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New simulation procedures are presented for generating synthetic data from either a nonseasonal or a
seasonal Box-Jenkins model. The simulation techniques are designed so that random realizations of the
underlying stochastic process are empioyed for starting values. Because fixed beginning values are not
utilized, systematic bias is not introduced into the synthetic trace. When the data have been transformed
by a Box-Cox transformation, the inverse transformation can be conveniently incorporated into the
simulation process. Also a new algorithm is presented for simulating integrated models. A method is
developed for incorporating parameter uncertainty into simulation studies, and it is explained how this
technique can be used in the design of reservoirs. Practical applications are presented to demonstrate the
efficacy of the aforesaid simulation methods. In addition, the Fortran computer subroutines for the
simulation procedures are included in an appendix with the microfiche edition of this paper.

INTRODUCTION

The Box-Jenkins family of stochastic models [Box and Jen-
kins, 1970] constitutes a flexible class of models for describing
natural, economic, and other types of time series. In fitting a
Box-Jenkins model to a given series, adherence to the identifi-
cation, estimation, and diagnostic check stages of model con-
struction is recommended. Recently, Hipel et al. [1977] have
presented some new procedures to simplify and also sub-
stantiate the three stages of model construction. McLeod et al.
[1977] have demonstrated the utility of the contemporary
modeling techniques given by Hipel et al. [1977] by applying
these procedures to both nonseasonal and seasonal time series,

Once a Box-Jenkins model has been properly fit to a data
set, the chosen model can be used for applications such as
forecasting and simuiation. The purpose of this paper is to
present proper simulation procedures for both nonseasonal
and seasonal Box-Jenkins models.

Simulation is now a widely accepted technique to aid in both
the design and the operation of water resources systems. Al-
though synthetic data generation is now extensively utilized,
there are still some chronic problems that require proper reso-
lution. For instance, many current simulation methods that
are widely accepted do not use correct initial values. Although
the effect of starting values is transitory, it could cause system-
atic bias in a simulation study, and therefore, as was pointed
out by Moran [1959, chapter 5} and Copas [1966], the choice of
initial values is important. To attempt to overcome this prob-
lem, some researchers discard the first section of a synthetic
time series supposedly to get rid of the effects of initial values.
However, exactly how many values of the generated series
should be rejected, and how much computer time is wasted by
generating data that are not used?

As an example of a conservative approach to the effect of
starting values, consider the simulation study of Brown and
Hardin [1973). These authors used deterministic starting val-
ues for an autoregressive process of order 2 and then generated
a series with a length of 30,000 values. The first 15,000 values
of the synthetic trace were discarded supposedly to nullify the
effects of using nonrandom initial values.

Copyright © 1978 by the American Geophysical Union.

Paper number 8W0458.
0043-1397/78/058W-0458301.00

The simulation procedures given in this paper do not require
fixed starting values. They are designed in a manner such that
random realizations of the underlying stochastic process are
used as initial values. Therefore the results of a simulation
study are not significantly biased, and it is not necessary to
disregard any of the generated data.

Often it is necessary to generate k' time series of length 4.
Some researchers resort to producing a single synthetic series
of length k'k and then splitting this long series into &’ series of
length k. If any serial correlation is present, then the results of
any simulation study will be biased by this rather crude proce-
dure. To overcome this problem, the authors recommend gen-
erating k' separate time series of length k. If the generating
procedures given in this paper are adopted, then each time
another series of length k is obtained, new random realizations
of the stochastic process are used as starting values.

Previously, researchers had attempted to devise methods for
incorporating uncertainty of the model parameters into a sim-
ulation study. It is shown that the procedure suggested by
Vicens er al. [1975] is not a satisfactory method to employ.
Consequently, in this paper a new algorithm is developed
which properly handles parameter uncertainty in a simulation
experiment. In addition, comments are made regarding the
problem of selecting a proper model to fit to a given data set.
After the appropriate model has been determined, the model
can be utilized for simuluating synthetic data.

In the next section. simulation procedures are presented for
generating synthetic traces from Box-Jenkins models. It is
clearly explained in which situations a specific simulation
method should be employed. Because it is a straightforward
undertaking to extend the simulation techniques to the sea-
sonal case once the nonseasonal methods are known, only the
simulation results for nonseasonal Box-Jenkins models are
given. Furthermore, the techniques of simulation are also pre-
sented for models containing both nonseasonal and seasonal
differencing operators and for data that have been trans-
formed by a Box-Cox transformation. Methods for tackling
the problems of both parameter and model uncertainty are
discussed. Following this, three practical applications are
given to portray the effectiveness of the new simulation tech-
niques. The computer programs for the simulation methods
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are listed in the appendix.! (Farebrother and Berry [1974],
Hannan [1970), Healy [1968], Knuth [1969]; Nicholls [1972],
and Pagano [1973] are cited in the appendix.)

