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TREND ASSESSMENT OF WATER QUALITY TIME SERIES!

A. lan McLeod, Keith W. Hipel, and Fernando Camacho*

ABSTRACT: A general methodology is described for identifying and
statistically modeling trends which may be contained in a water quality
time series. A range of useful exploratory data analysis tools are sug-
gested for discovering important patterns and statistical characteristics
of the data such as trends caused by external interventions. To estimate
the entries in an evenly spaced time series when data are available at
irregular time intervals. a new procedure based upon seasonal adjust-
ment is described. Intervention analysis is employed at the confirma-
tory data analysis stage to rigorously model changes in the mean levels
of a series which are identified using exploratory data analysis tech-
niques. Furthermore, intervention analysis can be utilized for esti-
mating missing observations when they are not too numerous. The ef-
fects of cutting down a forest upon various water quality variables and
also the consequences of acid rain upon the alkalinity in a stream pro-
vide illustrative applications which demonstrate the effectiveness of the
methodology.

(KEY TERMS: confirmatory data analysis; data filling; exploratory
data analysis; intervention analysis; seasonal adjustment; statistics;
stochastic modeling; water quality.)

INTRODUCTION

The main purpose of this research is to present a compre-
hensive methodology to identify and, if possible, statistically
model any trends which may be present in a water quality time
series. These trends, if any, may be due to the presence of
known or unknown interventions such as various types of
land-use changes. In addition to possibly being affected by
external interventions, usually a given water quality variable
is measured at irregular time intervals, and often there are
large time gaps at which no data are collected. Therefore, a
systematic procedure is developed to optimize the amount of
meaningful statistical information which tan be gleaned from
the currently available data.

As explained by Tukey (1977), there are usually two major
steps in a statistical study. The first step is called “explora-
tory data analysis’” and the objective of this phase of the work
is to uncover important properties of the data by executing
simple graphical and numerical studies. Some of the tech-
nigues available for this phase include a graph of the data
against time, the five-number summary graph which Tukey
(1977, ch. 2) calis the box-and-whisker plot, Tukey smoothing
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(Tukey, 1977, ch. 7) and the autocorrelation function. The
purpose of the next step which is referred to as a “confirma-
tory data anslysis™ is to statistically confirm the presence or
absence of certain properties in the data. For example, when
sufficient measurements have been taken for a water quality
variable, exploratory data analysis may indicate that there isa
possible trend in the data due to a known external interven-
tion. Following this, intervention analysis (Box and Tiao,
1975) can be utilized as a confirmatory data analysis tool to
determine if there has been a significant change in the mean
level of the series.

Many exploratory techniques and confirmatory methods re-
quire that equally spaced data be available, and as was pointed
out before, environmental series are usually measured at un-
even time intervals. Accordingly, in the next section a
methodology based on seasonal adjustment is devised for esti-
mating the entries of an average monthly time series when
daily values are available at irregular time intervals and often
there are time gaps spanning many months for which no mea-
surements were taken. In addition to estimating values for a
monthly sequence, this procedure can of course be used for
estimating averages at other even time intervals such as weekly
or quarterly data by having 52 and 4 seasons per year, respec-
tively.

Following the data filling section, specific exploratory and
confirmatory data analysis techniques are described. In order
to clearly demonstrate the efficacy of the foregoing tech-
niques, practical applications are presented throughout the
paper. Possible trends in water quality and river flow series
are examined for two locations in Canada. In the Province
of Alberta, both exploratory and confirmatory data analysis
techniques are employed to ascertain the effects of cutting
down a forest upon total organic carbon and turbidity in the
Cabin Creek near Seebe. On the Mill River near St. Anthony
in Prince Edward Island, exploratory data analysis results
suggest that perhaps due to acid rain, alkalinity levels may be
decreasing over time. These illustrative applications are in fact
part of an extensive environmental study executed by the
authors where 50 environmental time series were exhaustively
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analyzed (see Acknowledgments). For exact definitions of the
various water quality variables, the reader may wish to refer
to the book of McNeely, et al. (1979).

