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SUMMARY

Bivariate autoregressive-moving average time series with diagonal parameter matrices
for the autoregressive and moving average components exhibit only contemporaneous
or instantaneous correlation. In practice, different lengths of each series may be available.
An efficient maximum likelihood algorithm for parameter estimation is derived. The
statistical efficiency of this new procedure is compared with that of the standard multivari-
ate and univariate procedures which utilize only part of the available data.
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1. INTRODUCTION

Multiple time series which exhibit only instantaneous or contemporaneous correlation
have been studied by several authors (Nelson, 1976; Pierce, 1977; Moriarty & Salomon,
1980; Risager, 1980, 1981; Umashankar & Ledolter, 1983; Cipra, 1984). The contem-
poraneous autoregressive-moving average model is defined as

én(B)(Z" — py) = 0u(B)a” (h=1,...,k),
where
én(B)=1—-¢"B—...— "B 6,(B)=1-0"B—...— 05 B%,

B is the backshift operator, p, and g, are, respectively, the autoregressive and moving
averages orders for the series Z¢", for h=1,...,k w=(uy,..., ux) is the vector of the
means and vectors a, = (a'V, ..., a!®) form a sequence of independent normal random
vectors with mean vector zero and covariance matrix A = ((0g,)). If o, =0 for g # h, the
model collapses to a set of k independent univariate models as defined by Box & Jenkins
(1976). On the other hand, this model can also be considered as a particular case of the
general multivariate model (Tiao & Box, 1981; Jenkins & Alavi, 1981), where the
autoregressive and moving average parameter matrices are constrained to be diagonal.

The contemporaneous model has been successfully employed to model and forecast
many actual time series. Umashankar & Ledolter (1983), Moriarity & Salomon (1980)
and Nelson (1976) apply this model to increase the efficiency of the estimated parameters
and to improve the accuracy of the forecasts. Camacho, McLeod & Hipel (1985) give
applications of the contemporaneous model to stochastic hydrology. Risager (1980) fitted
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a bivariate contemporaneous model to mean annual ice core measurements for which
data were available for the years 1861-1974 and 1869-1975. The contemporaneous model
also describes the case when only contemporaneous Granger causality is present among
the series (Granger, 1969; Pierce & Haugh, 1977, 1979). As illustrated by Risager’s
example, it is quite common to have time series with unequal sample sizes. The practice
in this circumstance has been to eliminate the additional information available in the
longer series so that all the series end up with an equal number of observations.

In this paper, the bivariate contemporaneous model is discussed when m + N observa-
tions {Z{}, for t=1-m,...,0,1,..., N, and N observations {Z?}, for t=1,..., N,
are available. In § 2 expressions for the likelihood function are given. In § 3, some
simplifications are considered to obtain an efficient algorithm to calculate the likelihood
function. In § 4, the distribution of the estimates is given and the possible gain in efficiency
in the estimation of the parameters is considered.

It is possible to extend the results to the case of three or more series, one of which
has m additional observations. However, the more general case of k-series, each one of
them having a different sample size is more difficult to handle since the exact likelihood
function can be very complicated.

2. THE LIKELIHOOD FUNCTION

The likelihood function for the general multivariate model has been given by Hillmer
& Tiao (1979) and Nicholls & Hall (1979). However, this likelihood function was derived
under the assumption of equal sample sizes for all the series and hence is not applicable
in this case, where it is assumed that the time series have unequal numbers of observations.

In order to find expressions. for the likelihood function of the bivariate model, the
following notation is introduced: let {Z{"}, for t=1-m,...,0,1,..., N, denote m+ N
observations of Z{"” and let {Z(*},for t=1, ..., N, denote N observations of Z‘?, where
Z,=(Z", Z?Y follows the bivariate model given in § 1. It is assumed that for h=1,2
the polynomials ¢,(B) and 6,(B) have their roots outside the unit circle and the pairs
{én(B), 6,(B)} do not have common factors. These assumptions assure stationarity,
invertibility and identifiability of the model. It is also assumed, without the loss of
generality, that p, =p, g, =q (h=1,2) and that u =0. Let (B, A) denote the parameters
of the model, where

B = (Bia B;)I’ Bh - (¢(h) LK) ¢(h) o(h) ceey 051;')) (h = 1, 2)'

Let a represent the innovations of the process where a = (a}, ab)’, a,=(a}o, a}1)’, a,o=

