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Distribution of the Residual Cross-Correlation in

Univariate ARMA Time Series Models

A. IAN McLEOD*

Cross-correlations between univariate autoregressive moving aver-
age (ARMA) time series residuals are useful in the examination of
relationships between time series (Pierce 1977a) and in the identi-
fication of dynamic regression models (Haugh and Box 1977).
In this article, the asymptotic distribution of these residual cross-
correlations is derived, and its application to the problem of testing
for lagged relationships in the presence of instantaneous causality
is discussed. Some results of a simulation study to investigate the
accuracy of the asymptotic variances and covariances of the residual
cross-correlations in finite samples are reported.

KEY WORDS: ARMA time series; Granger causality; Model
identification; Relationships between time series; Residual cross-
correlations.

1. INTRODUCTION

One approach to the problem of the elucidation of the
relationship between two time series is to examine the
cross-correlation function of the residuals of univariate
models fitted to the two series. Interestingly enough, this
approach seems to have first been suggested by Fisher
(1921) with polynomial trend models. Of course, now it
is understood that stochastic time series models, such as
the ARMA model, are more realistic and perform better
in applications such as forecasting (Box and Jenkins
1970, Ch. 1). Some recent applications of the univariate
ARMA residual cross-correlation approach are men-
tioned in Sections 1.2 and 3. In this article, the large-
sample distribution of the residual cross-correlations in
univariate ARMA models is derived, and the finite
sample accuracy of the derived asymptotic variances and
covariances of the residual cross-correlations is in-
vestigated by simulation. An application to the problem
of testing for lagged relationships in the presence of in-
stantaneous causality is discussed and a brief economic
example given.

1.1 Univariate ARMA Time Series Models

The theory and application of univariate ARMA
models is discussed in a book by Box and Jenkins (1970).
Let (w1, ws,:), — o <t < o be a discrete-time bi-
variate stationary Gaussian time series with mean zero.
Suppose that wy,. can be represented as a univariate sta-
tionary and invertible ARMA time series of order (px, qx) :

én(B)wn,. = On(B)an,: (1.1)

* A. Tan McLeod is Assistant Professor, Statistics and Actuarial
Science Group, Department of Mathematics, The University of
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thank the editor, an associate editor, and a referee for criticisms
and suggestions that significantly improved the presentation of this
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where
on(B) =
6.(B) =

B is the backshift operator (Bws,, = ws,.—1), and a;,, and
as,; are the individual innovation or white-noise series.
The innovations (a1, as,;) are then a bivariate Gaussian
time series with mean zero and autocovariance function

1 —¢pB—...— ¢hpthh ,
1—6uB—...— 0;,,,,,B'1" ,

'Yahah(l) = (G, 10, e11)
=g, if 1=0, h=12,
=0, if l#0, h=12, (1.2)

where (-) denotes mathematical expectation and ¢;? is
the individual innovation variance for the time series
wy,;. The cross-covariance function of a;,, and a., is
defined by

Yarae (D) = (@1,0@2,040) , 1 =0, %1, ..., (1.3)
and it is assumed that
> |l| |7ala2(l)| < o . (1.4)
l=—c0
Given n observations, ws,, t = 1, 2, ..., n, from the

time series, efficient univariate algorithms to estimate the
model parameters 8, = (@n1, - - -, Phgy, Or1, - - -, Oig,) have
been described by Box and Jenkins (1970), Ljung and
Box (1976), McLeod (1977b), and other researchers.

1.2 Cross-Correlations in Univariate ARMA Models

A number of authors (see Haugh and Box 1977 and
references therein) have advocated the use of the cross-
correlation function of a1, and a,,,,

Pﬂlaz(l) = 7“1%(0/(”102) y ! 1=0,=+1,...,

for elucidating the relationship between wy,; and ws,.. To
measure the strength of the relationship between wi,.
and w,,;, Pierce (1977a,b) has suggested the coefficient

(1.5)

i Pa;agz(l) . (16)

l=—c0
If paye,(I) # O for some I > 0, Pierce and Haugh (1977)
showed that ws,, is a useful predictor for w,,,. Further-
more, if pae,(I) = 0forall I < 0and pa,4,(l) # 0 for some

R =
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1 > 0, then Haugh (1972a) and Haugh -and Box (1977)
have shown how a dynamic regression of w.,, on w,;,, can
be identified by using the innovation cross-correlation
function pgq,(+).