DATA FILLING USING SEASONAL ADJUSTMENT

Many exploratory data analysis methods are valid for use
with either unequally or evenly spaced data. Tukey smoothing,
which is explained in the next section, is an example of an
exploratory tool where the measurements, or estimates there-
of, must be available at equal time intervals before the method
should be used. In order to empioy any of the stochastic
modeling techniques at the confirmatory data analysis stage,
it is absolutely necessary that an evenly spaced data sequence
be available. Therefore, when data are unevenly spaced pro-
cedures are required for creating an evenly spaced sequence
which stochastically represents what could have occurred
historically. Baracos, er af. (1981), explain how intervention
analysis can be employed for estimating missing values from
an evenly spaced data set when the number of unknown obser-
vations are not too large (usually not more than 5 percent of
the data set). However, for unevenly spaced daily observations
with a large number of missing values u different procedure
must be adopted for estimating a sequence of cvenly spaced
average monthly values. The particular technique presented in
this section is related to methods developed for seasonal ad-
justment models.

In seasonal adjustment modeiing, a time series is decom-
posed into various components, one of which is the seasonal
term. Various seasonal adjustment procedures are available
and the reader may wish to refer to the statistical literature
for a description of these techniques (e.g., Shiskin, et al,
1976, Granger, 1980; Kendall, 1973). Suppose that z; repre-
sents an observation at time t either for the original time series
or for some Box-Cox transformation of the given data. The
Box-Cox transformation tor the observation, Z¢, measured at
time t is defined as (Box and Cox, 1964)

[zt 1] X% 0

24 = (1)
¢n (’Zt*'c)

where ¢ is a constant assigned so that Z¢+¢ > 0 for all t and
zt = Zt when A =1 and ¢ =0. One reason for invoking a Box-
Cox transformation is to cause data that are not normally dis-
tributed to approximately follow a normal distribution. For
instance, a logarithmic transformation may reduce the skew-
ness and improve the symmetry of the distribution if there are
quite a few large values in the series. When the variance of a
series depends on the “level” of the series this transformation
may rectity the problem. Furthermore, a Box-Cox transfor-
mation can often alleviate problems with the properties of the
residuals of the stochastic model fitted to the series of equally
spaced data (Hipel, et al., 1977a; McLeod, et al., 1977).
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An additive seasonal adjustment model can be written as:
=C +S +1 =C + +
ag = G S = G Syt

where t is the Julian day number (i.e., the number of days
since January 1, 4713 B.C.), r is the year, m is the month for
monthly data, C; or C; is the trend factor for modeling rela-
tively long term causes, St or Sy, is a stable seasonal factor
which is assumed not to evolve with time, I is the nonseasonal
irregular component made up to short-run effects and is not
necessarily white noise. The seasonal adjustment algorithm
consists of the following steps:

1. Obtain preliminary estimates of Cy, S¢, and Iy, Cy=Cis
taken to be a constant which is equal to the median of z¢. To
get St first calculate Sy, as the median of z; - C for the data

~ ~ 12 ~
in the mth month. Then use Sy = Sy 117 El Sm. Esti-
2 m=

mate the irregular component utilizing

It:Zt - Sm‘

2. Replace far-out values in the Iy series by the nearest
outer fence (see¢ upcoming section on box-and-whisker graphs
for definitions of far-out values and outer fences) to form the
irregular series I;. The process of replacing far-out values by
outer fences is called “Winsorizing” (Tukey, 1977).

3. Estimate the deseasonalized series given by

D, = C+ It .

4. Determine the revised trend estimate, Et» where each
year in tfl is the mean of D¢ for that year. If no data are avail-
able for the rth year, the mean of Dy for surrounding years is
used.

5. Calculate the revised seasonal component

S, = : 2§
m m 12 m=1 m

¥ . . ~
where S is the median of z, — C-
6. The revised irregular series is estimated using

~ x
h

t t'Sm' r

>k

7. Winsorize thg: revised irregular series, Tt to obtain the
Winsorized series, Iy, This is accomplished by replacing the
far-out values of It by the appropriate outer fences.

8. Obtain an adjusted version (ie., Winsorized) of the z;
series using
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For a given month for a specified year in which data were ori-
ginally given, take the median of the zj values to get the esti-
mated average monthly value. ~ o~

9. A(ﬂust the trend for each year by employing C, = Cr +

mean of I} for the whole series.
10. To obtain an estimated monthly average value for a
given month in which no data were given use

=

Zr,m Cr m

where ;r,m is the estimated monthly value for the rth year and
mth month. The total estimated monthly series is formed by
using Steps 8 and 10. Note that if a Box-Cox transformation
is taken of the given data, then an inverse Box-Cox transforma-

tion must be invoked to obtain the estimated monthly aver-
ages for the original untransformed series.

