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DESCRIPTION AND PURPOSE

The algorithm SARMAS calculates an approximation to the likelihood function of the multi-
plicative seasonal autoregressive-moving average (SARMA) model (Box and Jenkins, 1976). The
conditional, unconditional or iterated unconditional method of Box and Jenkins (1976) may be
used in SARMAS in conjunction with an approximation to the determinant term (McLeod, 1977,
1982) to obtain an accurate and highly efficient algorithm. In fact, it may be pointed out that
other algorithms, such as AS 154 (Gardner, Harvey and Phillips, 1980) and that of Ansley (1978,
1979) become computationally completely infeasible when the seasonal period s becomes much
larger than 12 as in the case of half-monthly (s = 24), weekly (s =52) or daily (s =365) time
series. Such models have been found useful in forecasting hydrological variables (McMichael and
Hunter, 1972; McLeod, Hipel and Sales, 1982) and there are no doubt many other possible
applications. SARMAS 1is usually more efficient for the regular non-seasonal ARMA model as
well. Finally, another advantage of SARMAS is that residuals which estimate the actual innovation
series are produced. These residuals are useful not only for model diagnostic checking (Box and
Jenkins, 1976, Ch. 8) but also in the elegant and computationally efficient forecasting methods
given in Box and Jenkins (1976, Chapter 5).

The subroutine DTARMA is used by SARMAS to calculate the approximation to the deter-
minant term in the ARMA model likelihood given in McLeod (1977). This subroutine is also useful
in checking for model stationarity and invertibility. Thus DTARMA could be used in conjunction
with AS 154 to ensure the parameter values are inside the admissible region during the numerical
maximization of the likelihood.

The subroutine MCHOL, used by DTARMA, determines the modified Cholesky decomposition
of a positive-definite matrix A, given by

A=LDL' 6))

where L is a lower triangular matrix with ones on the diagonal and D is a diagonal matrix. This
form of the decomposition, which avoids the square-root computation in the standard
decomposition (Healy, 1968), is slightly more accurate and efficient if only the determinant of
A is required. MCHOL is also more convenient in other applications (Martin, Peters and Wilkinson,
1965; Pagano, 1972).
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THEORY
The SARMA (p, q) (ps, q5)s model is defined by
B(B) ¥B) z, = O(B) 6(B) a,, ()
where
¢B)=1-¢; B—...—¢p,BP, 0(B)=1-0,B~...—0,89,
PBS)=1—P, BS—.. .—(I)DSBSPS, OB%)=1-0; BS—.. .—@QSB“’S,

B is the backshift operator, s the seasonal period and a; a sequence of independent normal
variables with mean O and variance ¢®>. The a,’s, called the innovations, represent the one-step
forecast errors when the model parameters, 8= (¢, . . ., ¢p, 05, . . 0g,P1,. s <I>ps 0,..., ®qs),
are known. Note that the ARMA (p, q) model is obtained by taking p; =g, =0. The SARMA
model is said to be stationary and invertible, respectively, if all roots of ®(B) ¢(B)=0 and
©(B) 6(B) =0 are outside the unit circle. Although the SARMA model may be considered as a
special case of the ARMA (p*, g*) model by taking p* = p + spg, ¢* = q +5q;, ¢*(B) = ®(BS) §(B)
and 6*(B) =0©(B%) (B), it will be shown how a more efficient estimation algorithm can be
developed utilizing the multiplicative structure of the SARMA model.