For any given parameter value, say (s, the correspond-
ing estimated innovation series ds,;, t = 1, ..., n may
be directly calculated from (1.1) either by setting ws .,
and az,. for ¢ < 0 equal to their expected values condi-
tional on w1, ..., Wk, as described in Box and Jenkins
(1970) and Newbold (1974) or more approximately by
setting wy,; and ay,, for ¢ < 0 equal to their unconditional
expected value of zero. Also, for any given $, the sample
innovation cross-covariance and cross-correlation func-
tions of di,, and d.,, at lag [ are defined by

n—1

Caya, () = w71 2 G124t
t=1

a.7)

and
Tasag (l) = Cajay (l)/[(éalal (O)éﬂzaz (0))]% ) (18)

respectively. It is easily shown that the absolute error in
fasa,(l) from using either of these methods to calculate
dni, h =1,2,t=1,...,nis 0(1/n). Hence, if the exact
value of the model parameters were known to be @; and
B2, then the large-sample variances and covariances of
the cross-correlations of the calculated innovations, a,,,,
t=1,...,nandas,t =1, ..., n, can be obtained from
a formula of Bartlett (1966, p. 332). This formula yields

1+ €OV (Tayay (1), Tayay (k) = paga, (b — 1)

+ pos (Dpoams D ( 5 paas?(0) — 3)

i=—c0

+ Z Payay (l - i)Palaz (k + l) . (19)
Let 34 be a univariate asymptotically efficient estimate
of gnfor h =1, 2 and let Gr,,, t = 1, ..., n and 7,,4,(0),
l=0, +£1, be the corresponding residuals and
residual cross-correlations. Box and Pierce (1970) ob-
tained the large-sample distribution of the residual
autocorrelations in univariate ARMA time series models
that can be shown to be equivalent to the large-sample
distribution of the residual cross-correlations when
Pa1a(0) = 1 and pe0,(I) = 0, I 5% 0 (see Section 3). It
follows that the large-sample covariances of the residual
cross-correlations are not given by Bartlett’s formula in
the general case. Nevertheless, Haugh (1972a,b, 1976)
showed that if the series w;,, and w.,, are independent
(80 pae,() = 0,1 =0, £1, ...), then the large-sample
distribution of the residual cross-correlations is jointly
normal with covariance matrix determined by

oV (fayay (D), Faran (k) = 1/n , if 1=k,

0, it 1=k, 1O

Several authors (Haugh and Box 1977 ; Pierce and Haugh
1977; Pierce 1977a) have remarked that it would be
useful to know the distribution of the residual cross-cor-
relations in the general case. This is derived in Section 2.
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2. GENERAL RESULT

In this section, the asymptotic joint distribution of the
residual cross-correlations in model (1.1) is derived. For
any fixed M > 0, let

I = (7.'“1“2(_1)} o ')i'axaz(_M) ) 7.‘01“2(0) )

7:‘“102(1)7 R 7““102(M)) ) (21)
and let
0= (Palaz(—l)’ ceey pala2(_M)) palaz(o)y

Palag(l), R pala2(M)) . (22)

Let r and f denote the vector £ when § = g and § = §,
respectively. Thus, r and # are vectors of innovation and
residual cross-correlations. The derivation of the asymp-
totic joint distribution of f is based on the use of a Taylor
series linearization of # as a function of (81, 82, r) and the
asymptotic joint distribution of (1, 83, ).

Lemma 1: The distribution of £ does not depend on o,

or oas.

Remark 1: It follows from Lemma 1 that, without loss of
generality, it can be assumed that vue,(0) = Yay,(0) = 1.

The following lemma is useful for simplifying double
summations of theoretical cross-covariances.

Lemma 2:

B b =D = 5 Yo (k) + O(U/m) . (2.3)
k=1 l=1

k=—cw
Proof : This follows from the assumption stated in (1.4).