In order to demonstrate how well the seasonal adjustment
algorithm works consider the flows in m3/s of the Cabin Creek
near Seebe in Alberta, Canada, from January 1964 till Decem-
ber 1979. A daily flow value has been measured for each day
during this time period and for each month in a given year an
average monthly value can be readily calculated. Because
river flow measurements are often highly skewed, it is advan-
tageous to take natural logarithms of the data. In Figure 1
the natural logarithms of the actual average monthly values are
marked with black circles for one particular four-year interval.
For exactly the same days on which observations are missing
for the turbidity data in the Cabin Creek, the corresponding
daily observations are removed from the flow data. Following
this, the seasonal adjustment algorithm is employed to esti-
mate the average monthly flows of the logarithmic daily data
for the period from 1964 to 1979 and these estimated flows
are marked by circles in Figure 1. It should be pointed out
that for the turbidity series and hence the estimated flows,
only about 8 percent of the data are used in the seasonal ad-
justment algorithm. In addition, there are many months dur-
ing which no observations are available. However, as can be
seen in Figure |, the estimated values from the seasonal ad-
justment algorithm are reasonably close to the actual entries
during the four-year period and also the other years not shown
in Figure 1.

The seasonal adjustment algorithm allows irregularly spaced
observations to be transformed to evenly spaced estimates, so
that environmentalists, hydrologists, and other scientists can
use all the available statistical tools. In the future, it would
be advantageous to design proper sampling programs so that
the power of the various statistical methods can be fully
realized. As shown in the literature, scientists are cognizant of
the importance of sampling for specific types of problems
(see for instance Arnold, 1970; Box 1974; Hunter, 1981;and
Smeach and Jernigan, 1977). Based upon the properties of
the intervention model, Lettenmaier, et al. (1978), have sug-
gested specific sampling rules when checking for trends in
the data.
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Figure 1. Monthly Logarithmic Flows of the Cabin Creek (m3 /s).

EXPLORATORY DATA ANALYSIS

Various instructive exploratory data analysis tools are avail-
able for revealing interesting properties of the data under con-
sideration. [Each exploratory technique possesses its own in-
herent attributes that are useful for uncovering certain data
characteristics. Because no single method can clearly portray
everything there is to learn about the data, it is advantageous
to examine the time series by employing a number of useful
investigative graphical and numerical tools. In particular, the
techniques utilized in this section include a graph of the data
against time, the five-number summary graph which Tukey
(1977, ch. 2) calls the box-and-whisker plot, Tukey smooth-
ing (Tukey, 1977, ch. 7), and the autocorrelation function
(ACF). In order to employ Tukey smoothing and the ACF,
data must be available at equally spaced time intervals and
consequently the seasonal adjustment algorithm from the
previous section can be used to accomplish this. The plotting
of smoothed curves and also the calculation of the ACF at lag
one of the average annual time series, constitute valuable
methods for detecting possible interventions.

Time Series Plots

One of the simplest and more useful exploratory graphical
tools is to plot the data against time. Characteristics of the
data which may be easily discovered from a perusal of a graph
include the detection of extreme values, trends, known and
unknown interventions, dependencies between observations,
seasonality, need for a data transformation, nonstationarity,
and long term cycles (Hipel and McLeod, 1983; Berthouex,
et al, 1981).

When considering unequally spaced daily data, the actual
time intervals between adjacent observations must be calcu-
lated before plotting the observations against time. A con-
venient technique to employ is to determine the Julian day
number for each observation using the formula given by
Hewlett-Packard (1977). With this information the gap be-
tween adjacent observations can be determined as the dif-
ference of the Julian day numbers of the observations. This
procedure is employed to obtain the graph in Figure 2 of the
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natural logarithms of the turbidity in the Cabin Creek. As
shown by the time gaps between observations, there are many
days and even months during which no measurements were
taken. For instance, from August 2 to November 22, 1975,
inclusive, no observations were recorded.
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Figure 2. Natural Logarithms of the Turbidity (mg/%)
Data for the Cabin Creek.

Box and Whisker Graphs

The box-and-whisker graph is based upon what is called
the five-number summary (Tukey, 1977, ch. 2). For a given
data set, the five-number summary consists of the smallest
and largest values, the median and the two extreme quartiles,
which are called “hinges.”