(@®,...,aY, a,;=(ad,..., aS\‘,))’ a,=(a,...,a®) . Let Z=(Z), Z,)', where Z, =
(Z;09 ;1)’2 ZIO= (le—)m’ MR ] Z(l )’ = (Z(l) . Z(l))’ (Z(Z) AL ] Z(I%J)),' Finally’
let =(e;,e), where = (a‘ Rmtays - - s Ay Z“<m gy - Z0), e=
(aiz_)q, e @@, Z2,, ..., ZP) . So e represents the initial values of the process It is easy

to see that for suitable matrlces H,, F, and G, (h=1,2), the relationship between Z, a
and e can be written as HZ = Fa + Ge, where H, F and G are block diagonal matrices
with blocks H,, H,, F,, F,, G, and G,. After multiplying by F~' and rearranging terms,
we have that

(e',a')=(0", K")YZ+(13p+q), L") e=EZ +Ae, (1)

where 1,(,+4) is the identity matrix of order 2(p+¢q) and K and L are block diagonal
matrices with blocks Fi'H,, F>'H,, F;'G, and F,'G,, respectively.
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From (1), it can be seen that the Jacobian of the linear transformation from (e’, a’)’
to (e, Z')’ is one, so that the joint distribution of (e’, Z')’ is multivariate normal with
probability density function given by

L(e, Z) = (2m)HENTm2r |~ exp {-38(Z, e)}, (2)
where
S(Z,e)=(EZ+Ae)Q (EZ+Ae)=S5(Z &)+ (e—E)NQ'A(e—8),
e=—(ANQA)TANQTIEZ
On integrating out e from (3) the distribution of Z is obtained and is given by
L(Z)=(27) 2+ M| HA'Q AP exp {—1S(Z, e)}. (3)
After the data Z is available, (3) yields the likelihood function of 8 and A, L(B, A).

3. CALCULATION OF THE LIKELIHOOD
3-1. Introduction

It is interesting that the form of the likelihood function L(B, A) given by (3) is similar
to the likelihood of a multivariate autoregressive-moving average model as given by
Hillmer & Tiao (1979) or Nicholls & Hall (1979). Hall & Nicholls (1980) gave an algorithm
to evaluate the likelihood function of the general multivariate model. Although their
approach could be employed in the contemporaneous case, it would not be computa-
tionally efficient. In fact, due to the structure of the model, some simplifications can be
made to obtain a more efficient procedure. In this section some explicit expressions for
the terms of the likelihood function as well as some simplifications are given.

3-2. Calculation of the sum of squares S(Z, é)

In this section a method to calculate S(Z, &) which corresponds to the unconditional
sum of squares of Box & Jenkins (1976) is presented. Now S(Z, &) is given by

S(Z,&)=(EZ+Ae)Q(EZ+Aé), (4)
where € is the vector of estimated initial values and ( is the covariance matrix of
(e',a’)' = (e}, eh, aly, aly, ay)'. The inverse covariance matrix, 07, is block diagonal with
blocks

Qelel Qele2 0 | B
r''=1Q,, Q Q
0 Q o111 1 m

ee; a0

a0

and A"'®1y, where Q,,=E(uv') (y,v=-e,,e,,a,). It can be shown that ['=
JiP7UJy+ 1y, where Jy = [15(p4 )| — 071 Qeq,. ], J, is block diagonal with blocks 0 and o711,

and
P= [‘Qelel Qelez ]
Qezel Qezez - ‘(lezaw‘(l aloez/ o1

For a moving average process, Q.,4,,Q4,0¢, = a'upzﬂezez, where p is the lag zero correlation
coefficient between a!” and a!®. For the univariate process it can be shown that

_ 2 2(m-— ~
Q0 Qayge, = T119° Qoo+ O(8%™ ), where |5|<1. Hence Q..-Q., Q4. /00=

(1-pQ,,,. Now, let U=(EZ+A&)=(&, d'), where & corresponds to the estimated
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value of the innovations of series Z{" (h =1, 2) using the data {Z{} (t=1-m,..., N)
and {ZP} (t=1,..., N) and the vector of starting values & The values of 4" can be
obtained recursively using (1). For example,

a0 =ZP - pWZO, — .~ pDZD, +9DED, + .. +6DaY,

t=1-m,..., N, with starting values given by é,.
Hence S(Z, &) can then be calculated as
0 N
S(Z,&)=UQ7'U=(&,a0)\P N (&, 80+ Y (aP)/o,+Y 4'A74,
t=1-m t=1
where d,=(4'", a®®)". For large values of m the first term of this expression can be
expressed as ('P7'¢, where (=(é, &), £=(e?,,...,e2, X1, ..., X0o), eP=
a(rz) - 0'1_110'12051), X, = Zgz) - 01_11012¢2(B)a$1)- Thus