Given observations z,(t=1,...,n) the exact loglikelihood function maximized over o?
may be written, apart from an arbitrary constant, as
log L(B) =—n log (Sp/n)/2, 3)
where S,,,, the modified sum of squares, is
Sm =S[M, (p, q,psa‘IsaS)] “in, 4)

S represents the unconditional sum of squares of Box and Jenkins (1976) defined by

n

§= Z [at]2 s (5)

t=— o

where [.] denotes expectation givenz,, .. .,z,.
The evaluation of S by the iterative unconditional sum of squares method may involve two
types of truncation error. First, the infinite sum in (5) is replaced by

n

s= X lal® ©6)
t=1-0
for suitably large Q. Theoretically, Q should be chosen so that
Qo
Y0/0® = Y WP <egp (N
i=0

where o = var (z;), Y; is the coefficient of a,..; in the infinite moving average representation of (2)
and e,,; is an error tolerance. Thus if the model contains an autoregressive factor with roots near
the unit circle, a fairly large Q might be necessary. In practice,

Q=q +s5q,+20 (p +sp5) ®)
is often sufficient. The other truncation error involves terminating the iterative procedure used to
calculate [a;]. Several iterations may be required to obtain convergence when the model contains
‘a moving average factor with roots near the unit circle. However, sufficient accuracy is usually
obtained on the first evaluation.
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McLeod (1977, 1982) suggested that the term M, (p,q,Ds,qs 5) be replaced by
m(p, q,Ps, 4s, ), given by

m(,q,ps, qs,s) = M@, q) [M(py, q5)]°, ©)
where M(p, q) is defined for any ARMA (p, g) model as
M(p,q)=M2M} M, (10)

where the terms M, Mq and M., are defined in terms of the auxiliary autoregressions,
®(B)v, = a, and 6(B)u; =a; and the left-adjoint autoregression ¢(B) 0(B)y; =a;. For the auto-
regression, ¢(B) v, = a;, M), is the determinant of the p x p matrix with (i,7) entry

min (i, j)

Y ik bk~ prre-i Ppric—j (11)

k=1

and similarly for the other autoregressions. The p X p matrix defined by (11) is called the Schur
matrix of ¢(B). Pagano (1973) has shown that a necessary and sufficient condition for stationarity
of an autoregression is that its Schur matrix be positive-definite. Thus calculation of
m(p, q,Ps, qs,S) also provides a check on the stationarity and invertibility conditions and so
during estimation the parameters may be constrained to the admissible region. The subroutine
DTARMA evaluates M(p,q) using the modified Cholesky decomposition subroutine MCHOL.
The method of Martin, Peters and Wilkinson (1965, equations (6) to (10)) is implemented in
MCHOL.

METHOD
This section describes how the backforecasting method of Box and Jenkins (1976, Ch. 7) for
ARMA models can be efficiently adapted to SARMA models by making use of their multiplicative
structure.
After taking conditional expectations in (2) the backward equation is

(BS) ¢(B) [z;] = O(B*) 6(B) [a,], (12)
where [a;] =0, t > n. This may also be written
¢(B) [z:] =0(B) [x,] (13)
and
B(B°) [x,] = OB°) [a]. (14)

The forward form of the model is

D) Y(F) 2, = O(F*) 6(F) e, (15)

where F=B™' and e, is a sequence of independent normal random variables with mean 0 and
variance ¢ . Thus the forward equations may be written,

O(F) [z¢] = 0(F) [v+] (16)

and

B(F*) [y] = OF) [e:], a7
where [e;] =0, <1.
The iterative unconditional sum of squares calculation proceeds through the following steps.
Step 0: Initialization. Set S’ to —1. Select Q and choose the error tolerance, Ey,;, for the
convergence test in Step 7.
Step 1: Calculate [y,] (t=n+Q,..., 1) using (16). On theOth iteration set [y,] =0,t=n—p.
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Step 2: Calculate [e;] (¢t=n+Q,...,1) using (17). On the Oth iteration, set [e;] =0,
t=2n—p-—sp,.

Step 3: Backforecast y; (1=0,—1,...,1—Q) using (17).

Step 4: Backforecast z, (£ =0,—1, . ..,1— Q) using (16).

Step 5: Calculate [x;] (t=1-0,.. ., n)using (13).

Step 6: Calculate [a;] (t=1—0Q, ..., n) using (14).

Step 7: Test for convergence. Calculate S. If |S—S'|/S < E;,;, terminate. Otherwise set
S" =S and proceed to Step 8.