To assist in characterizing extreme values, Tukey (1977)
has suggested the following definitions. Let “H spread” be the
difference between the two hinges, and a “step” 1.5 times the
H-spread. “‘Inner fences” are one step outside hinges and
“outer fences” are two steps outside hinges. Values between
an inner fence and its neighboring outer fence are called “out-
side.” Values beyond outer fences are “far-out.” When enter-
taining seasonal data such as monthly or quarterly data, it is
instructive to calculate a five-number summary plus outside
and far-out values for each season. A convenient manner in
which to display this information is to plot “box-and-whisker”
diagrams for each season or month. Figure 3 depicts the box-
and whisker plots for turbidity in the Cabin Creek before
July 1, 1974, when part of the forest was cut down. In this
figure the data have not been transformed using a Box-Cox
transformation. The upper and lower ends of a rectangle for a
given month represent the two hinges and the thick line drawn
horizontally within each rectangle is the value of the median.
The minimum and maximum values in a particular month are
the end points of the lines or “whiskers™ attached to the
rectangle or “box.” The far-out values are indicated by a
circle in Figure 3. Below each month is a number which gives
the number of data points used to calculate the box-and-
whisker graph above the month. The total number of observa-
tions across all the months is listed below November and
December.
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Figure 3. Box-and-Whisker Plots for Turbidity (mg/)
in the Cabin Creek Before July 1, 1974, Where
There is No Data Transformation.

In addition to detecting far-out values, box-and-whisker
diagrams can be used to discover the lack of symmetry in the
distribution of the data for a given season. If the data are
approximately symmetrical with respect to the median, they
may follow a symmetric distribution such as the normal dis-
tribution. For a given month in a box-and-whisker diagram,
symmetric data would cause the median to lie in the middle
of the rectangle and the lengths of the upper and lower
whiskers would be about the same. Notice in Figure 3 for the
turbidity data that the whiskers are almost entirely above the
rectangle for all of the months and for six of the months there
are a total of 14 far-out values. This lack of symmetry can at
least be partially rectified by transforming the given data using
the Box-Cox transformation in Equation (1). By comparing
Figure 3 to Figure 4 where natural logarithms are taken of the
turbidity data, the improvement in symmetry can be clearly
seen. Furthermore, the Box-Cox transformation has reduced
the number of far-out entries from 14 in Figure 3 to 3 in
Figure 4.

Box-and-whisker plots can be employed as an important
exploratory tool in intervention studies. If the date of the
intervention is known, box-and-whisker diagrams can be con-
structed for each season for the data before and after the
time of intervention. These two graphs can be compared to
ascertain for which seasons the intervention has caused
noticeable changes. When there is sufficient data, this type
of information is crucial for designing a proper intervention
model to fit the data at the confirmatory data analysis stage.

The Cabin Creek basin which has an area of 2.12 km?Z was
originally forested but from July to October 1974, 40 percent
of the forested area was clear-cut. Total organic carbon read-
ings are available from March 17, 1971, to January 10, 1979.
Figures 5 and 6 display the box-and-whisker plots of the
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natural logarithms of the total organic carbon in mg/® for the
Cabin Creek before and after the intervention, respectively,
caused by the removal of the trees. Ascan be observed, there
are obvious drops in the medians for almost all the months
after the intervention. These and other changes cannot be as
easily detected in a plot of the entire series against time.
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Figure 4. Box-and-Whisker Plots for Turbidity (mg/ '3}
in the Cabin Creek Before July 1, 1974, Where
There is a Logarithmic Data Transformation.
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Figure 5. Box-and-Whisker Plots of the Logarithmic
Total Organic Carbon (mg/%) in the
Cabin Creek Before July 1, 1974.
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Figure 6. Box-and-Whisker Plots of the Logarithmic
Total Organic Carbon (mg/%) in the
Cabin Creek After October 31, 1974.
Tukey Smoothing

Sometimes a graph of a given time series “‘blurs” statistical
information in the data which a smoothed plot of the series at
equally spaced time intervals may reveal more clearly. Con-
sider, for example, Figure 7 which is a plot of the average
annual total organic carbon in mg/, for the Cabin Creek where
the average annual entries are calculated using the estimated
monthly values obtained from the seasonaladjustment algorithm
developed earlier. From this graph there appears to be a drop
in the mean level of the series in the later years compared with
the values in the early 1970’s. When the “blurred smooth”
in Figure 8 is studied the general characteristics of the data are
more clearly portrayed. Figure 8 is a blurred smoothed plot
of the average annual total organic carbon for the Cabin Creek
where the vertical lines reflect the magnitude of the rough, or
“blur” of the series and a “smoothed” observation is located
at the mid-point of the bar. Notice from Figure 8 that the
smoothing characteristics for the data before 1974 are more or
less the same but from 1974 onwards there is an obvious de-
crease in the mean of the series. This property was also sug-
gested by the box-and-whisker plots of the series shown be-
fore and after the intervention in Figures 5 and 6, respectively.