SIMULATION TECHNIQUES

Waterloo Simulation Procedure |
(Wasim 1)

A stationary nonseasonal Box-Jenkins model with a mean
of zero can be written in the form

¢(B)Z[ = H(B)a[ (1)

where ¢ is discrete time that is spaced at equal time intervals; z;
is the value of the process at time ; B is the backward shift
operator defined by Bz, = z,_, and Bz, = 2,_,, where s is a
positive integer; ¢(B) = | — ¢,B — ¢:B* — -+ - — ¢,BP is the
nonseasonal autoregressive (AR) operator or polynomial of
order p such that the roots of the characteristic equation ¢(B)
= 0 lie outside the unit circle for nonseasonal stationarity and
the ¢, i = 1, 2, - -, p, are the nonseasonal AR parameters;
6(B)y=1—6,8 — 8,8 — --- — 6,Bis the nonseasonal moving
average (MA) operator or polynomial of order ¢ such that the
roots of 8(B) = 0 lie outside the unit circle for invertibility and
0,i=1,2,---,¢q,arethe nonseasonal MA parameters; and q,
are identically independently distributed residuals with mean 0
and variance ¢,* (I1ID (0, 0,?)); often the residuals are assumed
to be normally independently distributed (NID (0, ¢,%)). The
process given in (1) is referred to as an autoregressive moving
average (Arma) model. The notation (p, q) is used to indicate
the orders of the AR and MA operators.

For simulation purposes the zero mean stationary seasonal
Arma model can be considered as a natural extension of the
nonseasonal process given in (1). Models with a-nonzero mean
(or any other type of deterministic component) are simulated
by first generating the corresponding zero mean process and
then adding on the mean component.

Suppose that the z, are expanded in terms of a pure MA
process. This is termed the random shock form of an Arma
process and is written as

_ 8(8)
7 5(B)

where ¢, = 1. The coefficients ¢, (i = 1, 2, - - -} of the random
shock operator ¥(B) are obtained by equating coefficients in
the operator identity {Box and Jenkins, 1970, chapter 4]:

d(B)W(B) = 8(B) )

If an AR operator is present, Y(B) forms an infinite series and
therefore must be approximated by the finite series

a=yB)a = (1 + B+ B+ - a (2)

WB)~ 1+ B+ B + - + YyBY 4)

It is necessary to choose g’ such that ¥y ,y, ¥g'4q, +- are all
negligible. Since the model is stationary, this can be accom-
plished by selecting ¢' sufficiently large that the error given
below is kept as small as desired:

Yo — t ¥.? < error %)
i=0

' Appendix is available with entire article on microfiche. Order from
American Geophysical Union, 1909 K Street, N.W., Washington,
D. C. 20006. Document W78-006; $1.00. Payment must accompany
order.
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where v, is the theoretical variance of a given Arma process
with a,? I and is calculated by using the algorithm of
McLeod [1975] and error is the chosen error level (for ex-
ample, error = 107%).

To obtain a synthetic series of k& observations, first generate

k + ¢q' white noise terms @_g,yr, A_grigr, * 7, Qo, Ay, Qg "
a,. Next, calculate
zZ=a+ta, tea .+ o+ Yga g (6)
wheret =1, 2, -+, rand r = max (p, g). The remaining z, are
easily determined from the equation
Z =izt ezt ot pzip
+a —ba_,— - — 0aal—q N

wheret =r+ 1, r+2, -, k.

The use of (7) avoids the truncation error present in (4).
Nevertheless, if an AR operator is present (i.e., p > 0), there
will be some systematic error in the simulated data due to the
approximation involved in (6). However, this bias can be kept
to a tolerable level by selecting the ‘error’ term in (5) to have a
specified minimum value. Of course, if the model is pure MA
(0, ¢), then set ¢’ = ¢, and (6) will be exact and can be utilized
to generate all of the synthetic data.

An inherent advantage of the Wasim | simulation technique
is that the only restriction on the white noise terms is that they
are 11D (0, a,%). Although in many situations it is often appro-
priate to employ NID (0, ¢,%) innovations, this simulation
method does not preclude considering other types of distribu-
tions. For instance, after a relatively long hydrological time
series has been modeled, the residuals from the historical data
could be used to form an empirical distribution function for
generating the white noise. This approach is illustrated in the
applications section. In other situations it may be warranted to
simulate the white noise by employing Johnson variates [Hill
et al., 1976; Hill, 1976] or perhaps one of the distributions
suggested by Delleur et al. [1976, pp. 961-963]. Atkinson and
Pearce [1976] discuss the computer generation of beta,
gamma, and normal random variables. For generating nor-
mally distributed disturbances it is recommended that the
method of Marsaglia and Bray [1964] be employed.

Waterloo Simulation Procedure 2
(Wasim2)

Suppose that it is necessary to generate k terms of an Arma
(p, ¢q) model with innovations ‘that are NID (0, ¢,%). The
following simulation procedure is exact to simulate z,, z5, * - - N
z,, for all stationary Arma (p, q) processes.

. Obtain the theoretical autocovariance function v, for j
=0,1, .-, p— I by using the algorithm of McLeod [1975]
with g2 = 1.

2. Utilize (3) to determine the coefficients ¥, forj = 1, 2,
e p— L

3. Formthecovariance matrix Ag,* of z,, 2,4, < -

ap—lv .