Step 8: Forecast x;, (t =n +1,...,n+Q) using (14).

Step 9: Forecastz, (¢t =n+1,...,n+(Q). Return to Step 1.

S may also be calculated after the e,’s are calculated in Step 2 and tested with the previous
value obtained in Step 7. However, the method given instead is preferred since the a,’s are usually
required.

The unconditional method without iteration terminates after Step 6 while the conditional
method uses only Steps 5 and 6.

STRUCTURE
SUBROUTINE SARMAS(Z, NZ, N, BETA, NBETA, IP, IQ, IPS, I0S, ISEA, IQAP, MAXIT , A, S,
SM, W, NW, IFAULT)

Formal parameters

Z Real array (NVZ) input: Z(1)...Z(V) should contain the time
series in reverse chronological order,
ZysZp-1s--+21

output: locations n+1,...,n+Q contain the

backforecast values of zo,z_y,...,21_¢
respectively while the first n locations
are not changed

NZ Integer input: n+Q

N Integer input: n, the number of observations

BETA Real array (VBETA) input: @1, ..., ¢p, 01,...04, P1,...Pp,
0,..., 0

NBETA Integer input: max(1,p +q +p, +qy)

P Integer input: p

10 Integer input: ¢q

IPS Integer input: pg

108 Integer input: g,

ISEA Integer input: s, the seasonal period

10AP Integer input: Q, maximum number of backforecasts
used. If Q9 >0, the unconditional sum
of squares is calculated. Otherwise, if
Q =0, the conditional sum of squares is
calculated

MAXIT Integer input: maximum number of iterations in the
unconditional sum of squares calculation.
If IQAP =0 or IQ =10S =0, the MAXIT
parameter is ignored and the algorithm
terminates after Step 6 (see METHOD)

A Real array (VZ) output: contains the residuals, [a,], [a,-1], - -
[al ] ’ [a()] PR [al—-Q]

N Real output: the unconditional or conditional sum of

squares (depending on IQA4P). Note that,
S/N is an estimate of the residual variance
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SM Real output: the modified sum of squares, S,,

W Real array (VW) workspace:

NW Integer input: max(n+Q, (p+q)(P+q+1)/2, (ps+4q5)
(Ps * 45+ 1I2)

IFAULT Integer output: a fault indicator, equal to

1 if convergence not obtained in the

iterative  unconditional sum of

squares calculation

if the model is non-stationary

if the model is non-invertible

if the setting of NZ, NBETA or NW

is invalid

5 ifn<max(p +sp,, q +sqy)

6 if one of IP, IQ, IPS, IQS, ISEA,
IQAP or MAXIT is negative

7 if Q<max(p+spg,qtsq;) when
MAXIT and IQAP are positive

0 otherwise

AUXILIARY ALGORITHMS

Two auxiliary routines are included as indicated in the THEORY section: DTARMA to
calculate M(p, q) of equation (10), and MCHOL to perform the modified Cholesky decomposition.

SUBROUTINE DTARMA (BETA, NBETA, IP, IQ, WS, NWS, DETM, IFAULT)
Formal parameters

BN

BETA Real array (VBETA) input: ¢y,...,¢p,01,...,0,
NBETA Integer input: max(1,p +q)

P Integer input: p

10 Integer input: ¢

WS Real array (NWS) workspace:

NWS Integer input: 1+p+qg+@+q)(ptq+1)2
DETM Real output: M(p, q)

IFAULT Integer output: a fault indicator, equal to

1  if the model is non-stationary

2 if the model is non-invertible

3 if the setting of NBETA or NWS is
invalid

0 otherwise

SUBROUTINE MCHOL (A,NA, N, DET,IFAULT)

Formal parameters

A Real array (NVA) input: the positive definite input matrix, stored
in symmetric-storage mode ay;, @,
A2, -« - Amm

output: the modified Cholesky decomposition

stored as a one-dimensional array in the
sequence dl, 121, d22, 131, 132, d33, ey
lm,m-—l s Amm

NA Integer input: m(m + 1)/2

N Integer input: m, the order of the input matrix

DET Real output: the determinant of 4

JFAULT Integer output: a fault indicator, equal to

1 if the setting of NA or N is invalid

2 if the input matrix is not positive-
definite

0 otherwise



216 APPLIED STATISTICS

Underflow

A floating point underflow may occur during the backforecasting step. The result should be set
to zero. This is usually done automatically but sometimes it may be necessary to call a system sub-
routine to do this.