Lemma 3:
Tayas(D) — Paras(l) = Carar (1) — 3Va1a, (D) (Carar (0)
+ €a,(0)) + 0,(1/n) .
Proof: This follows from the Taylor series expansion
of Fa,0,(1) as a function of (Cesa, (1), Carar(0), Cara,(0)) about
(’yalaZ(l)l ‘Yalal (0)} 70202(0))
and evaluated at
(Caar (D), Cara, (0), Cazay (0)) -
Lemma 4: Let $, be an asymptotically efficient esti-
mate of B, in the univariate ARMA model. Then,
Br — Br = L'Sk + 0,(1/n)

where I is the large-sample information matrix per ob-
servation given by
I, = ['Yvhvh(i -9 | Yorun(t — j)]ph
Yarn (= ) | Yurun @ — ) o
Dh qn
where the (¢, j) entry in each partitioned matrix is in-

dicated and the auxiliary time series v, and wua,. are
defined by

(2.4)

(2.5)

(2.6)

O (B)oh,e = —an,: (2.7)

and

0 (B)un,e = an,c - (2.8)
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Sk = (Su1 - -+, Sh.pptq,) I8 the score function

n

= X aphei
t=1

Shi =

if 1=1,...,m2;

= =171 X G, U, trpp—i »
t=1

(2.9)

Proof: The likelihood function of § in the univariate
ARMA model is

if t=p+1,...,004+aq -

log Ly = —% X dn,® + mn + O(r™) (2.10)
t=1

where m;, is a rational function of the elements of @, that

does not depend on n and 0 < r < 1 (McLeod 1977b).

Also, it can be shown (Box and Jenkins 1970, p. 237) that

Odn, e/ Obhi = Vp,1—i (2.11)
and

adh,g/ao}”‘ = Uh,t—i , (212)

where the partial derivative of ds,. with respect to ¢n:
evaluated at ¢n: is denoted by ddn:/d¢n: (and similar
notation is used throughout the article). It follows that

d ].Og Lh/aﬂh,,‘ = ’I’LSh,i + 0(1) . (213)
Also, it can be shown that
dlog Ly/(88rdB,T) = —nl 4+ O0(v/n) . (2.14)

The lemma now follows from the Taylor series expansion
of 9 log Lx/3Bs about @y evaluated at §5.

Remark 2: Lemmas 3 and 4 present linearizations that
are useful for handling the asymptotics of expressions
involving r and §s.

Lemma &: The asymptotic joint distribution of
vn(B1 — B1), vn(B: — B2) is normal with mean vector
zero and covariance matrix

I, I,'AL!
v=[ | AL ]p‘+q‘ 2.15)
I,7ATI ! | I, P2 + ¢
P1+ Q1 P2 + 2
where
A(iz) | A (v1,u2)
A= [ ]p‘ (2.16)
A (u1,92) A (u1,u2) 91
D2 q2
where the (7, 7) element of the submatrix A« ig
Ai]'(c'd) = Z 7alaz(k)7cd(k + 1 — .7)
k=—w . o
+ ‘Yald(k - ])‘Ycaz(k + Z) . (2'17)

Proof: The matrix A is obtained by straightforward
calculation using Lemmas 2 and 4. The joint asymptotic
normality of the estimates follows from Lemma 4 be-
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cause any linear function of both S; and S. is the average
of a series of martingale differences and so by the martin-
gale central limit theorem (Billingsley 1961) is asympto-
tically normal.

Lemma 6: The asymptotic joint distribution of
(81, B2, r) is normal with mean vector (31, 8, ¢) and
covariance matrix
1[ \'s | —A ]p1+ql+p2+q2
n —AT | E lem+1

(2.18)

P14+ q1+ p2+ Qe 2M +1

where V is defined in Lemma 5, E/n is the large-sample
covariance matrix of r that is determined directly from
Bartlett’s formula (1.9), and the jth column, j =1, ...,
2M + 1, of A is (8;®, §;®)T where