) zlv ap\

L] ap-a+l-

(Yi-1doxe (¥s-Doxa
(\(’14 )qxp (61‘1 )a xq

In (8) the (i, j) element and dimension of each partitioned
matrix are indicated. The values of 4, , are | or 0 according to
whether i = j or i # j, respectively. When i — j <0, theny,_, =
v,-iand ¢, = 0.

A= (®)

(p+Q)X(p+q)
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4. Determine the lower triangular matrix M by Cholesky
decomposition [Ralston, 1965, p. 410] such that

A =MM 9)
5. Generatee,. e, *** , €prq and @pr1, Gpaa, ~** , @, Where
the e, and a, sequences are NID (0, a,?).
6. Calculate z,, z5 ** , 2, from
L
Zp+1-t = Z m ;€; t=12 " P (IO)
J=1
7. Determine @,. 441, Gp_g+2, " ° , 4p from
b+t
Aprr-t = My yp €y t=12,+,q (1
J=1
8. Obtain zp.y, 2p42 2 by using
L=zt eyt Gpzip +a — bha -,
"—Bzal-z_"'_—gqat-a l=p+l,p+2,"',k (12)

9. If another series of length k is required, then return to
step 5.

For a particular Arma model it is only necessary to calculate
the matrix M once, no matter how many simulated series are
synthesized. Therefore Wasim 2 is economical with respect to
computer time required, especially when many time series of
the same length are generated.

Often the white noise disturbances can be assumed to be
NID (0, a,?), and it is desirable to have as much accuracy as
possible in order to eliminate bias. For this situation the
authors recommend using Wasim 2 for a pure AR model or an
Arma process. When a pure M A process with innovations that
are NID (0, 0,?) is being simulated, the Wasim | and Wasim 2
procedures are identical.

Simulation of Integrated Models

For annual geophysical time series of a moderate length
(perhaps a few hundred years) it is often reasonable to assume
that a stationary model can adequately model the data. Hipel
and McLeod [1978], for example, fit stationary Arma models
to 23 time series which are measured from six different geo-
physical phenomena. Nevertheless, certain types of time series
that are used in water resources could be nonstationary. The
average annual cost of hydroelectric power and the total an-
nual usage of water-related recreational facilities constitute
two types of measurable processes which possess mean levels
and variances that could change significantly over time. In
general, time series that reflect the socioeconomic aspects of
water resources planning may often be nonstationary even
over a short time span. Consequently, in certain situations it
may be appropriate to incorporate a nonseasonal differencing
operator into the nonseasonal model in order to account for
the nonstationarity.

If a Box-Jenkins seasonal model is fit to seasonal data,
usually both nonseasonal differencing and seasonal differ-
encing are required to account for the nonstationarity [Hipel,
1975]. Consider the case of average monthly observations. If
the monthly mean and perhaps variance change from one year
to the next for each specific month, then fitting a nonstationary
seasonal Box-Jenkins to the data may prove to be reasonable.
For example, the average monthly water demand for large
cities tends to increase from year to year for each month. For
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the aforementioned situation the simulation procedures for
integrated models could be useful.

When seasonal geophysical data, such as average monthly
river flows, are being considered, the individual monthly aver-
ages may have constant mean values, but the means vary from
month to month. Consequently, the time series of all the given
data is by definition nonstationary, but it still may not be
appropriate to employ a nonstationary seasonal Box-Jenkins
process to model the data. Rather, the given natural time series
is deseasonalized to produce a stationary nonseasonal data set,
and subsequently, a nonseasonal model is fit to the deseasona-
lized data. For example, prior to fitting a nonseasonal Arma
model to the data it is a common procedure to standardize
average monthly river flow time series to eliminate seasonality
(see, for example, Hipel [1975, chapter 8], Tao and Delleur
[1976], and McKerchar and Delleur [1974]). Clarke [1973] and
Croley and Rao [1977] present extensive descriptions of desea-
sonalization procedures for daily, weekly, and monthly data.

Although caution should be exercised when nonstationary
data are being modeled, it is evident that situations may arise
during which it is suitable to invoke differencing. Any Box-
Jenkins model that contains a differencing operator is termed
an integrated model. Suppose that it is necessary to simulate &
values of z, by using an integrated process. A stationary w,
series is related to the nonstationary z, series by the equation

t=d+1,d+2, -k (13)

where s is the seasonal length (s = 12 for monthly data); V¢ =
(1 — B)* is the nonseasonal differencing operator of order d to
produce nonseasonal stationarity of the dth differences, usu-
allyd =0, },o0r2; V,2 = (1 - B*)P is the seasonal differencing
operator of order D to produce seasonal stationarity of the
Dth differenced data, usually D = 0, 1, or 2 (for nonseasonal
data, D = 0); and & = d + sD.

Because of the differencing in (13) the &' initial values z,, z,,
-+, zqs, which determine the ‘current level® of the process, are
assumed known. Given the 4' initial values, the time series
integration algorithm forms the integrated series z, fort = 4’ +
I.d + 2, -+, k. The integrated series is derived theoretically
from the relationship

w, = V4V,0z,

7, = §5,%w,

1 + B + B> + --- is the nonseasonal
| + B + B* + PRI

(14)

where § = V! =
summation operator and §;, = V7! =
the seasonal summation operator.