PRECISION

For machines using fewer than 60 bits for real variables, the use of double precision is recom-
mended. This may be implemented as follows.

(i) Declare all real variables in SARMAS, DTARMA and MCHOL to be double precision.

(ii) Change all the real constants in the data statements in SARMAS, DTARMA and MCHOL
to their double precision value. The variable ETA in MCHOL should also be changed as indicated
in the comment statement which precedes it.

(iii) Change FLOAT to DFLOAT in SARMAS and then insert the statement

DFLOAT(N) = DBLE(FLOAT(N))

immediately before the first executable statement in the subroutine. Declare FLOAT to be real.
(iv) Change ABS to DABS in SARMAS and MCHOL.

TIME AND ACCURACY

The amount of computer time depends on the length of the series and the type of ARMA
model. If the iterative method is used, short series may require a number of iterations to reach
convergence when the parameters are close to the admissible boundary and in some cases Ansley’s
subroutine ARMA (Ansley, 1978) or AS 154 may be faster. However, what is more important is
the time required to obtain estimates. Also, for short series slight differences are not crucial.
Illustrative times for one function evaluation are shown in Table 1 for SARMAS, AS 154 and
ARMA (Ansley, 1978).

TABLE 1

CPU time required in milliseconds on the CYBER 170/835 for one
function evaluation with n = 50 (first entry) and n = 200 (second entry)

Parameter SARMAS SARMAS
Model Setting T MAXIT=0 MAXIT =20 AS154 ARMA
0,1) 0.5 3,11 6,22 7,29 8,27
0.9 3,12 6,21 7,27 7,25
1,1) 0.5 7,16 16,35 8,29 10,31
0.9 7,17 14,32 10,29 9,31
(0, 1) (0, 1), 0.5 5,15 10,35 17,82 18,70
0.9 4,15 35,34 18,72 20,71
(0, 1) (0, 1),, 0.5 7,15 17,36 70,255 29,115
0.9 5,16 86,73 74,260 84,118
(0, 1) (0, 1), 0.5 -,19 —.,68 - -
0.9 -,20 —,248 - -

1 All parameters were set to either 0.5 or 0.9

The accuracy of the algorithm SARMAS is best judged in terms of the accuracy of the estimates
it may provide. Simulation work of Ansley and Newbold (1980) suggests that exact maximum
likelihood estimators are preferable to unconditional or conditional sum of squares estimators.
Although further work is needed experience to date suggests there is little difference between the
exact and the proposed approximate likelihood estimator based on the unconditional sum of
squares without iteration. The amount of computer time needed to obtain estimates using this
approximate likelihood technique is generally much less than that required by any of the exact
likelihood methods particularly with “long seasonal” series. For example, when a (0, 1) (0, 1);2
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model was fitted to the log differenced-seasonal differenced Airline Data (Series G, Box and
Jenkins, 1976) using SARMAS and the subroutines of Ansley (1978) and of Gardner, Harvey and
Phillips (1980) it was found that, at least to within an error tolerance of four significant digits,
all methods converged to exactly the same estimates of §, and @, . But the central processor time
required was respectively 0.98, 15.5 and 27.4 seconds on a CYBER-835(NOS) Computer. Double
precision arithmetic and the conjugate direction algorithm of Powell (1964) was used in each

optimization. The numerical values of the estimates were previously given by McLeod (1977,
Tablel).