5™ = — lim n-cov (Bs, Taa, (k))
e = L 1(fom, fe)T  (2.19)
where
h=12,
k=—j, if j=1...,M,
—j—M—1,if j=M+1,...,2M+1,
fi© = Yea, (b +9) + X YaraaO[vare(k — 7 — 1)

l=—cw

if c = V1, U1 ,

= Yajaz (k)'Ycaz (l + 1)] )

et — )+ T Yoros O Yerol — k — 9)

l=—0c0

— Yajay (k)'Ycal (l + 7')] y if

Proof: The computation of £© follows directly from
Lemmas 2, 3, and 4. The asymptotic joint normality is
proved, as in Lemma 5.

c = vy u . (2.20)

Theorem: The asymptotic distribution of # is normal
with mean vector o and covariance matrix

var(t) = (E + XVX7 — XA — ATX7)/n  (2.21)

where E, V, and A are defined in Lemma 6 and

71)162(_iy .7) Tuluz( _i; .7) Tvea) (7': .7) Tugay (1" .7) M
X= "'vlaz(oy .7) Tulaz(oy .7) Tvzdl(oy .7) Tugay (01 .7) 1 (2'22)
Tvjag (l, j) T'llﬂz(i) ]) 702“1(_7:y ]) 7"201(_1:1 .7) M
P1 Q P2 q2

where the (¢, j) element in each partitioned matrix is
indicated ;

7¢ak(la .7) = 'Ycak(l + .7) - %'Ya;.ak(l)')’cak(j) (2'23)
where
c=wm, hk=12, —M<I|I| <M,
i=12....

Proof: Let 3 = (81, 8:), and let B: denote the ith
element of . Then by expanding fa,,(z) in a Taylor series
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about 8 and evaluating 3 = § it follows that

falaz (7’) = Tajay (7')
p1t+q1+p2+qe

+ X

j=1

(Bi — B) a0 (1)/38; + 0,(1/m) . (2.24)

Consider the M X p, submatrix of X corresponding to
i=1...,Mand j=1, ..., p.. The (i, j) element of
this submatrix is

Xij = Yua(§ — 1) — $Yaa (=970, (J) - (2.25)
It follows directly from (2.11) that
Oayay (— 1) Conaz (J — 7)
06, [(Corn (0)Curss ) T
! P (— 1) 22 ), (2.26)
2 Cayay (0)

To determine the large-sample mean and variance of

Taya ( _i)cvxaz(j)/caxax ) ,
note that by Lemma 3

rawz(_i) = 'Yalaz("i) + 6‘11112(_1:)
- %7“1“2(-1:)[0“1“1(0) + Can(0)] + 0,(1/n) ,

and also by a Taylor series expansion it can be shown that

Co1a3(7)/€a101(0) = Vu1a5(5) T+ €01, (J)
- 'leaz(j)Calﬂl(O) + OP(I/n) .
Because the variances and covariances of the sample

cross-covariances in (2.27) and (2.28) are O(1/n), it
follows that

(2.27)

(2.28)

Var (raja,(—1)Co100(7)/ €01y 0)) = O(1/n)  (2.29)
and
(ramz(_i)cvlaz (j)/caxax (0)>
= 7a1az(_i) '7”1%(.7) + O(l/’ﬂ) . (230)

Similarly, it can be shown that
Cvlaz(j - i)/([caxal(o)cazaz(o)])%

has variance O(1/n) and mean equal to 7y..4,(7 — %)
+ 0(1/n). Hence, it follows that

var(8tae,(—1)/0¢;) = 0(1/n) (2.31)
and that
(ai‘awz(_i)/ad’i) = 71)102(.7' - 7/)
= $Vaea(—0) 0w () + 0(1/n) . (2.32)
It follows from Chebyshev’s inequality that
aialaz(_i)/a‘f’j = 7v1a2(j — 1)
- %'Yalaz(_i) “Yua(J) + 0,(1//n) . (2.33)
In general, it can be shown that
0ta10,(1)/9B; = Xij + 0,(1//n) (2.34)
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Where_MSlSM;j=1,~--,P1+Q1+p2+92,
i= 1, if 1<0,
—MAl4+1, if 1>0),

and X,; is the (7, j) element of X.
Because (B; — B;) is 0,(1/+/n) it follows from the
theorem of Mann and Wald (1943, Corollary 1) that

t=r+X@ —8) + 0,(1/n) . (2.35)

The theorem now follows directly from Lemma 6 and a
theorem given by Rao (1974, (2¢.4.12)).