0 N
8(Z ¢é)= {'P_lf"l' Z (agl))z/a'll"}' Z étA_lﬁt-
t=1-m t=1

3-3. Calculation of the starting values

Even though the vector of initial values € can be calculated as € = —(A'Q'A) 'A'Q'EZ
it would be useful to have an alternative algorithm to obtain the vector & which could
be more efficient, in particular, when dealing with seasonal or large-order models. In
this section the backforecasting method of Box & Jenkins (1976, Ch. 7) for univariate
models is extended. The backward and forward representations of the model do not
have, in general, the same parameters as is the case for univariate models (Whittle, 1963).
Furthermore, in the contemporaneous model the parameter matrices of the forward
representation are in general nondiagonal.

In order to apply the backforecasting technique to the contemporaneous model consider
the modified Cholesky decomposition of the covariance matrix A. Let A= LVL', where
L is the lower triangular matrix with ones on the diagonal and off-diagonal entry o,/ 07,
and V is the diagonal matrix given by V = diag (0,, 02, — 0%,/ 04;) = diag (oy,, 0.,). Then
the model can be expressed as

[@(B)Z&"] _[ 6,(B) 0 ][si”]
¢2(B)Z$2) 0'1202(3)/0'11 02(3) 552) ’
where &, = L™'a,=(a'®, a'? — o7} 01,a'V)'. Let

X, = Z(rz) - (012/011){02(3)/¢2(B)}a(tl) = Z(t2) - 01_110'12¢2(B)a(zl)-

Then the model can be written as two independent series, Z" and X,, where ¢,(B)X, =
02(3)8$2), 352) = a(tz) - 0'12“51)/0'11 and var (€$2)) =02:.

The iterative backforecasting algorithm of McLeod & Sales (1983) can be applied to
each one of these models to obtain the estimated innovations @, and &, and the initial
values &, and £, say, of the series Z{" and X,. The initial values for Z? are easily obtained
from X, as Z;” = X, + o7, 01,0,(B) 4" and the innovations for the series Z? are obtained
from @ = é? + o7 7,3V a,. Although X, is not directly observable, it can be calculated
from X,=Z,—o1l0,,Y,, where ¢,(B)Y, = 6,(B)a‘V.

3-4. Calculation of the covariance determinant

The calculation of the term |Q||A’Q ™" A| of (3) is now considered. The inclusion of this
term in the likelihood function improves the small properties of the parameter estimators,
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particularly in models with moving average operators having roots close to the unit circle
(Hillmer & Tiao, 1979; McLeod, 1977).

The joint distribution of {Z"} (t=1-m,..., N) and {Z®} (t=1,..., N) is normal
so that the likelihood function can also be expressed as

L(B,A|Z) = (2m) ¥eN*™|r| P exp (-1Z'T712),

where I' is the variance covariance matrix of Z. Comparing this expression with (3) it
follows that |Q||A’Q™'A| =T'|. The calculation of this determinant may be quite laborious
so that it would be desirable to obtain an adequate approximation which is computa-
tionally attractive.

Now I' can be represented as a partitioned matrix with (i, j)th entry in the (g, h)th
partition given by o,,I',,(i —j), where

U'ghrgh(i _f) = E(Z(tg—)iZ(t}l}) = aghz ‘llsg)(//y-:-)(i—j), (//h(B) = oh(B)/ ¢h(B), !//(—hr) =0

forr>0.Let A, (g=1,2)be (m+ N) xR and N X R matrices with R> N + m and with

(i, j)th entry, f’i)i. Then the (g, h)th partition of I is approximated by o,,A,A},. The error

of this approximation is O(A®™™~™) where |A\|<1 and A corresponds to the largest root
of the polynomial ¢,(B)¢,(B)=0. Now using a well-known result for the determinant
of a partitioned matrix it follows that

IT| = o1 Tul|o22T 22— (032/ 1) Tl T1o)|-
Hence using the approximation to |[| it follows that
2oL 2 = (015/ 01) ol 11T 12 = 020 A {1 g — p? AL (A A)) T A J AL+ O(A RN M)
where p?= 03,/(01,05,). It can be shown that the determinant of this last expression is
given by
|lo22Ax{1r — p>A1(A, A1) T A} AL = 025(1 - p*)V | A, 45| (1 - p?a)
= a3(1-p*)" |2,

where 0<a<1.
The determinant of I' can then be approximated by

T = ol "o32(1 = p*) N Fus| [Pzl = AN o T | [T

The error introduced in the above approximation is negligible for moderate to large
values of m+ N. It can be shown that the exact expression of |I'| for the contemporaneous
bivariate first-order autoregression is given by