ADDITIONAL COMMENTS

The function minimization algorithm of Powell (1964) has proved very effective in obtaining
maximum likelihood estimates by minimizing the modified sum of squares calculated by
SARMAS. By searching down conjugate directions this algorithm obtains the minimum of a
quadratic function in a finite number of iterations and so is said to be quadratically convergent.
A Fortran subroutine coded by M. J. D. Powell, which implements the technique of Powell (1964)
is given in Kuester and Mize (1973). When using this unconstrained minimization algorithm, it is
convenient to standardize the time series so that the total sum of squares when =0 is n. Then
S, is set to n when § is found to be inadmissible. This simple penalty function does not degrade
the performance of the algorithm. Furthermore, this standardization is also useful if a maximum
likelihood estimate of the mean of the time series is also desired.
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SUBROUTINE SARMAS(Z, NZ, N, BETA, NBETA, IP, 1@, IPS, 1QS, ISEA,
* IQAP, MAXIT, A, S, SM, W, NW, IFAULT)

ALGORITHM AS 191 APPL. STATIST. (1983) vOL.32, NO.2
DIMENSION Z(NZ), A(NZ), W(NW), BETA(NBETA)
LOGICAL SWITCH
INITIALIZE NUMERICAL CONSTANTS
DATA ZERO /0.0EO/, ONE /1.0E0/, ONENEG /-1.0E0/
ETOL - ERROR TOLERANCE IN CONVERGENCE CRITERION
DATA ETOL /1.0E-8/

ITER = 0

SWITCH = .FALSE.

SPREV = ZERO

IPQ = IP + IQ

IPQPS IPQ + IPS

IPSTS IPS * ISEA

IPSTS1 = IPSTS + 1

IQSTS = IQS * ISEA

IQSTS1 = IQSTS + 1

IPsSaQs IPS + 1IQS

IQAP2 IQAP

IF (IP .EQ. O .AND. IPS .EQ. 0) IQAP2 = MINO(CIQAP, IQ + IQSTS)
MAXIT2 = MAXIT

IF (IQ .EQ. 0O .AND. IQS .EQ. 0) MAXIT2 = 0
IF (MAXIT2 .EQ. 0) SWITCH = .TRUE.

NBY2 = N / 2

INPUT VALIDATION

IFAULT = 0

IR = MAXO(IQ + IQSTS, IP + IPSTS)

IF (IR .GE. N) IFAULT =5

IF (MAXIT .GT. O .AND. IR .GT. IQAP) IFAULT =7

IF (IPQ@ + IPSQS .GT. NBETA) IFAULT = 4

IF (N + IQAP2 .GT. NZ) IFAULT = 4

IF (NW .LT. MAXO(NZ, 1 + IPQ + IPQ * (IPQ + 1) / 2, 1 + IPSQS +
* IPSQS * (IPSQS + 1) / 2)) IFAULT = 4

IF (MINOCIP, IQ, IPS, 1QS, ISEA, IQAP, MAXIT) .LT. 0) IFAULT = 6

IF (IFAULT .GE. 1) RETURN

OBTAIN NECESSARY DETERMINANTS
CHECK FOR STATIONARITY/INVERTIBLITY

DETM = ONE
DETMS = ONE
IER = 0

IF (IPQ@ .NE. 0) CALL DTARMA(BETA, IPQ, IP, IQ, W, NW, DETM, IER)
IF (IER .GT. 0) GOTO 340

IF (IPSQS .EQ@. 0) GOTO 20

II = IPQ

DO 10 I = 1, IPSQS

II = 11 + 1

ACI) = BETA(II)

CONTINUE

CALL DTARMACA, IPSQS, IPS, IQS, W, NW, DETMS, IER)