Remark 3: If the assumption of joint normality of a; ;
t=1, ..., n; h =1, 2 is invalid, (2.21) will involve
fourth-order cumulants.

Remark 4: It is not difficult to show that the theorem
also applies to the case of two time series with nonzero
means if the series are corrected for their sample means.

3. AN APPLICATION

The general result of Section 2 can be simplified in
certain special cases. Many economic time series have the
property that the largest residual cross-correlation is at
lag zero (Pierce 1977a). In this section, the distribution
of the residual cross-correlations when only the lag-zero
innovation cross-correlation is nonzero is obtained and
is used to derive a test for lagged relationships between
economic time series.

3.1 Instantaneous Causality Only

Suppose the time series w1,, and w,,, are generated by
the model (1.1) and the cross-correlation function be-
tween a;,, and a.,, is given by

=0,
I#0.

paxﬂz(l) =P, if

3.1
=0, if @1)

Then the relationship between w;,, and w,,, may be said
to be one of instantaneous causality only (Pierce and
Haugh 1977, 1979).!

Bartlett’s formula (1.9) for the large-sample variances
and covariances of the sample cross-correlations of a;,.
and a,,, yields

var(rae, () = (1 — p)*/n ?f l=0, (3.2)
=1/n, if 10,
and
OV (7a10, (1), Taya, (K))
=0, if Il#k, Il#—k (3.3)
—n, if L= —k, 150 .
Let
i = (falaz(_]-), sy fﬂl“x(_M)) (34)
and
1 = (falaz(l); KR 7A'axaz(]u)) . (35)

! Empirical methods for detecting causality relationships between
time series have been discussed by Granger (1969) and Pierce and
Haugh (1977).
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Then it follows from the theorem in Section 2 that

var(f®) = Py/n (3.6)

where
Ph = lM bl pthlh_lth , h = 1, 2 y (37)

where 1, is the M X M identity matrix, I, is defined in
(2.7), and

Xp = (—mnicil¥n,io) M (3.8)

Pr qn
where the (¢, j) element in each partitioned matrix is
indicated, mi,i = —7u0(—0) and ¥ = yua(—1). The

coefficients m,,; and ¥, are easily calculated recursively
(Box and Jenkins 1970, pp. 132-134) by using the identi-
ties 1/¢h(B) = > m,B* and 1/0},(B) = > Yn.1B* The
elements of the information matrix I, may be calculated
by solving a set of linear equations as in McLeod (1975,
1977a). Also, from the theorem of Section 2,
cov(E®, #4,0,(0)) =0, h=1,2 3.9)
and
cov(ED, #®) = (pJ + 21y — P, — Py

+ XL ALK, /e (3.10)

where J is the M X M matrix with 1’s on the diagonal
at right angles to the main diagonal and 0’s elsewhere and

A _ [7vlv2(i - .7) l 7”1“2(i - .]):Ipl.
Yers (G = 1) | Yurs G — 5)Ja
P2 q2

(3.11)

Finally, the large-sample variance of the estimate
P = fa10,(0), of p is

var(p) = (1 — p»)*/n .

If p = 0, the asymptotic variances of the residual cross-
correlations are all equal to 1/n, but from (3.7) it can
be shown that when p? is close to one the asymptotic
variances of #,,4,(l) may be significantly less than 1/n.
In fact, when p = 1, the residual cross-correlations and
residual autocorrelations have the same asymptotic dis-
tributions. McLeod (1977a, 1978) has shown that, for
large n, any fixed M > 1 and h = 1, 2 the covariance
matrix of the residual autocorrelations

(fa;.a;,(l)’ R f'ahah(M))

(3.12)

(3.13)
is given by

(lM —_ XhIh—lth)/n . (314)
It also can be shown (McLeod 1977a) that the covariance

matrix (3.14) is exactly equivalent to that derived by
Box and Pierce (1970) (also see Durbin 1970).