Although a smoothed graph does not contain any more in-
formation -than what is already present in the plot of the raw
data, in many instances the smoothed graph portrays the essen-
tial features much more clearly. The purpose of a smoothed
curve is to reveal the systematic structure and interesting sta-
tistical characteristics of the data. Consider, for example, the
blurred smoothed graph in Figure 9 for the total alkalinity in
mg/% for the Mill River at St. Anthony in Prince Edward
Island, Canada. This graph is a blurred smoothed plot of the
average annual values which were calculated from the esti-
mated monthly entries obtained from the seasonal adjustment
algorithm. In Figure 9, there is an obvious shift downwards in
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alkalinity from 1973 to 1977 followed by abrupt decreases in
1978 and 1979. Because the soil in the Mill River basin is
sandy, acid rain could quickly drain through the ground with-
out undergoing substantial chemical changes and thereby ad-
versely affect the water quality. Consequently, the decrease in
alkalinity in Figure 9 could be mainly due to acid rain which
could severely affect the biological life in the river. However,
it is still necessary to collect more data and determine when
the acid rain intervention came into effect before proper con-
firmatory data analyses can be executed.

properties that any smoother should possess and also presents
some theoretical mathematical results for Tukey smoothers.
Some of the more important attributes that a smoother should
have include the ability to be responsive to abrupt changes in
level, marginal distribution, and covariance structure.
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Figure 7. Estimated Annual Values of the Total
Organic Carbon (mg/%) in the Cabin Creek.

To construct a smoothed curve consider qualitatively sub-
dividing a given time series as

Data = Smooth + Rough

By filtering out the rough or noise portion of the data, the
smoothed curve can be examined for important statistical fea-
tures. The filter which maps the given series into a smoothed
curve is referred to as a smoother.

The nonlinear smoothers developed by Tukey (1977, ch. 7)
and also discussed by McNeil (1977), are very flexible when
used in practical applications and are capable of detecting all
of the items discussed for a plot of the series except, possibly,
for occasional outliers. Mallows (1980) explains the desirable
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Figures 8 and 9 are examples of what Tukey (1977, ch. 7)
calls a blurred “3RSR” smooth. Although Tukey defines
various types of nonlinear smoothers, the blurred 3RSR version
is particularly well designed for use in exploratory data analy-
sis with environmental time series. For a detailed explana-
tion of how to calculate a blurred 3RSR smooth the reader
can refer to Tukey (1977, ch. 7). A computer program for a
3RSR smooth is given by McNeil (1977, ch. 6).

Autocorrelation Function

The ACF at lag k for a given time series reflects the linear
dependence between values which are separated by k time
lags. The estimate for the ACF at lag k for an evenly spaced
series, z¢, of length N, can be calculated using (Jenkins and
Watts, 1968)

(2)

where z is the estimated mean of the z; series. The value of
g can range from 1 to +1 where rg always has a value of
unity. Because the ACF is symmetrical about lag zero, it is
only plotted for positive lags. When the theoretical ACF is
zero and therefore the series is white noise, ry is asymptoti-
cally novmally independently distributed with a mean of zero
and variance of 1/N. Using simulation experiments, Cox
(1966} demonstrated that when r is calculated for a sequence
of uncorrelated samples the sampling distribution of r{ is very
stable under changes of distribution and the asymptotic nor-
mal form of the sampling distribution is a reasonable approxi-
mation even in samples as small as ten.

The ACF furnishes a method for interpreting trends in the
data. If, for example, there is a large positive correlation at
lag one, this means that in the plot of a series a sequence of
high values will often be grouped together and low values will
often follow other low values. In other words, when ry and
other sample ACF’s are significantly different from zero, this
indicates the presence of stochastic trends in the data. If, for
instance, the significance level is less than 0.05 this means that
r1 s sigoificantly different from zero at the S percent signifi-
cance fevel. The value of r] for the annual total organic carbon
series in Figure 7 is 0.371 with a significance level of 0.137.
Consequently, 11 is significantly different from zero. When
there is an intervention which causes a significant change in the
mean level of a series such as the change shown in Figures 7
and 8 for the total organic carbon, this introduces a trend in
the data due to the observations fluctuating about different
mean levels at specified sections in the series. This enforced
trend should cause a rather large value for ry for the entire
series which is the case for the total organic carbon series.
Likewise. un overall trend in the data can cause ry to be large.
Experience and theory suggest that the trend test based on r
is often more powerful than the usual nonparametric tests
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such as the runs tests and those tests described in Kendall
(1973, ch. 2).

