
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ARMA (p,,q,) models with model parameters ¢,, oo Pps Oyy..., 0, and @, v @y ,0,,...,0

; a
respectively and

( Yor(i—Js) l Yo (i—Js) ) b, @1
2 .. ..
Yuri—i9)| vuui=js) | q

Dg qs
where the (i, /)th element in each partitioned matrix is indicated and y,p, Vo> Yups Yuu are
the cross-covariance functions of the processes v;, u;, ¥, U, defined by equations (7), (8),

BV, =—a,. 42

and
OB, = a,. 43)
In Section 3.2 the results of Section 2.2 are generalized to yield the asymptotic distribution

of the residual autocorrelations in sARMA models and in Section 3.3 the application of this
new result is discussed.

3.2. Distribution of the Residual Autocorrelations
For any fixed m>1, let f = (#(1), ..., #(m)) be the m-dimensional vector of residual auto-
correlations in the SARMA model.

Theorem 2. The large sample distribution of # is normal with mean vector 0 and covariance
matrix

var(f) = (1—-XI1XT)/n, 44
where I is given by (39) and
X = (= ij| 01| =D} ss| O30 m, 45)
p q DPg qs
where ¢’ and 6’ are defined in (17) and (18) and @’ and ©’ are defined by
/(B = 3 ;B! (46)
i=0
and
1/0(BY) = 3,0, B, 47)
i=0

The detailed proof of this theorem is omitted since the required modifications of Lemmas 2
and 3 and the proof of Theorem 1 are straightforward. However, it should be noted that the
method of Box and Pierce (1970) cannot be extended to the case of SARMA models when
s> 1 because of the multiplicative constraints on the parameters.

3.3. Application to Model Criticism

The residual autocorrelations and their estimated confidence intervals can be plotted as
described in Section 2.3.

In the SARMA model, the residual autocorrelations at lags s, 2s, 3s, ... are of special interest
since these residual autocorrelations may indicate inadequacy of the seasonal component.
It may be shown that if p <s and g<s, and if the roots of the equation ¢(z) 6(z) = 0 are not
close to the unit circle, then the residual autocorrelations (#(s), (2s), ..., #(ms)) have approxi-
mately the same covariance matrix as the first m residual autocorrelations in the nonseasonal
model

D(B)w, = O(B)a,. (48)
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Thus in the SARMA model of order (0, 1) (0, 1),,

var (#(12))= @2/n (49)
and

var(#(24))=(1— 03} +O})/n, (50)

provided that 6, is not close to +1. Note that the variance of #(12) can be much less than 1/n
(cf. Box and Pierce, 1970, p. 1516).

4. CONCLUDING REMARKS

The method given in Section 2 can be used to obtain the distribution of the autocorrelations
of the residuals after the intervention in the intervention analysis model of Box and Tiao
(1975). If the number of observations before and after the intervention, say, T and n—T
respectively, is large then the covariance matrix of the first m autocorrelations of the residuals
after the intervention is '

1/(n—T)—XI71XT/n, (51

where X and I are calculated exactly as in Sections 2.2 and 3.2 from the ARMA and SARMA
parameters which describe the autocorrelated disturbances in the intervention model. This
result can be used to check the assumption that the intervention did not cause a change in the
ARMA and SARMA component.

Computer programs for fitting Box-Jenkins models and calculating the residual auto-
correlations and their estimated standard deviations are given in the forthcoming book by
Hipel and McLeod (1979).
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