When (14) is employed to obtain an integrated series, the
methods of the previous sections are utilized to determine the
w, sequence. Then the integration algorithm that is developed
presently in this section is used to evaluate (14). The situation
in which it is necessary to simulate data from a nonseasonal
model containing a differencing operator is first considered.
This is followed by a discussion of the generation of synthetic
data from a general seasonal model that possesses a seasonal
differencing operator and perhaps also a nonseasonal differ-
encing operator.

Nonseasonal model: The integration algorithm for a non-
seasonal Box-Jenkins model (i.e., s = D = 0) is as follows. For
1,2, -+, d, (1) determine the starting value V¢~'z, by
differencing the given initial values z,, z,, -, z4, and (2)
calculate V?-'z, fort =d + 1,d + 2, - - -, k by employing the
identity

[ =

Vi-iz, = Varicig, + Vi, (15)
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Seasonal model: For a seasonal model the integration al-
gorithm is subdivided into two parts. The first stage consists of
performing the nonseasonal integration. Fori = 1,2, ---, d,
(1) determine the starting value V4-!V,2z, by differencing the
given initial values z,, z,, - - -, z4, and (2) calculate V2¢-¢V,2z,
fort =d + 1,4 + 2, -+, k by using the equation

vd~lv,th = vd+l—lv'ozt —_ vd—l§7'021_l (16)

In the second step the seasonal integration is performed. For
i=1,2,---, D, (1) determine the starting values V,%z, fort =
d,d -1, -, d =s,by differencing the given initial values z,,
Zq "'y 2q1, and (2) calculate V.2~ iz, fort=d + 1, d + 2, - - -,
k by using the equation

V,D_'Zt = VED~H-1ZI + vaD_‘zl—a

(7

Models With Power Transformations

In Box-Jenkins modeling the model residuals are assumed to
be independent, homoscedastic, and usually normally distrib-
uted. The most critical supposition is the independence as-
sumption, and its violation can cause drastic consequences
[Box and Tiao, 1973, p. 522). However, if the homoscedastic
and normality assumptions are not fulfilled, they are often
reasonably well satisfied when the observations are trans-
formed by a Box-Cox transformation [Hipel et al., 1977;
McLeod et al., 1977].

Consider a Box-Cox transformation of the form [Box and
Cox, 1964)

2 = [z, + const = 1]/A A #0

A=0 (18)

2™ = In (z, + const)
where const is a constant. The z,'™ are obtained by the meth-
ods of the preceding sections, and the synthetic data z, are then
calculated by the inverse transformation

2z = Az, + DHY* — const A#O

z, = exp 2z, — const A=0

(19)

Computer Algorithms

The simulation procedures labeled Wasim 1 and Wasim 2
have been coded in American National Standards Institute
standard Fortran. The computer programs for these simula-
tion methods, along with other subroutines such as the in-
tegration and inverse Box-Cox transformation procedures, are
listed in the appendix in the microfiche edition of this paper.
The appendix is divided into three sections. First, the various
types of numerical methods that are employed in the subrou-
tines are presented; second, a detailed description of the struc-
ture of the subroutines is given; and third, the actual programs
are listed.

Waterloo Simulation Procedure 3
(Wasim 3)

The Wasim 3 algorithm can be used in simulation studies in
which it is necessary to incorporate parameter uncertainty into
the analysis. Suppose that it is necessary to generate k’ syn-
thetic traces of length k. When each series of length k is being
generated, different values of the model parameters are ran-
domly selected if Wasim 3 is employed. The Wasim 3 proce-
dure is explained only for a nonseasonal Arma model, since
extension to the seasonal case is straightforward.

Suppose that the historical time series containing N values is
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modeled as an Arma (p, q) process that has an estimated mean
level of &. The Gaussian white noise residuals have an esti-

mated variance denoted by 4,2 Let the vector of the estimated
Arma parameters be given by

@ = (d;lv (521 B ¢‘py glv 6‘21 T 0‘0) (20)
The vector of the true model parameters is denoted by
@ = (¢lv ¢Zv Tt ¢D! 01!020 Y aq) (21)

The mean level of the true model is u, while the variance of the
white noise is .2

If a noninformative prior distribution is used for the model
parameters, then (3, u, and o,’ are approximately independent
with posterior distributions given by

8 ~ NG V3
where Vj is the estimated covariance matrix of 8 which is

usually calculated at the estimation stage of model develop-
ment and ~ means ‘is distributed as.’

L 1—¢l~e€,—-‘-—¢9p>-ﬂi.j}
# N[“‘(l—bﬂ—(f,—---—o‘q N (23)
a4 ~ Nl6s? 26,'/4] 24)

The results given in (22), (23), and (24) are based upon
large-sample theory. Nevertheless, these results can be used to
obtain some idea of the importance, if any, of parameter
uncertainty in a particular situation. It should be noted that if
an informative prior were used, the variances of the parame-
ters would be less and hence the parameter uncertainty would
also decrease.

The following algorithm for Wasim 3 can be used to allow
for parameter uncertainty when k' series of length k are to be
generated from an Arma (p, ¢) model.