CONFIRMATORY DATA ANALYSIS

The General Intervention Model

When analyzing time series, various types of stochastic
models constitute useful confirmatory data analysis tools. An
assumption underlying all of the stochastic models which can
be employed in practical applications is that the data sets to
which they are fitted consist of observations separated by
equal time intervals. Although it would be desirable to possess
stochastic models which can readily handle data consisting of
any kind of unevenly spaced observations, currently no such
practical models exist and, indeed, it may turn out to be
mathematically intractable to develop these types of stochastic
models. In practice, if the measurements are not evenly
spaced, appropriate techniques must be utilized to produce a
series of equally spaced data that is estimated from the given
information. Of course, practitioners are advised to design
future sampling programs so that evenly spaced data are col-
lected at suitable time intervals. In this way, the inherent
assets of the confirmatory data analysis tools can be fully ex-
ploited.

Specific time series models (Box and Jenkins, 1970) have
been employed to model water quality data (see, for instance,
Fuller and Tsokos, 1971). Intervention analysis constitutes a
powerful confirmatory data analysis tool which s extremely
useful in environmental impact assessment for aualyzing the
effects of natural and man induced interventions on the en-
vironment (Box and Tiao, 1975). The method was originally
suggested for use in hydrology by Hipel, ez al., in 1975 and
has been successfully applied to a variety of hydrologic and
environmental problems. Intervention analysis has been used
in hydrology to determine statistically the effects of dam con-
struction on annual (Hipel, et al., 1975) and monthly (Hipel,
et al, 1977b) downstream river flows. Hipel, ¢t al. (1977c,
1978) used the technique to ascertain the stochastic effects of
a forest fire on monthly river flows, and D'Astous and Hipel
employed intervention analysis to model the effectiveness of
water pollution abatement measures. Baracos, ¢t al (1981),
used intervention analysis to detenmine how changing the type
of measuring gauge affects snow measurements. Based upon
the theory of the intervention model, Lettenmaier, er al
(1978), explained how to design data collection procedures.
Intervention analysis has also been employed to estimate mis-
sing data points in a time series (Baracos, er al., 198]:
D’Astous and Hipel, 1979: Lettenmaier, 1980). Within this
paper, intervention analysis is used for the first time in con-
junction with the seasonal adjustment algorithm and explora-
tory data analysis tools, to study complex water quality prob-
lems.

A mathematical description of the general intervention
model is given by Baracos, et el (1981). In addition to model-
ing the statistical effects of external interventions, the general
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intervention model can be used to estimate missing observa-
tions. Furthermore, when covariate seiies are available it is
possible to include them in the general intervention model.
For instance, river tlows and another water quality variable
may be used as inputs in a water quality intervention model.

No matter what type of stochastic model is being fitted to
a given data set, it is recommended to follow the identifica-
tion, estimaticn, and diagnostic stages of model development
(Box and Jenkins, 1970; Hipel and McLeod, 1983). Baracos,
et al. (1981), Hipel, et al. (1977b), and Box and Tiao (1975)
suggest specific methods for constructing intervention models.
Within this paper, the method of McLeod (1977) is employed
for obtaining maximum likelihood estimates (MLE’s) of the
model parameters although other recommended maximum
likelihood procedures include those of Ansley (1979) and
Ljung and Box {1979) When parameters are estimated for a
number of models, a convenient method for choosing the
most appropriate modei is to select the model that has the
minimum value of the Akaike Information Criterion (AIC)
(Akaike, 1974). Within the hydrological literature, the method
of employing the AIC in conjunction with the three stages of
model development has been clearly expluined (Hipel and
McLeod, 1983; Hipel, 1981) and the efficacy of the AIC has
been confirmed by a wide range of stochastic modeling appli-
cations (e.g., Mcleod, ef al. 1977; McLeod and Hipel, 1978a;
Hipel and McLeod, 1983; Hipel, 1981). If a suitable range of
models is considered, it has been found in practice that the
model possessing the minimum AIC value also satisfies diag-
nostic tests of the model residuals such as those proposed by
McLeod (1978) and Hipel, et al. (1977a).