IF (IER .GT. 0) GOTO 340

IF IQAP2 IS 0, USE CONDITIONAL SUM OF SQUARES METHOD

20 IF (IQAP2 .EQ@. 0) GOTO 200

IF NO SEASONAL COMPONENT AND NO MOVING-AVERAGE COMPONENT,
PROCEED DIRECTLY TO BACKFORECASTING STEP
(Y AND E-SERIES NOT NEEDED)
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IF (IPSQS .EQ. O .AND. IQ .EQ. 0) GOTO 110
CALCULATE Y-SERIES, USE W-VECTOR

DO 60 I =1, N

W(I) = ZERO

IF (I .LE. IP) GOTO 60
W(I) = Z(I)

IF (IP .EQ. 0) GOTO 40
0O 30 J = 1, IP

IIT =1 -
W(I) = W(I) - BETA(J) * Z(III)
CONTINUE

L = MINOCIQ, I - 1)
IF (L .EQ. 0) GOTO 60
DO 50 J =1, L

JJ = IP + J

II1 =1 -
W(I) = W(I) + BETA(JJ) * W(III)
CONTINUE
CONTINUE

CALCULATE E-SERIES, USE A-VECTOR
Las = IQsS

DO 100 I = 1, N

ACI) = ZERO

IF (I .LE. IPSTS) GOTO 100

ACI) = W(I)

IF (IPS .EQ. 0) GOTO 80

111 =1

JJ = IPQ

DO 70 J = 1, IPS

III = III - ISEA

JJ = JJ o+ 1

ACI) = ACI) - BETA(JJ) * W(III)
CONTINUE

IF (IQS .EQ. 0) GOTO 100

IF (I .LE. IQSTS1) LQS = (I - 1) / ISEA
IF (LQS .EQ. 0) GOTO 100

111 = 1

DO 90 J = 1, LAQS

III = III - ISEA

JJ = IPQPS + J

ACI) = ACI) + BETA(JJ) * A(III)
CONTINUE

CONTINUE

BACKFORECAST Y-SERIES, USE W(N+1), W(N+2), ...

DO 150 I = 1, IQAP2
NPI = N + I

W(NPI) = ZERO
A(NPI) = ZERO

IF (I .GT. IQSTS) GOTO 130

I1I = NPI

D0 120 J = 1, IaS

III = III - ISEA

JJ = IPQPS + J

W(NPI) = W(NPI) - BETA(JJ) * A(CIIID)
CONTINUE

IF (IPS .EQ. 0) GOTO 150

III = NPI

DO 140 J = 1, IPS

II1 = III - ISEA

JJ = IPQ + J

W(NPI) = W(NPI) + BETA(JJ) * W(IIID)
CONTINUE

CONTINUE

BACKFORECAST Z-SERIES, USE Z(N+1), Z(N+2), ...
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DO 190 I = 1, IQAP2
NPI = N + I

Z(NPI) = W(NPI)

IF (IQ .EQ. 0) GOTO 170

D0 160 J = 1, Ia

NPIMJ = NPI - J

JJ = 1P + 4

Z(NPI) = Z(NPI) - BETA(JJ) * W(NPIMJ)
CONTINUE

IF (IP .EQ. 0) GOTO 190

D0 180 J = 1, IP

NPIJ = NPI - J

Z(NPI) = Z(NPI) + BETA(J) * Z(NPILJ)
CONTINUE

CONTINUE

CALCULATE X-SERIES, USE W-VECTOR

NPQAP = N + IQAP2
II = NPQAP + 1

DO 240 I = 1, NPQAP

I1 = II - 1

W(II) = z(II)

IM =1 -1

L = MINOCIM1, IP)

IF (L .EQ. 0) GOTO 220

III = II

DO 210 J = 1, L

III = II1 + 1

W(II) = W(II) - BETACJ) * z(IIID)
CONTINUE

L = MINOCIM1, IQ)

IF (L .EQ. 0) GOTO 240

III = II

DO 230 J = 1, L

III = III + 1

JJ = IP + J

WC(II) = W(II) + BETACJJ) * W(IIID)
CONTINUE

CONTINUE

CALCULATE A-SERIES, USE A-VECTOR

II = NPQAP + 1

DO 280 I = 1, NPQAP

II =11 -1

ACII) = W(ID)