1. Seti= 1.

2. Randomly generate values for 3, u, and ¢,? using the
posterior distributions given in (22), (23), and (24), respec-
tively. Denote the generated parameter values as 3¢, mi, and
0..%. Refer to the book by Janson [1966] for a method for
obtaining random values from a multivariate normal distribu-
tion.

3. Use Wasim 2 (or Wasim 1) for an Arma (p, q) process
with parameters 3,, u;, and o, ,,* to simulate a synthetic series of
length k that is represented by z,%, 2,9, - - -, z,'?. If the model
contains a Box-Cox transformation, the inverse transforma-
tion in (19) is required.

4. Seti =i+ 1. 1fi < k', then repeat steps 2 and 3 to
obtain another possible realization of the time series. When §
> k', the Wasim 3 procedure is terminated.

(22)

MODEL UNCERTAINTY

In the synthetic hydrology approach to reservoir design and
operation an Arma mode! may be fit to a historical river flow
time series and then used to simulate other possible realiza-
tions of the river flows. Two sources of possible error may
arise. The model selected may be inappropriate, or the esti-
mated parameters may be inaccurate. The procedures of Box
and Jenkins {1970] and extensions developed by McLeod
[1977a, b, 1978}, Hipel et al. [1977], and McLeod et al. [1977]
emphasize techniques for selecting an appropriate model fol-
lowed by efficient parameter estimation and diagnostic check-
ing for possible model inadequacies. It is thus reasonable to
suppose that the selected model is at least approximately valid.
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On the other hand, if a possibly inappropriate model, such as
the fractional Gaussian noise model, is fit to the data and no
checks of model adequacy are done, a seriously inadequate
model may arise. It is demonstrated by McLeod and Hipel
[1978] that the use of fractional Gaussian noise models may
give very poor fits to annual river flow time series. If the
methods advocated in the papers of Hipel et al. [1977] and
McLeod et al. [1977] are used with a hydrologic time series of
at least 50 observations, the selection of an inappropriate
model is not likely to occur.

PARAMETER UNCERTAINTY IN RESERVOIR DESIGN

In this section an algorithm is presented for estimating the
expected utility of a reservoir design given the specified Arma
(p, ¢) model for the river flow data and a posterior distribution
P8, u, 04°) for the parameters. Furthermore, it is pointed out
that the method of Vicens et al. [1975] is inappropriate.

For a given river flow time series z,, - - -, z, and a particular
reservoir design D the (vector valued) net benefit function is
given by

NB = NB(zy, -+, zx: D) (25)
and the utility is
U = U(NB) (26)

The expected utility of D is then given by
u(D) = E{U[NB(z,, -+, zx; D)}}

U[NB(z,, -

[,

’ p(zlv Tk f[}, My Uaz)l’(@, M, O’az)
. dZ; e dzk dﬂx e dBp+q d/.l daaz

*, Zx; D)]

(27)

The best design D, maximizes the value of (D).

After a Box-Jenkins model is fit to the given time series of
historical river flows, the following algorithm may be used to
estimate u(D) and a confidence interval (or Bayesian probabil-
ity interval) for u(D).

1. Seti=1,T,=0,and T, = 0. Let k' be the number of
series of length k that are to be generated. For example, k' may
have a value of 10,000.

2. Generate a synthetic time series z,'*', - - -,
Wasim 3 algorithm.

3. Calculate u, = U[NB(z/", -+, z,"; D)}, set T, = T, +
u, and set T, = T, + u?

4. Seti =i+ 1,andgotostep2ifi <k’ Gotostep 5
ifi > k',

5. Set

z,'" using the

u=(1/k"T, (28)

and let

Sz = {[(1/K")T, — @®|/k'}7? 29)

The calculated 4 provides an estimate of (D), and a 95%
confidence interval (or Bayesian probability interval) for u(D)
is given by & + 1.96S;. Although the aforesaid algorithm has
been explained for a nonseasonal Arma (p, ¢) algorithm, the
same approach is valid for seasonal models. The number of
generated synthetic traces (i.e., k') can be increased if more
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accuracy is required or decreased if less accuracy is required.

In simulation studies it is essential that a synthetic data
sequence generated from a stochastic model resemble statisti-
cally the historical observations. However, if the technique
suggested by Vicens et al. [1975] is implemented, this criterion
cannot be fulfilled. For the case of a Markov process these
authors derive a Bayesian posterior distribution for z,,, given
the previous values z,, z,, -+, z, and an appropriate prior
distribution. The posterior distribution is used to simulate a
value for z,.,. Repeating the procedure k times yields a new
simulated series z,.1, Zxs2, . Zmx. However, it is assumed
that the given time series z,, z,, * * -, z, was generated from a
Markov model. Unfortunately, this is not true for the syn-
thetic series zy.y, Zes2, ' *°, Zm. Lhat is, the generated time
SEri€s Zpyy, Zrsz, * ° ° Zax 1S NOL @ possible realization of an Arma
(1, 0) model. Thus the synthetic data that are generated by the
algorithm of Vicens et al. [1975] are not a possible realization
of the underlying stochastic process even if the assumed type
of model is correct. If such a synthetic trace for streamflows
were used to evaluate net benefits for a reservoir design,
spurious results could be produced.

