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SUMMARY

Aspects of model building using fractionally differenced autoregressive-moving
average processes are discussed. An algorithm for approximate maximum likelihood
estimation is outlined and the large-sample distribution of the maximum likelihood
estimates is derived. The large-sample distribution of the residual autocorrelations is
also derived and a modified portmanteau test statistic is obtained for checking model

adequacy.
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1. INTRODUCTION

The fractional autoregressive-moving average model of order (p,q) for a stationary
time series Z, (t = 1,2,...) with mean g may be written, using operator notation,

¢(B) A(B) (Z,— ) = 0(B) a,, 1)
where
$B)=1—¢,B—...—¢,B?, 0(B)=1-0,B—...—0, B,

x (d
A(B) = (1-B)' = i;(i)(—

and a, is a sequence of independent normal variables with mean zero and variance a2.
This general model was introduced by Hosking (1981). Granger & Joyeux (1980)
discussed the (0,0) model. As shown by Granger & Joyeux and Hosking, for stationarity
and invertibility, |d| < 4 and all roots of ¢(B)0(B) = 0 are outside the unit circle. It is
also assumed that ¢(B) and 6(B) contain no common factor in order to insure unique
identifiability of the parameters.

Hosking (1981) showed that y, = O(1**" ') asl - oo, where y, = cov (Z,, Z,_,;). Thus for
0<d<4%, Xy, diverges and so the time series may be said to have a long memory
component. Previously, various researchers in stochastic hydrology, see for example
McLeod & Hipel (1978), have discussed a similar type of model for the modelling of
annual geophysieal time series. It is also of interest that Granger (1980) showed that long
memory time series may also arise with economic data.

Previously Whittle (1954) and Hannan (1970, p. 245) have suggested that a large
number of parameters may sometimes be needed in the usual autoregresswe moving
average model. In these circumstances the fractional autoregressive-moving average
model may possibly produce a more parsimonious fit.
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2. APPROXIMATE MAXIMUM LIKELIHOOD
The fractional model of order (p,q) may be approximated by the model

¢(B) A(B) (Z,—p) = 6(B) a, (2)

where
r (d L
AB) =Y (.)(—1)’3’-
i=0 \ ?

It follows from the Kakeya—Enstrom Theorem (Henrici, 1974, p. 462) that A,(B) = 0 has
all roots outside the unit circle. Hence (2) is stationary for any r > 0. Moreover, for r
large enough and d not larger than 1 the difference in models (1) and (2) can be made
negligible.

The backforecasting method of Box & Jenkins (1976, Ch. 7) for autoregressive-moving
average estimation can be conveniently adapted using the algorithm of McLeod & Sales
(1983). The backward and forward equations may be written

A,(B) Z~t =b, ¢(B)b,=0(B)a, A(F) Zt =c¢, ¢F)c,=0(F)e,

where Z, = Z,—u, F = B~ ! and ¢, is a sequence of independent normal variables with
mean zero and variance ¢2. Hosking (1981, 1984) and the unpublished University of
Western Ontario Ph.D. dissertation by W. K. Li contain further details on the
simulation and estimation of fractional autoregressive-moving average models.

3. ASYMPTOTIC DISTRIBUTION

The asymptotic distribution of the maximum likelihood estimator is given in Theorem
1 below. Let 4 = (¢y,...,$,,04,...,0,,d) denote the true parameter values. Let 4 and A
denote the maximum likelihood estimate and arbitrary admissible parameter values
respectively. It is necessary to assume that p is known. Without loss of generality it is
further assumed that u = 0 and 0% = 1.

Then it may be shown (Box & Jenkins, 1976, p. 237), da,/0¢; = u,_; and 0a,/00; = v,_j,
where u, and v, are the auxiliary autoregressions ¢(B)u, =—a, and 0(B)v, = a,.
Furthermore, d, = da,/dd = (log V) a,, where V = 1—B and logV = —B—3B>—3B*— ..

Since var (d,) = Z 1/I> = Ln?, it follows that d, is stationary. Using the technique of
Box & Jenkins (1976, p.240) we can easily show that the Fisher large-sample
information matrix per observation, I, has (¢, j)th entry given by E{(0a,/04;) (0a,/04;)}.

Hence ‘
I = [{R:?..i--f{,_.]
J'in?/6]

where J = [7,4(0), ..., Vua(@—1); 764(0),...,70a(g—1)] and I, , is the usual information
matrix of autoregressive-moving average process on (¢;,...,¢,,0;,...,0,). It may be
shown that, for { > 0,

hal) = 3, G0+ +1), all) = 3 Of(1+i+1),

where ¢ '(B) =X ¢,B' and 0 !(B)=ZX0;B. Note that the information on d is
independent of the parameter value. In general, I, , may be obtained using the method
of McLeod (1984).