1 _P2¢%(¢1 —¢5)(¢1— gm_l)}
(1-p)(1-12)* )

Taking logarithms, the logarithms of the last factor is O(1) whereas the logarithm of the
rest of the expression is O(N +m).

|r|=|ru||rn|afi+'"a;z<1—p2>~-1{

3-5. Algorithm to calculate the likelihood function
The algorithm given in this section calculates the approximate likelihood function of
the contemporaneous model when the series have different sample sizes, using the
simplifications discussed in the previous sections. Then it can be shown that apart from
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an arbitrary constant, the logarithm of the concentrated likelihood function can be written
as

log L(B) = —{z(N +m)} log {S,1/ (N +m)} = GN) log (Sn2/ N), (%)
where S,,; and S,,, are the modified sum of squares defined by
St = SEM(n-4m)(B1, )} V™, 8, = Sy{Mn (B2, A} VN,
Si=(@%,_0)+...+(@R), S,=(62)*+...+(¢¥R)%
¢? is an auxiliary series given by
$2(B)[Z?P — 01,071{62(B)/ b2 B)}aiP] = 6,(B) e

and M, (B, o) represents a term involving the determinant of the covariance matrix of a
univariate process with parameters B, o and n observations (McLeod, 1977).
For given parameter values B, log L(B) of (5) can be calculated using the following
algorithm:
1. Using {Z{}, for t=1-m, ..., N, and B;=(¢{",..., ¢, 60, ..., 6{") obtain the
residuals a{¥ and S,,, using the algorithm given by McLeod & Sales (1983).
2. Using {Z{}, for ¢=1,..., N, and B,=(¢%,...,¢?, 62,...,6%) obtain the
residuals [a{?].
3. Calculate initial estimated values for oy, and o, using the residuals 4" and [a®®].
4. Calculate the auxiliary series Y, given by 6,(B)a‘" = ¢,(B)Y,.
Using {Z(” — (o1} 95) Y.}, for t=1,..., N and B, obtain the auxiliary residuals ¢®
and S,,,.
6. Calculate log L(B) using (5).

bt

4. LARGE-SAMPLE PROPERTIES OF THE ESTIMATORS
4-1. Distribution of B

In order to obtain the asymptotic distribution of the parameter of 3, the maximum
likelihcod estimate for the model, it is observed that for large values of m+ N the log
likelihood function can be approximated by (Hillmer & Tiao, 1979)

1 0 N
I(B,A)=—3mlog oy, —3 Nlog|A|—-— ¥ {ai}’+3 ) alAa,. (6)
111t t=1

=1-m

THEOREM 1. The asymptotic distribution of v N (,B~ — B) is multivariate with mean zero
and covariance matrix

Vaez [(011+0'1_11mN)I11 ‘-"'12112]_1
B~ s

0_211'21 0_22122
where A™'=(a¥), my =1im m/ N and
[’)’ng,,(i_j) ’ngU,,(i_j)]
?’Ugv,,(i -J) YUgU,.(i —J)

with yu,v,(i—j)=E(U®, V"), UP, V" are auxiliary series defined as ¢,(B) V" =
—a™, 6,(B)U™ = a'™. The other terms in the matrix are given by similar expressions. In
practical applications it can be assumed that my = m/ N.

I

gh
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Proof. Under the assumptions of normality, stationarity and invertibility the log likeli-
hood satisfies the usual regularity conditions. It follows from taking a Taylor expansion
of 91/9B about B, the true value, and evaluating at B that

o Tl (G-B)+0,1).