APPLICATIONS

Three applications are presented to illustrate the advantages
and usefulness of the simulation procedures presented in this
paper. The first example demonstrates that the employment of
Wasim 2 in simulation studies avoids bias that is due to fixed
starting values. The second example shows how the model
residuals from the historical data can be used in conjunction
with Wasim 1 for generating synthetic data. Finally, the third
example demonstrates how parameter uncertainty can be in-
corporated into a simulation study by using Wasim 3.

Avoidance of Bias in Simulation Studies

The rescaled adjusted range (RAR) and the Hurst coeffi-
cient K are two statistics that are important in problems re-
lated to the Hurst phenomenon. McLeod and Hipel [1978]
have reassessed the controversies surrounding the Hurst phe-
nomenon and have demonstrated that Arma processes are
superior to fractional Gaussian noise models. In addition,
Hipel and McLeod [1978] have shown that Arma models pre-
serve the historical RAR or equivalently K. Accordingly,
Arma models are important tools for utilization in hydrologic
studies and should be used in preference to the so-called long-
memory processes. .

If the underlying process is a Box-Jenkins model, it can be
shown theoretically that the RAR is a function only of the
sample size and the AR and MA parameters [Hipel, 1975,
Appendix B]. Hipel and McLeod [1978] demonstrate how to
obtain the empirical cumulative distribution function (ECDF)
for the RAR when the generating process is a specified sto-
chastic model. In particular, consider the ECDF for a Markov
model (i.e., an Arma (1, 0) process) with an AR parameter
having a value of 0.7. When the Wasim 2 technique is em-
ployed to generate 10,000 sequences of length 30, the value of
the 0.95 quantile for the ECDF of the RAR is 12.15. The 95%
confidence interval for this value is caiculated to be from 12.09
to 12.19 (see Conover [1971, p. 111] for the method for calcu-
tating the confidence interval for a quantile).

If random realizations of the stochastic process are not
utilized as starting values, systematic bias can be introduced
into a simulation study such as the development of the ECDF
for the RAR. For the Markov model with an AR parameter
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TABLE |. Parameter Estimates for an Arma (2, 0) Model Fit to the
Gota River Data
Parameter Estimate Standard Error
b 0.591 0.079
[ -0.274 0.078

having a magnitude of 0.7, 10,000 sequences of length 30 were
generated, and for each sequence the mean value of zero was
used as a starting value. In addition, exactly the same distur-
bances that were utilized in the simulation study using Wasim
2 were employed for the biased study. The value of the 0.95
quantile for the biased ECDF of the RAR is 12.01. The 95%
confidence interval for this quantile value is from 11.97 to
12.05. Notice that the confidence interval for the biased result
does not intersect with the corresponding interval for the
unbiased study. Consequently, fixed initial values should not
be used in the development of the ECDF for a specified
statistic and generating mechanism.

Simulation Studies Using the
Historical Disturbances

When Wasim | is used, it is not necessary to assume that the
model residuals are NID (0, ¢,?). In fact, it is not necessary to
determine any theoretical distribution for the disturbances to
follow. Rather, in certain situations it may be advantageous to
use the residuals from the historical data to form an empirical
distribution for generating the innovations. For example,
when a relatively large sample is available, it may be desirable
to use the empirical distribution of the residuals for simulation
studies, no matter what theoretical distribution the empirical
results may most closely resemble. In other instances it may be
difficult to determine which theoretical distribution to fit to the
disturbances, and consequently, it may be profitable to employ
the empirical distribution of the residuals. However, it should
be pointed out that when the historical disturbances are em-
ployed, it is not possible to have a generated disturbance that
is more extreme than the calculated residuals. Nevertheless,
because of the form of the difference equation for a Box-
Jenkins model that is fit to correlated data, it is possible that
values of the generated data may be more extreme than those
in the given time series.

A river flow time series is considered to demonstrate how
the empirical distribution for the residuals can be used in
practice. The average annual flows of the Gota River in Swe-
den from 1807 to 1957 are available in a paper by Yevyevich
[1963]. A model is fit to these data by following the identifica-
tion, estimation, and diagnostic check stages of model con-
struction. The identification stage reveals that it may be appro-
priate to estimate an AR process of order 2. By using the
method of McLeod [1977a, b), efficient parameter estimates
and corresponding standard errors are calculated as listed in
Table 1. At the estimation stage the white noise residuals {d,,
Gy, -, dis} are determined by using the back forecasting
technique of Box and Jenkins [1970, chapter 7). Diagnostic
checks performed on the residuals confirm that the modeling
assumptions are satisfied. In particular, by calculating con-
fidence limits for the residual autocorrelation function using
the technique of McLeod [1978], the residuals are shown to be
white noise.

To obtain synthetic data by using the Gota model, the
Wasim | method is employed, and the white noise terms are
chosen by selecting at random an element of the set (4, d,, * * -,
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dysol. After one of the historical innovations is utilized, it is put
back into the set of historical disturbances. Therefore selection
is done with replacement, and this method is equivalent to
using the empirical distribution of the residuals for the genera-
tion of the white noise terms.