3.2 Test for Lagged Relationships
To test the null hypotheses

Ho(l):paxaz(_l) =00 = pdlaz(_M) =0
or

Ho®: paay(1) = ... = paa,(M) =0

853

against the simple negation of H, or H,®, respectively,
when p # 0, the following test statistic is suggested :

Ou® = n@®)Th,13® (3.15)

where P, denotes the matrix Py in (3.7) calculated by
using {» rather than @,. If both H,® and H,® are true,
Ou™ will be asymptotically x*-distributed on M degrees
of freedom and large values of O ® will provide evidence
against Ho®. This test of Ho® may be compared with
the test suggested by Pierce (1977a) that is based on the
statistic

Qu® = n(E®)TE® (3.16)

If p = 0and Hy" and H,® are both true, then @ ® is
also x*(M) for large n. The example given in the following
paragraph shows that the test based on Qu™ may be
more sensitive than that using Q»® when p # 0.

From the results of Davies, Triggs, and Newbold
(1977) and Ljung and Box (1978) on the portmanteau
significance test of Box and Pierce (1970), it may be
expected that both these tests using Qx® and O™ may
considerably underestimate the true significance level if
M is fairly large. In the case when p = 0, Haugh (1976)
provided simulation evidence that

var(fa.6,(l)) = (n — l)/n? (3.17)

and suggested a modified test using this result. A general
alternative approach would be to use shrinked residual
cross-correlation estimates, such as

Faa () = faaa () (L0 — [1])/n])}.

Estimated standard deviations of the residual cross-
correlations may be obtained by using estimated values
of p, B1, and 8. in (3.7) and (3.12).

(3.18)

3.3 Example

Haugh (1976, p. 383) found that the first differences of
two quarterly interest rate time series could be modeled
by

wi, = .069 + (1 + .55B)d.. (3.19)

and
(1 — .76B + .39B)w,,, = ds,: , (3.20)

where ws,, and 4., are, respectively, the first differences
and estimated innovations of series h for A = 1, 2. Also,
in this example, n = 71 and p = .64. The residual cross+
correlations and their estimated standard errors cal-
culated from (3.7) and (3.12) are shown in Table 1.

Note, that in Table 1, #4,,,(1) is significant at 5 percent,
although it is not significant at 5 percent when compared
with the benchmark standard deviation of n—* = .119.
The statistics for testing Ho® and H,® have the follow-
ing values:

h 1 2
Qum 1.34 14.06
Qu® 1.28 8.85
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1. Residual Cross-Correlations and Estimated Standard Deviations

/ —4 -3 -2 -1 0 1 2 3 4
Faradll) .04 10 .00 —-.08 .64 .20 -.13 -.26 .01
Estimated standard deviation 118 117 113 .100 .070 .096 .102 .109 117

Thus, Ho@ is not significant at 5 percent for both tests.
H,® is significant at 5 percent if the test statistic Q,®
is used, and it is not significant at 5 percent if the less-
sensitive test based on Q;® is used.

4. SIMULATION STUDY

A simulation study was done to examine the accuracy
of the asymptotic variances and covariances of the
residual cross-correlations in the case of two first-order
autoregressions,

(1 — ¢1B)w1, = as, (4.1)
and

(1 — ¢:B)ws,. = @z, , (4.2)

where ¢t =1, ..., %, pa0,(0) = p, page,(I) =0 if [ 0,
and a;,, and a.,, are Gaussian white noise with unit
variance. The theoretical large-sample covariances of the
residual cross-correlations are shown in Table 2.

A total of 225 models corresponding to the parameter
settings ¢1, ¢2 = 0, £.5, .9, p = .3, .6, .9 and n = 50,
200, 400 were included, and for each model 1,000 simula-
tions were done. A multiplicative congruential random-
number generator with modulus 2% and multiplier 5
(recommended by Conveyou and MacPherson 1967) was
used in conjunction with the method of Marsaglia and
Bray (1964) to generate independent normal pseudo-
random numbers. The method of generating initial
values of the time series can be quite important (McLeod
and Hipel 1978). The following technique was used :

1. Initial values in the time series were generated by
using the covariance matrix of (wi,1, we,1).

2. A linear transformation was made on successive
pairs of independent normal random numbers to
obtain the simulated bivariate white-noise series
(a,e, @2,0),t =2,3, ..., n.