TurorEM 1. The asymptotic distribution of \/ n(A—2) is normal with mean zero and
covariance matriz 1~ *.
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Proof. The log likelihood is approximately L = —48(1), where

S =¥ al,
t=T-¢Q
for some large enough . Following Pierce (1971, eqn (4.2.9)),
n~'OL/OA; - 0, n~'* Lj(04;04;) — I;,
in probability and
n~ 133 L)(04;04;04,) = O,(1).

Hence, by the standard Taylor series technique, 1 is consistent. Similarly (Pierce, 1971),
asymptotic normality may be established. O

The above result holds when pu is known. When the mean u is estimated by the
maximum likelihood method the situation is more complicated and a similar result has
not yet been obtained. Alternatively, the series may be centred by the sample mean, but
then, as pointed out by the referee, the approximation is of order n?~* rather than the
usual n~ %, However, the simulation experiments reported in the next paragraph
suggested that the theorem still provides a good-approximation.

Bias and the mean squared error of the proposed method of estimation in § 2 has been
studied by simulation. The (0,0) model was considered with u = 0. One hundred
replications of length 200 were generated for each of the cases d = 01, 0-2, 0-3 and 04,
with truncation point r = 50. The series were generated using an exact generation
technique (Hosking, 1984). The results are summarized in Table 1. The cases u known
and pu estimated by the sample mean are also compared. If the mean u is known the
procedure is very effective. The bias is negligible and the mean squared error is very close
to the theoretical value 6/(n* x 200) = 0-00304. When the series is centred by the sample
mean a small negative bias is introduced and the mean squared error increases.
Nevertheless the increases appear to be quite acceptable. Note that, as found by Hosking
(1984), all the mean squared errors are far smaller than those reported using other
methods, for example, that of Janacek (1982).

Table 1. Empirical bias and mean squared error of d in 100
replications of length 200

Mean known Centred by Z
Mean squared Mean squared
d Bias error Bias error
01 —00024 0-00309 —0-0199 0-00386
0-2 0-0026 0-00337 —0-0187 0-00400
03 0-0059 0-00389 —0-0210 0-:00476
04 00115 000343 —0:0255 0-00458

4. RESIDUAL AUTOCORRELATION
Box & Jenkins (1976, Ch. 8) pointed out that it is important to check the assumption
of independence of the a, series by using the residual autocorrelation function,
Fo(l) = L@, 4, /2 dt2,

to test for significant autocorrelation. Note that the residuals are obtained from the
algorithm of §2. It is assumed that p is known.
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THEOREM 2. For any fixed M =1, \/n{l?a(l),...,f“a(M )} is asymptotically normal with
mean zero and covariance matriz 1, — X1~ X', where 1, 1s the M x M identity matrix and

X=(—¢i—j: 0i—;: Ky,
where K' = {1,%,...,1/(M —1)}.

The proof of this theorem is a straightforward extension of the method used by
McLeod (1978).

It may also be shown that 1,,—XI~ 1 X’ is approximately idempotent with
rank M —p—q—1 for M large enough and hence the usual modified portmanteau test
statistic @, (Ljung & Box, 1978) is approximately x2-distributed with M —p—q—1
degrees of freedom. It is also useful to test for significant autocorrelation in the residuals
by using estimated standard deviations obtained from Theorem 2. For example, in the
(0,0) model var {#,()} = {1—6/(nl)*}/n.

The small-sample behaviour of var {#,(1)} and @, for the (0,0) model was examined
by simulation. Using only the first 50 terms of A(5), 500 simulations of series of length
n = 250 were generated for d = 0:0, 0-1, 0-2, 0-3 and 0-4. The parameter d was estimated
using the method of § 2. The number of rejections using the portmanteau test at the 0-05
level (Q,, > 30-14), the mean of @, and its standard deviation are shown in Table 2. The
number of rejections in each case does not differ significantly from 25. The mean of @, is
always quite close to its asymptotic value of 19. The observed standard deviations of
7.(1) are all very close to 0-0396 as predicted.

Table 2. Number of times Q5o > 3014, empir-

ical average value of @, and empirical

standard deviation of 7,(1) in 500 simulation of
(0,0) model with n = 250

Average
d @ > 3014 @20 St dev {#,(1)}
0-0 25 19-124+0-28 0-0394
01 23 1892+ 0-28 0-0389
02 19 18-91 +£0-29 0-0384
0-3 23 18:37+0-29 0-0394
04 27 1891 +0-29 0-0412
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