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+ y* = 0, violating the requirement that Pr(X + vy, and
X + v, have opposite signs) = 0. For symmetric distri-
butions, it is necessary (and easily sufficient) for E|X +
Y| = E|X| to hold that Pr(|X| = |Y|) = I.

The symmetry assumption is relevant. Consider X = 2
or —4 with probabilities : and !, ¥ = 3 or — | with prob-
abilities ! and :. E|X + Y| = E|X| = & For nonsymmetric
distributions with v_;, = smallest (most negative) possible
Y value, y,.x = largest possible Y value, and say, v, >
— Ymin» the necessary and sufficient condition for equality
1S Pr(vpmin < X < —ymin) = 0; a similar condition holds if
.Vmax <

In Lord’s example, X and Y were random errors around
an unknown parameter value. To obtain Lord’s paradox,
with symmetric error distributions, it is necessary that the
X error always be larger in magnitude (or at least no smaller)
than the Y error. In particular, the paradox cannot occur if

~ Ymin-

there is any probability at all of a small (relative to ¥) X
error. One hopes that cases in which a random error term
is guaranteed to be large in magnitude are rare in practice.

If we make the additional assumption that X and Y are
identically distributed, we have that E|X + Y| = E|X| =
E|Y| if and only if Pr(|X| = |Y]) = 1| and Pr(|Y| = |X|)
= |, that is, if and only if Pr(|X| = |Y|) = 1. The only
way to have independent, nondegenerate X and Y with Pr(|X|
= |Y]) = 1l and E(X) and E(Y) = 0 is to have Pr(X = ¢)
=PrX=—-¢)=Pr(Y =¢)=Pr(Y = —¢) = .5. Lord’s
example was precisely this case. with ¢ = 1.
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Nonnegative Definiteness of the Sample

A. IAN McLEOD and CARLOS JIMENEZ*

Various textbooks on time series analysis assert that the
usual version of the sample autocovariance function (1) is
nonnegative definite. Two simple proofs of this result are
presented.

KEY WORDS: Autocovariance function; Time domain.

1. INTRODUCTION

The theoretical autocovariance function ¥y, (k = 0, =1,
+2,...)of astationary time series may be estimated from
n consecutive observations, z, (t = 1, . . ., n), by the sam-
ple autocovariance function

a= D (= 3z — Din, k=0, (I
t=k+1

where Z = Zz,/n. For k < 0, ¢, = c_;. Note that ¢, = 0
for k = n, since by convention the empty sum is zero. One
of the reasons this estimate is preferred (Jenkins and Watts
1969, p. 184; Fuller 1976, p. 236) to alternatives such as
dividing by (n — k) rather than # is that the resulting estimate
of the covariance matrix, C,,, of m (m = 1) consecutive
observations,

Cm = (Ciij)me’ (2)
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Autocovariance Function

is a nonnegative definite matrix. A sequence c¢; for which
the resulting matrices C,, in (2) are nonnegative definite for
m > 0 is said to be nonnegative definite. It is easily seen
that y, (k = 0, =1, =2, . . ) is nonnegative definite (Box
and Jenkins 1976, p. 28). To our knowledge, however, the
only proof for ¢, available in the literature (e.g.. see Priestley
1981, p. 323) uses properties of the periodogram. This
method is fairly indirect and not elementary, and it is par-
ticularly undesirable in an elementary course oriented to-
ward the time domain. Two simple proofs of the nonnegative
definiteness of ¢, are given in the next sections.

2. ALGEBRAIC PROOF

Without loss of generality, letz = 0. Letz, = 0 fort <
1 or t > n and define the column vector Z; = (z;,4, . . ..
Zien)» —n <i < n. Then

nC, = E Z,Z (3)

and a'Z;Z/a = (Zja)'(Z a) = 0 for any column vector
.

Thus C, is the sum of nonnegative definite matrices and
consequently must also be nonnegative definite. It follows
that C, is nonnegative definite for any k > 0.

3. MOVING AVERAGE PROOF

Let h,(+ = 1, 2, ...) be a moving average process of
order n defined by
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h, = E_:] Z; €,_i, (4)

where ¢, is a white noise sequence with variance 1/n. It is
easily verified that the theoretical autocovariance function
of h, is just the sample autocovariance function of z|, . . .,
z,, given by (1). Consequently, ¢, is also nonnegative def-
inite.
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On Necessary and Sufficient Conditions for Ordinary Least
Squares Estimators to Be Best Linear Unbiased Estimators
GEORGE A. MILLIKEN and MOHAMMED ALBOHALI*

Two often-quoted necessary and sufficient conditions for
ordinary least squares estimators to be best linear unbiased
estimators are described. Another necessary and sufficient
condition is described, providing an additional tool for
checking to see whether the covariance matrix of a given
linear model is such that the ordinary least squares estimator
is also the best linear unbiased estimator. The new condition
is used to show that one of the two published conditions is
only a sufficient condition.

KEY WORDS: Linear model; Ordinary least squares; Co-
variance matrix.

1. INTRODUCTION

The general linear model with a full rank design matrix
is
y = XB + €, (1.1)
where X is an n X p matrix of rank p, E(e) = 0, var (€)
= X, and X is positive definite. The ordinary least squares
estimator (OLSE) of B is Bs = (X'X) 'X'y, which is
chosen to minimize the quantity (y — XB)'(y — XB). The
best linear unbiased estimator (BLUE) of B is chosen to
minimize the quantity (y — XB)'2~'(y — XB), and when
3 is known, the BLUE of B is

Be = (X'T7IX)7IX'3 1y,
Several authors have discussed conditions for 3 when it is
unknown, for which B is also the BLUE. Graybill (1976,
Theorem 6.8.1) stated that 85 is also BLUE if and only if
there exists a nonsingular matrix F such that 2X = XF.

MCcElroy (1967) considered the case in which the linear
model has an intercept, that is, one of the columns of X is
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fessor, Department of Statistics. Temple University, Philadelphia, PA 19401.

208 © The American Statistician, November 1984, Vol. 38, No. 4

a vector of 1's. For the intercept linear model, McElroy’s
states that B, is also BLUE if and only if £ = o?[ql +
(1 = ¢@)J], where I 'is an n X n identity matrix, J is an n
X n matrix of 1's, and |q| < 1. McElroy’s condition is
often quoted and was used most recently by Lowerre (1983).
Unfortunately McElroy’s condition is only sufficient. The
theorem in the next section presents a necessary and suf-
ficient condition (NSC), which can easily be used to show
that McElroy’s condition is not necessary.

2. ANOTHER NSC

Graybill’s condition depends on the existence of the non-
singular matrix F, which may be difficult to find for some
choices of X and X. If an expression for ! can be ob-
tained, the following theorem presents another NSC.

Theorem. For the linear model in (1.1), ﬁLS is BLUE
if and only if

X2 '(I-W) =0,

where W = X(X'X) 'X".
Proof. In order for Bs to be BLUE, X and % must be
such that B, g = BgL or

X'X) 'X'y = (X'2IX)TIX' I y.
Let U denote the difference
U=XX Xy - X2 X)"'X'Zy,
and express y = Wy + (I — W)y. Then U reduces to
U= -X'Z2'X) 'X'2"'I - Wy.

Thus ﬁ,_s is also BLUE if and only if U = 0 for all y or
if and only if

X'ZIX)7T'IX'E I - W) = 0.

Since (X'Z " 'X) ! is nonsingular, the condition becomes
B.s is BLUE if and only if

X' (I-W) =0