As an example of a simulation study using the Gota model,
consider the development of the ECDF for the Hurst coeffi-
cient K. The historical disturbances and the Wasim 1 tech-
nique are used to generate 10,000 sequences, each sequence
containing 150 values. By calculating K for each of the 10,000
traces the ECDF for K can be obtained as shown in Table 2 for
a series length which is the same as that of the historical time
series.

The historical value of K for the Gota River is calculated to
be 0.689. Notice that the observed K value does not lie in the
tails of the ECDF for K in Table 2. The probability that K for
the Gota model is greater than the historical K is 0.281. Hipel
and McLeod [1978] apply this procedure to 23 geophysical
time series and, by invoking a particular statistical test, dem-
onstrate that Box-Jenkins models do preserve the Hurst coeffi-
cient K or equivalently the RAR.

Parameter Uncertainty in
Simulation Experiments

An average annual river flow series having a length of 96
years is modeled to show how parameter uncertainty can be
brought into a practical simulation study. The yearly river
flows of the Mississippi River at St. Louis from 1861 to 1957
are available in an article by Yevyevich [1963]. By following
the three stages of model development the best process for
modeling the Mississippi flows is found to be an Arma (0, 1)
model. The maximum likelihood estimate for the MA parame-
ter 8, is —0.306 with a standard error of 0.097.

By using Wasim | (or equivalently Wasim 2) the Mississippi
model is employed to generate 10,000 series of length 96. The
RAR is calculated for each of the 10,000 traces. The expected
value or mean of the RAR for the 10,000 series is 13.439 with a
standard deviation of 0.030.

The Mississippi model is used with Wasim 3 to generate
another 10,000 series of length 96. The innovations are differ-
ent from those used for the simulation study with Wasim 1.
For each trace of length 96 the value of the MA parameter

used in Wasim 3 is determined by the equation
#, = ~0.306 + 0.097¢, (30)

where t = 1,2, 3, -+, 10,000 ind ¢, ~ NID (0, 1). Because the
RAR is not a function of the mean level of the process or the

TABLE 2. Distribution of K for the Gota Model
Value of X for Empirical
Quantile White Noise
0.025 0.556
0.050 0.571
0.100 0.590
0.200 0.613
0.300 0.630
0.400 0.645
0.500 0.658
0.600 0671
0.700 0.686
0.800 0.703
0.900 0.725
0.950 0.744
0.975 0.757
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variance of the model residuals, it is only necessary to vary the
MA parameter randomty for this particular simulation study.
The expected value of the RAR for the 10,000 synthetic data
sets is 13.443 with a standard deviation of 0.031. A comparison
of the results for the simulation experiment using a constant
MA parameter with those for the simulation experiment utiliz-
ing a varying model parameter reveals that there is no signifi-
cant difference between the two expected values of the RAR.
Hence for this particular study, parameter uncertainty is not a
crucial factor.

CONCLUSIONS

Improved simulation procedures are now available for gen-
erating synthetic traces from Box-Jenkins models. Because
random realizations of the underlying stochastic process are
used as starting values, bias is not introduced into the simu-
lated sequences. Furthermore, these techniques can be used in
conjunction with models containing differencing operators or
data that have been transformed by a Box-Cox transforma-
tion.

If the Wasim | method is utilized, it is not necessary that the
distribution of the residuals be Gaussian. As is shown by an
example, the empirical distribution of the residuals can be used
for generation purposes. In addition, Wasim 1 is exact for a
pure MA process. On the other hand, Wasim 2 is an exact
simulation procedure for any Arma model. The only restric-
tion with Wasim 2 is that the residuals are NID (0. ¢.*).

When parameter uncertainty is incorporated into a simula-
tion study, the Wasim 3 procedure is the proper method to
implement. If it is deemed necessary to consider parameter
uncertainty in reservoir design, an algorithm is suggested in
the paper that links Wasim 3 with the design problem. To
circumvent difficulties with model uncertainty, it is recom-
mended that a proper Arma model be fit to the given data set
by following three stages of model development [Hipel et al.,
1977 McLeod et al.. 1977). The use of the fractional Gaussian
noise model should be avoided.

The Fortran computer algorithms for the simulation proce-
dures are given in the appenidix of the microfiche edition of the
paper. Consequently. these techniques can be implemented
immed:4tely by the practitioner. The authors of this paper
recommend that researchers involved in Monte Cario studies
with Box-Jenkins models employ the contemporary simulation
procedures of this paper in their research endeavors.

Acknowkedgments.  The authors wish to thank Paul Newbold of
the Umversity of Nottingham for suggesting improvements to the
Wausim 2 ulgorithm.

REFERENCES

Atkinson, A. C.. und M. C. Pearce. The computer generation of beta,
gamma and normal random variables, J. Roy. Statist. Soc.. Ser. A.
139(4). 431-448, 1976.

Box. G. E. P.,and D.R. Cox. An analysis of transformations. J. Rov.
Statist. Soc., Ser. B, 26, 211-252, 1964,

Box, G. E. P.. und G. M. Jenkins, Time Series Analysis: Forecasting
and Control, Holden-Day, San Francisco. Calif.. 1970.

Box. G. E. P, und G. C. Tiao, Bayesian Inference in Statistical
Analysis. Addison-Wesley. Reading, Mass.. 1973.