2. Asymptotic Covariances of the Residual
Cross-Correlations in Two First-Order
Autoregressions With Instantaneous

Causality Only

/'k n: Cov(fama(/)vfmaz(k))
/=0, anyk 8o.c(1 — p%)?
k<0 8i — PRI (1 — o)
I,k >0 Sk — PPPTEE(1 — by?)
1<0,k>0 PPk — PP T H(1 — %) — PPF T E(1 — &)

+p' " T (1 = (1 = (1 - dae)

NOTE: 8, =1, if =k
=0,if l k.

3. The remaining values of the time series were cal-
culated recursively by using (4.1) and (4.2).

The parameters ¢; and ¢, were estimated by using the
lag-one sample autocorrelation -coefficients and the
residual cross-correlation vector, £, defined in (2.1) with
M = 2 was calculated. For each model, the sample co-
variance matrix of # was calculated by correcting the
sample second moment of £ by its sample mean.

Let C denote the sample estimate, based on 1,000
simulations, of the covariance matrix of the 5 X 1 vector
f, and let C be the corresponding asymptotic covariance
matrix of  determined from Table 2. Then, assuming
that C provides a good finite-sample approximation, C
has an asymptotic normal distribution (Anderson 1958,
p. 75) with mean C and covariance matrix determined by

COV(éij, C_’kl) = (CI/;C]‘Z + C,‘ijk)/l,OOO y (43)

where C;; and C; denote the (¢, j) element of C and C.
Let & and & be the 15 X 1 vectors corresponding to the
elements of C and C on or above the main diagonal taken
in lexicographical order and let & be the asymptotic
covariance matrix of &€ determined by (4.3) and Table 2.
If the covariance matrix of # is well approximated by C,
T? should be x2(15), where

T = (e — )78 (e — ¢) .

(4.4)

Large values of T will tend to indicate that the asympto-
tic covariances given in Table 2 are not valid. The test
statistic T? was evaluated by using double-precision
arithmetic and the Cholesky decomposition method
(Maindonald 1976). For each of the 25 models corre-
sponding to a fixed value of n and p, the number of values
of T? significant at the 5 and 1 percent levels and the
mean 7 value were calculated and the results are shown

3. Summary of T? Tests

P
n Summary
Result .3 .6 .9
50 Mean 24.72 37.38 621.63
>25.002 9 20 25
>35.58 5 16 25
200 Mean 15.12 19.43 57.70
>25.00 3 5 24
>30.58 1 2 20
400 Mean 14.76 16.70 25.80
>25.00 2 2 11
>30.58 0 2 7

2The 5% and 1% critical values are, respectively, 25.00 and 30.58.
NOTE: For each value of n and p there are 25 models. Each T? is calculated from 1,000
simulations of one model.
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in Table 3. The main conclusion to be drawn from these
results is that the accuracy of the asymptotic approxima-
tion depends not only on n but also on p. For example, if
|p] < .6, the asymptotic approximation appears to be
quite good if n > 400 (because the probability of four or
more rejections at the 5 percent level is .24), but for
larger values of |p|, larger values of n are required.

[ Received March 1977. Revised April 1979.]

REFERENCES

Anderson, T.W. (1958), An Introduction to Multivariate Statistical
Analysis, New York: John Wiley & Sons.

Bartlett, M.S. (1966), Stochastic Processes (2nd ed.), Cambridge,
England : Cambridge University Press.

Billingsley, Patrick (1961), “The Lindeberg-Levy Theorem for
Martingales,” Proceedings of the American Mathematical Society,
12, 788-792.

Box, George E.P., and Jenkins, Gwilym M. (1970), Time Series
Analysis Forecasting and Control, San Francisco: Holden-Day.

, and Pierce, David A. (1970), “Distribution of the Residual
Autocorrelations in Autoregressive-Integrated Moving Average
Time Series Models,” Journal of the American Statistical Associa-
tion, 65, 1509-1526.