IF (ISEA .EQ. 0) GOTO 280

IF (I .LE. IPSTS1) LPS = (I - 1) / ISEA
IF (LPS .EQ. 0) GOTO 260

III = 1II

DO 250 J = 1, LPS

III = III + ISEA

JJ = IPQ + J

ACII) = ACII) - BETA(JJ) * W(IIL)
CONTINUE

IF (I .LE. IQSTS1) LQ@S = (I - 1) / ISEA
IF (LQS .EQ. 0) GOTO 280

III = I1I

DO 270 J = 1, L@S

III = III + ISEA

JJ = IPQPS + J

ACII) = ACII) + BETACJJ) * ACIII)
CONTINUE

CONTINUE

CALCULATE THE SUM OF SQUARES
S = ZERO

DO 300 I = 1, NPQAP
S = 8§ + A(I) * ACD)
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TEST FOR CONVERGENCE

IF (IQAP2 .EQ. 0) GOTO 330

IF (SWITCH) GOTO 310

IFAULT = 0

RELERR = (S - SPREV) / S

IF (ABS(RELERR) .LE. ETOL) GOTO 330

CONVERGENCE NOT OBTAINED.

IFAULT = 1
IF (ITER .GE. MAXIT2) GOTO 330

REVERSE THE SERIES AND PROCEED TO THE FORECASTING STEP.

SPREV = §

II =N

DO 320 I = 1, NBY2
TEMP = W(II)

W(II) = W(I)

W(I) = TEMP
TEMP = A(II)
ACII) = ACI)
ACI) = TEMP
TEMP = Z(II)

Z(II) = (D)

Z(I) = TEMP

I1 = 11 -1

CONTINUE

IF (SWITCH) ITER = ITER + 1
SWITCH = .NOT.SWITCH

GOTO 110

MODIFIED SUM OF SQUARES

TEMP = ONENEG / FLOAT(N)

SM = S * DETM ** TEMP * DETMS ** (FLOAT(ISEA) * TEMP)

IF (MAXIT2 .EQ. 0) IFAULT =0
RETURN

MODEL IS NONSTATIONARY OR NONINVERTIBLE
IFAULT = IER + 1

RETURN
END

SUBROUTINE DTARMA(BETA, NBETA, IP, IQ, WS, NWS, DETM,

ALGORITHM AS 191.1 APPL. STATIST. (1983) vOL.32, NO.2

DIMENSION BETA(NBETA), WS(NWS)

DATA ZERO, ONE, ONENEG /0.0EO, 1.0E0, -1.0EO/

IFAULT = 0
IF (NBETA .LT. IP + 1IQ) GOTO 140

NWCHEK = 1 + NBETA + NBETA * (NBETA + 1) / 2

IF (NWCHEK .GT. NWS) GOTO 140
DET = ONE

DET1 = ONE

IR = IP + IQ

IRS = NWS - IR - 1

IRSP1 = IRS + 1

WSC(IRSP1) = ONENEG

IsWw =0
IF (IP .EQ. 0) ISW =1
ILOOP = IP

IF (ISW .EQ. 1) ILOOP = IQ
IF (ILOOP .EQ. 0) GOTO 120
IF (ISW .EQ. 2) GOTO 30

DO 20 I = 1, ILOOP

IRSPI = IRS + I + 1

IPPI = ISW * IP + 1
WSC(IRSPI) = BETACIPPI)