Brown, T. J.. und J. C. Hardin. A note on Kendall's autoregressive
series, J. Appl. Probab.. 10. 475-478, 1973,

Clarke, R. T., Mathematical models in hydrology. Irrigation und

Drainage Paper. 282 pp.. Food and Agr. Organ. of the U. N.,
Rome, 1973,

N

Conover, W. )., Practical Nonparametric Siatistics, John Wiley. New
York, 1971

Copas. J. B., Monte Carlo results for estimation of a stable Murkov
time series, J. Roy. Statist. Soc., Ser. A, 129, 110-116. 1966.

Croley. T. E.. Il, and K. N. R. Rao, A manual for hydrologic time
series deseasonalization and serial independence reduction. Rep.
199. 151 pp.. lowa Inst. of Hydraul. Res., Univ. of lowa. lowa City.
1977.

Delieur, J. W., P. C. Tao, and M. L. Kavvas, An evaluation of the
practicality and complexity of some rainfall and runoff time series
models, Water Resour. Res., 12(5), 953-970, 1976.

Farebrother, R. W., and G. Berry. A remark on algorithm AS 6. J.
Roy. Suatist. Soc.. Ser. C, 23, 479, 1974,

Hannan, E. J., Multiple Time Series Analysis, John Wiley, New York.
1970.

Healy, M. J. R., Algorithm AS 6, triangular decomposition of a
symmetric matrix, J. Roy. Statist. Soc., Ser. C. 17, 195-197, 1968.

Hill, 1. D., Algorithm AS 100, normal-Johnson and Johnson-normai
transformations, J. Roy. Statist. Soc., Ser. C, 25(2), 190-192, 1976,

Hill. I. D., R. Hill, and R. L. Holder, Aigorithm AS 99, fitting
Johnson curves by moments, J. Roy. Statist. Soc., Ser. C, 25(2),
180189, 1976.

Hipel, K. W., Contemporary Box-Jenkins modelling in hydrology,
Ph.D. thesis, Univ. of Waterloo, Waterloo, Ont., 1975.

Hipel. K. W, and A. I. McLeod, Preservation of the rescaled adjusted
range, 2, Simulation studies using Box-Jenkins models, Warer Re-
sour. Res., 14(3), 509-516, 1978.

"Hipel, K. W., A_ . McLeod, and W. C. Lennox, Advances in Box-

Jenkins modeling, |, Model construction, Water Resour. Res.,
13(3), 567-575, 1977.

Janson, B., Random Number Generators, Victor Pettersons, Bokin-
dustri Akiebolag, Stockholm, 1966.

Knuth, D. E., The Art of Computer Programming, voi. 2. Addison-
Wesley, Reading, Mass.. 1969.

Marsaglia, G., and T. A. Bray, A convenient method for generating
normal variables, S/AM Rev.. 6. 260-264. 1964.

McKerchar, A. 1., and J. W. Delieur, Application of seasonal para-
metric linear stochastic models to monthly low data, Water Resour.
Res.. 10(2), 246-255. 1974.

McLeod, A. 1., Derivation of the theoretical autocovariance function
of autoregressive-moving average time series, J. Roy. Statist. Soc.,
Ser. C, 24(2), 255-256. 1975.

Mcleod. A. L., Topics in time series and econometrics, Ph.D. thesis.
Dep. of Statist.. Univ. of Waterloo. Waterloo. Ont., 1977a.

McLeod. A. [.. Improved Box-Jenkins estimators. Biometrika, 64(3).
531-534, 1977b.

Mcleod. A. 1. On the distribution of residual autocorrelations in
Box-Jenkins models. J. Rov. Statist. Soc.. Ser. B. 40, in press, 1978,
Mcleod. A. [..and K. W. Hipel. Preservation of the rescaled adjusted
range. I. A reassessment of the Hurst phenomenon, Water Resour.

Res.. 14(3), 491-308. 1978.

McLeod. A 1., K. W. Hipel. and W. C. Lennox. Advances in Box-
Jenkins modeling. 2. Applications. Warer Resour. Res., 13(3). 377-
586. 1977. )

Moran. P. A. P.. The Theorv of Storage. Methuen, London, 1959.

Nicholls. D. F., On Hannan's esumator of Arma models, Aust. J.
Statist.. 14, 262-265. 1972.

Pagano, M., When is an autoregressive process stationary?, Commun.
Statist., 1. 533-544, 1973

Ralston. A.. 4 First Course in Numerical Analysis, McGraw-Hill, New
York. 1965.

Tao. P. C..and J. W Delleur. Seasonal and nonseasonal Arma models
in hydrology. J. Hydraul. Div. Amer. Soc. Civil Eng.. [102(HY10),
1541-1559. 1976.

Vicens, G. J.. . Rodriguez-lturbe. and J. C. Schaake, Jr.. Bayesian
generation of synthetic streamflows, Warer Resour. Res.. 11(6).827-
838, 1975,

Yevvevich, V. M., Fluctuation of wet and dry years: Part | —Research
data assembly and mathematical models. Hydrol. Pap. |. Colo.
State Univ., Fort Collins, Colo.. 1963.

(Received March 2, 1977;
revised February 27, 1978:
accepted April 27, 1978.)