Conveyou, R.R., and MacPherson, R.D. (1967), “Fourier Analysis
of Uniform Random Generators,” Journal of the Association of
Computing Machinery, 14, 100-119.

Davies, N., Triggs, C.M., and Newbold, P. (1977), “Significance
Levels of the Box-Pierce Portmanteau Statistic in Finite Samples,”’
Biometrika, 64, 517-522.

Durbin, James (1970), ‘“Testing for Serial Correlation in Least-
Squares Regression When Some of the Regressors Are Lagged
Dependent Variables,” Econometrica, 38, 410-421.

Fisher, R.A. (1921), “Contribution to the Discussion of the Paper
‘On the Time-Correlation Problem,” by G.U. Yule,” Journal of
the Royal Statistical Society, 84, 534-536.

Granger, C.W.J. (1969), “Investigating Causal Relations by Econo-
metric Models and Cross-Spectral Methods,” Econometrica, 37,
424-438.

Haugh, Larry D. (1972a), “The Identification of Time Series
Interrelationships With Special Reference to Dynamic Regres-
sion,” unpublished PhD thesis, Dept. of Statistics, University of
Wisconsin, Madison.

(1972b), ‘“Checking Time Series Interrelationships and

Identifying Dynamic Regression Models for Short-Term Forecast-

855

ing,” Proceedings of the American Statistical Association, Business

and Economic Statistics Section, 325-330.

(1976), “Checking the Independence of Two Covariance-

Stationary Time Series: A Univariate Residual Cross-Correlation

Approach,” Journal of the American Statistical Association, 71,

378-385.

, and Box, George E.P. (1977), ‘“Identification of Dynamic
Regression (Distributed Lag) Models Connecting Two Time
Series,” Journal of the American Statistical Association, 72, 121-130.

Ljung, G.M., and Box, G.E.P. (1976), “Maximum Likelihood Esti-
mation in the Autoregressive Moving Average Model,” Tech-
nical Report No. 476, Dept. of Statistics, University of Wisconsin,
Madison.

(1978), “On a Measure of Lack of Fit in Time Series Models,”
Biometrika, 65, 297-303.

Maindonald, J.H. (1976), “Least Squares Programs—A Second
Look,” The American Statistician, 30, 202—203.

Mann, Henry B., and Wald, Abraham (1943), “On Stochastic
Limit and Order Relationships,” Annals of Mathematical Sta-
tistics, 14, 217-226.

Marsaglia, G., and Bray, T.A. (1964), “A Convenient Method for
Generating Normal Variables,” Society for Industrial and Applied
Mathematics Review, 6, 260-264.

McLeod, A. Ian (1975), “Derivation of the Theoretical Auto-
covariance Function of Autoregressive-Moving Average Time
Series,” Applied Statistics, 24, 255-256.

(1977a), “Topics in Time Series and Intervention Analysis,”

unpublished PhD thesis, Dept. of Statistics, University of

Waterloo.

(1977b), “Improved Box-Jenkins Estimators,” Biometrika,

64, 531-534.

(1978), “On the Distribution of Residual Autocorrelations

in Box-Jenkins Models,”” Journal of the Royal Statistical Society,

40, 296-302.

, and Hipel, Keith W. (1978), “Simulation Procedures for
Box-Jenkins Models,” Water Resources Research, 14, 969-975.

Newbold, Paul (1974), “The Exact Likelihood Function for a Mixed
Autoregressive-Moving Average Process,” Biometrika, 61, 423-426.

Pierce, David A. (1977a), “Relationships—and Lack Thereof—
Between Economic Time Series, With Special Reference to Money
and Interest Rates,” Journal of the American Statistical Associa-
tion, 72, 11-21. .

(1977b), “R®-Measures for Time Series,” Special Studies
Paper, Federal Reserve Board, Washington, D.C.

———, and Haugh, Larry D. (1977), “Causality in Temporal
Systems: Characterizations and a Survey,” Journal of Econo-
metrics, 5, 265-293. )

— (1979), “The Characterization of Instantaneous Causality :
A Comment,” Journal of Econometrics, 10, 257-259.

Rao, C.R. (1974), Linear Statistical Inference (2nd ed.), New York:
John Wiley & Sons.