221



222 APPLIED STATISTICS

20 CONTINUE

GOTO 60
30 IF (IP .E@. 0) GOTO 120
ILOOP = IR
¢
c MULTIPLY THE AUTOREGRESSIVE AND MOVING AVERAGE OPERATORS TO
¢ OBTAIN COEFFICIENTS IN THE LEFT-ADJOINT ARCIP+IQ) MODEL
c
00O 50 I = 1, IR
II = IRS + 1 + 1
WS(II) = ZERO
IMIQ = I - IQ
J1 = MAX0(O0, IMIQ) + 1
J2 = MINOCI, IP) + 1
DO 40 J = J1, J2
JM1 = g = 1
IF (J .EQ. 1) BJ = ONENEG
IF (J .NE. 1) BJ = BETA(JMT)
IMJ =1 -4 +1
IPPIMJ = IP + IMJ
IF (IMJ .EQ. 0) BI = ONENEG
IF (IMJ .NE. 0) BI = BETACIPPIMJ)
WS(II) = WS(II) - BI * BJ
40 CONTINUE
50 CONTINUE
c
¢ FORM THE SCHUR MATRIX
¢
60 M = 0
IEND = ILOOP + 1
DO 90 I = 1, ILOOP
Do 80 J = 1, I
M=M+1
WS(M) = ZERO
L = MINOCI, J)
DO 70 K = 1, L
IRSI = IRS + I - K + 1
IRSJ = IRS + J = K + 1
IRSPI = IRS + IEND - I + K
IRSPJ = IRS + IEND - J + K
WS(M) = WS(M) + WSCIRSI) * WS(IRSJ)
WS(M) = WS(M) - WSCIRSPI) * WS(IRSPJ)
70 CONTINUE
80 CONTINUE
90 CONTINUE
¢
c CALCULATE THE DETERMINANT USING THE MODIFIED CHOLESKY DECOMP
c
CALL MCHOL(WS, NWS, ILOOP, DET, IFAULT)
IF (IFAULT .GT. 0) GOTO 130
¢
IF (ISW .GE. 1) GOTO 110
IsW = 1
DET1 = DET * DET
GOTO 10
110 IF (ISW .EQ. 2) GOTO 120
ISW = 2
DET1 = DET1 * DET * DET
GOTO 10
120 DETM = DET1 / DET
RETURN
130 IFAULT = ISW + 1
RETURN
140 IFAULT = 3
RETURN
END
¢
SUBROUTINE MCHOL(A, NA, N, DET, IFAULT)
¢
c ALGORITHM AS 191.2 APPL. STATIST. (1983) VOL.32, NO.2
c

DIMENSION A(NA)
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DATA ONE /1.0EO0/

ETA - LARGEST NUMBER SUCH THAT 1.0+ETA=1.0
(DEPENDS ON MACHINE PRECISION)

DATA ETA /1.0E-15/

IFAULT = 1

DET = ONE

IF (N .LE. 0) GOTO 70

IF (NA .LT. N * (N + 1) / 2) GOTO 70
IFAULT = 2

IROW = 1, N

-
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IF (IROW .EQ. ICOL) GOTO 30
DO 10 I = 1, IcCOL
L=1L+1

IF (I .EQ. ICOL) GOTO 20
W= W= ACL) * A(M)
M=M+ 1

CONTINUE

ACK) = W

11 =0

PO 40 I = 1, ICOL

IF (I .EQ. ICOL) GOTO 50
I1 = I1 + 1

T = A(M)

TT = A(M) / ACII)
W=W-TH+TT

A(M) = TT

M=M+1

CONTINUE

IF (W .LT. ETA * ABS(A(K))) GOTO 70
ACK) = W

DET = DET * W

J = J + IROW

CONTINUE

IFAULT = 0

RETURN

END

Remark AS R47

A Remark on AS 177. Expected Normal Order Statistics (Exact

and Approximate)

By W. KONIGER
Dorsch Consult Ingenieurgesellschaft mbH, 8 Mitnchen 21, Germany
[Received November 1982]

In SUBROUTINE NSCOR1 the function ALNFAC is accessed unnecessarily prior to executing
the DO 20 loop. This follows by noting in equation (1) that

n! o (n\ _ <n—1>
O—lﬂ(n—ﬂ!—r<r> - r—1/)°

For increased efficiency the following changes should be made to NSCOR1:
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