98 BB
Further, from the derivations given in the Appendix, it follows that
(B—B)=N"'Vzl/3B+O,(1/N).

Apart from terms O,(1/N), linear combinations of (é — B) are an average of martingale
differences. Normality then follows from the martingale central limit theorem (Billingsley,
1961). O

It is of practical interest to compare the asymptotic distribution of B with the asymptotic
distribution of the maximum likelihood estimator of B, ,B say, obtained using only the
N pairs of {(Z?, ZP)} (t=1,..., N). F. Camacho in his Ph.D. thesis showed that
VN( B B) is asymptotically normally distributed with mean zero and covariance matrix

V*=[ o'l o 112]
B 2112 0_22122

with I, given by Theorem 1. It follows that Vg — V3 is a positive- -semidefinite matrix
and therefore the estimator B has smaller variance than the estimator B

4-2. An illustrative example

The bivariate first-order autoregression is used as an example to examine the possible
gain in efficiency of the estimators obtained using all the available information, B,
compared to the estimators obtained using only part of the data, ,B

The model is given by Z{" = ¢,Z"), +a'" (h=1,2), where a, ={a'", a®}' is a series
of independent normal vectors with mean zero and covariance matrix A.

It can be shown that V; is given by

, (1-¢?) p*(1- 93 (1-¢3)
vy=—L=P) (1~ ¢192)
N(1=p3) | p2(1-¢D)(1-¢2) .
(1—=¢102) ~ (1_¢2)

where p% = ap®, a=(1—-¢1)(1— ¢3)/(1— $1¢,)>. Now V; is given by
2 p’(1-¢D(1-¢))
1-¢1
(1-p%) (=91 (-
Nittmy(1=p) =3} | p2(1- D)1~ )
(1_¢1¢2)

First, the effect of an unequal sample estimation approach on the estimation of ¢, is
considered. The efficiency of ¢, relative to ¢, is given by

(1-ap*){1+mn(1-p*)}/{1+my(1—-p*) —ap*}

which converges to (1—ap*) as my increases. If ¢, = ¢,, for example, then a=1 and
the efficiency tends to 1—p*. If a tends to zero the values of the efficiency converges to
1 so that no gain is expected in the estimation of ¢,.

Vs=

{1+my(1-p*)}1-¢3)
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To study the possible gain in efﬁciency in the estimation of ¢, two cases are considered.
In the first case it is assumed that iy < p*(1—ap®)/(1—p?) so that the joint estimator
of ¢, and ¢,, ¢1 say, using the N common pairs of observations of the series has smaller
asymptotic variance than the univariate estimator, ¢1, obtained usmg only the m+ N
observations of the Z;,. The relative efficiency of d>1 with respect to #, in this case is
given by (1—ap*)/{1+my(1-p?) - ap*}. .

In the second case, my > p*(1—ap?)/(1—p?), the asymptotic variances of ¢, and ¢,
are compared. The relative efficiency of ¢, with respect to ¢, is given by

{1+ my(1-p*) = p*}/ {1+ mn(1-p®) —ap?}.
When p? is large, the gain in efficiency can be quite substantial. For example, if p =0-9

and my =0-6 then the relative efficiencies for the alternative estimator of ¢1 for a=0-0,
0-2, 0-4, 0-6, 0-8 and 1-0 are, respectively, 0-27, 0-31, 0-36, 0:42, 0-52 and 0-66.

4-3. Distribution of i and A
In this section the asymptotic distribution of /i and A obtained by maximizing the
likelihood function (3) is given. Throughout this section A denotes the vector A=
(011, 021, 012, 02,). The following theorem gives the distribution of fi.

THEOREM 2. The asymptotic distribution of v N (i — w) is multivariate normal with mean
zero and covariance matrix
Ull/cf a1/(C,Cy) ]

V"=1/(1+mN)|: 0,/(C,C,) {I+MN(1_P2)}U22/C2 ’

where my =lim m/ N dnd C, = én(1)/6,(1) (h=1,2). Furthermore, it is independent of
the asymptotic distribution of ¥ N(8 — ).

Proof. The proof follows the same lines as the proof of Theorem 1 and observing from
the Appendix that, as N - oo,

. _ C, 0]1[o"+mnoy, o2[C, 0
—lim N7'E(8%1/3udu’ =[ ! ][ 1 ] !
( / M /-") 0 C o2! o2 0 G s

—lim N7'E(8°1/0Bou) =0, —lim N"'E(3%1/9Aou)=0.

This implies that the Fisher information matrix of (B, u) is block diagonal, which
shows that B and g are asymptotically independent. Normality is shown as in
Theorem 1. 0

It is interesting to compare the asymptotic variance of f, with that of &, obtained
using only the N pairs of common observations. The relative efficiency of ji, with respect
to [, is given by 1—myp?/(1+ my).

This shows that, in general, there is a gain in efficiency in the estimation of u, when
all the available information is used. On the other hand, the variance of g, is the same
as the asymptotic variance of j, obtained using the N + m observations of Z‘", so that
no gain in efficiency is expected in the estimation of u,. The following theorem gives
the distribution of A.

THEOREM 3. The asymptotic distribution of v N(A—A) is normal with mean zero and
covariance matrix, Vz, given by Vy=A® A(1,+ P)Q, where the first row of Q is

2
_ MNO 12 MNOT 12 MNO 12
(1+m ) ! - bl - b - )’
( N o (1+my) ou(l1+my) 0';;1(1+mN)
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the second, third and fourth rows are the same as those of 1, and P is a permutation matrix
such that P>=1,, P(A"'®A™") = (A™'® A™") P. Furthermore, the distribution is independent
of B and L.

Proof. The proof is similar to the proof of Theorem 2. In particular, the covariance
matrix Vj is given by the inverse of the information matrix I = —lim E(3%l/9A dA)/ N. Now

1 2l 11 12
——E(—"—)=" T {1+ my(1- ),

N \ao?, 2
1 9%l olioV .
- NE(MMH)- T ()*,),
1 9%l 1 /0% + oMo .
Lp (a% m) -1 (—5———) () +(1,1), (1, 5) + (1, 1)).

Therefore, the information matrix can be written as:
ILi=A"®A7'(1+P)/4+ mpnqq',
where P is a permutation matrix and q' = (¢''(1-p?), 0, 0, 0). O

The explicit expressions for the variances are

N var (6y,) =207,/{1+my}, (7)
N var (&22)=20%2{1_mNp4/(1+mN)}, (8)
N var (&21)=0'11022{1+P2(1_mN)/(1+mN)}- 9)

It is interesting to observe that the asymptotic variance of &, is the same as the asymptotic
variance of &,, obtained using the m+ N observations of Z!". On the other hand, it can
be seen from (8) and (9) that there is a gain in efficiency of the estimators J,, and d,,
compared with the estimators &,, and &,, obtained using the N pairs of common
observations.

4-4. On the estimation of B and A
As was mentioned before, for moderate or large sample size the estimators ﬁ and A
can be obtained by maximizing the approximate likelihood function given in (6). To
obtain the estimator for B the nonlinear system of equations 9//9p = 0 need to be solved.
An iterative procedure like that of Newton-Raphson is required to obtain B. In
particular, 8, and 3,, the estimators of 8, and B, obtained using the N + m observations
of Z{" and the N observations of Z‘?, respectively, can be used as initial values for

Bi+1= B — Vé(al/aﬂ)/M (10)

where the last term is evaluated at g = Bi. It can be shown that just one iteration of (10)
with B8 = (B,, B,) as initial values produces asymptotically efficient estimators.
The estimator for A is obtained by solving the equation 3//9dA =0 which yields

iaga-t__m |1 0] oA [1 0] 1 —1( o ,) -1
-3 - + +1 =0.
2NA 20’11 [0 0 t=1z—m 20'11 0 O 2A tgl a4 A 0
This system of equations can be solved explicitly:
11=(8S81:1+ S10)/(N+m), (11)
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~ . S ‘

11
~ _ 1 G0y (S0 ..
UU_N{Ssn o (6'11 m>} (j>1), (13)
where S,,== aj}, and (SS;) =2 a,a!.

So, given B =(B:8,), initial estimators for A can be obtained using (11) to (13),
replacing a,, for @, the residuals being obtained from the univariate estimation.
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APPENDIX
Derivative evaluations

In this Appendix the first and second derivatives of the log likelihood function given by (6)
are derived. The first derivatives of I(B, A) with respect to B are

ol 1 2 . N Wi ol N 0

— (G087 740D TAT 1e—j

=—— Y aPw{ . -Y aA [ ], -Ya I:“,~ ]a
aBlj 011 t=1-m ! 1 t=1 ! 0 aBZJ t=1 gJ')_J

where W stands for V or U depending on whether 8 is ¢ or 6 and the auxiliary series V and
U are defined by ¢,(B)V" =—-a™ 6,(B)U™ =a™, for h=1,2. The second derivatives of

I(B, A) with respect to B are
el 1 (a“)aW"
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It is easy to see that var (6°1/6B,:0B2;) = O(N + m) and var (5°1/3B¢:0By) = O(N),forg=2,h=1,
2, justifying the second expression for each term. Similarly,

al 1 0 N N 0
—_— 2 a(tl)Cl_ Zl a;A—l[((:)'l]’ al - Z a:A—l[ ]’
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where C, = ¢,(1)/6,(1) for h=1, 2.
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