Applications

In 1961 the Marmot Creek experimental basin was estab-
lished on the eastern slopes of the Rocky Mountains in Alberta,
Canada (Jeffrey, 1965; Golding, 1980). The objective of the
study was to determine the hydrology of the area so guide-
lines that are consistent with the importance of the eastern
slopes as a water supply arca for Alberta and Saskatchewan
could be formulated for harvesting trees. Both the Middle
Fork and Cabin Creeks are located within the Marmot basin
in the Province of Alberta. From July to October 1974 an
intervention took place in the Cabin Creek basin when 40 per-
cent of the torested area was clear-cut. Because the trees in
the forested Middle Fork basin were not cut down, and the
basin is located close to the Cabin Creek basin, the appropriate
series from the Middle Fork Creek can be used as covariate
series for intervention models developed for the Cabin Creek
data sets. In this way the intervention components in the in-
tervention models will more accurately measure the effects of
the intervention in the Cabin Creek series.

Intervention models were developed for 12 water quality
variables on the Cabin Creek although representative results
are only shown in this section for the total organic carbon
intervention model. For each water quality intervention
model, the covariate series are the same water quality series
for the Middle Fork basin and also the monthly flows of the
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Cabin Creek. The general structure of the model which is em-
ployed with the series is

R o TN (3
2y~ 2 = 2 wgify T o3 x) T wgq ¥ y) TN )

where z¢ is the average monthly water quality series for the
Cabin Creek that was estimated using the seasonal adjustment
algorithm; z is the mean of the z series; &; is the intervention
series for a given month where it is given a value of one for the
month it represents from the intervention onwards and a value
of zero elsewhere; wyj is the transfer function parameter for
the £t; series and the MLE for wyyj can be used to ascertain the
effects of the intervention for the month being studied; x¢ is
the estimated monthly logarithmic series for the Cabin Creek
where the seasonal adjustment algorithm is used to estimate
the monthly flows from daily flows that occur at the sume
time as the water quality observations: x is the mean of the x4
series; w(3]3 is the transfer function for the Cabin Creek {low
series; y¢ is the same estimated monthly water quality series as
z¢ but for the Middle Fork Creek, the seasonal adjustment al-
gorithm is used to estimate y; y is the mean of the y series;
w014 is the transfer function parameter for the covariate
Middle Fork water quality series; and Ng is the nowe term
which can be modeled by an autoregressive integrated moving
average (ARIMA) model (Box and Jenkins, 1970) and it con-
tains a white noise series denoted by ag.

In Equation (3) the seasonally adjusted monthly flows are
employed as a covariate series. The reason for using the sea-
sonally adjusted series rather than the known monthly river
flows is that this nay help to eliminate any problems due to
seasonal adjustment that are contained in the z; series. It
should be kept in mind that by considering the flows asa co-
variate series, the stochastic or statistical relationship between
the flow, xt, and the water quality series, z¢, is formally
modeled through the transfer function parameter, w3 in
the overall intervention model in Equation (3).

When constructing the water quality intervention models in
Equation (3) the identification, estimation, and diagnostic
check stages of model development were adhered to. Although
the transfer functions for all the water quality series are the
same as those in Equation (3), it should be pointed out that
quite a few different types of transfer functions were actualiy
tested. For instance, because not too many observations for
each month are available after the intervention, a siep mter-
vention along with a wq; parameter is included in the first
term for each month on the right hand side in Equation (3). If
more data were available the possibility of including a param-
eter in the denominator of each transfer function would have
been feasible. HMipel, et al. (1977¢, 1978) show how a term in
the denominator can model the attenuating effects of a forest
fire upon river flows as the forest slowly recovers over the
years. Finally, a specific seasonal ARIMA model had to be
identified separately for modeling N in Equation (3) for each
water quality intervention model.
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To calculate the percentage change in the mean level of the
z¢ series for a given month due to the intervention, the follow-
ing formula is employed when the series is transformed using
natural logarithms (see Hipel, et al., 1977b, for a derivation).

A

A
Percent Change = (e O — 1) 100 4)
where c301 is the MLE of the intervention parameter for the
ith month. To calculate the 95 percent confidence limits sim-
ply add and subtract 1.96 times the standard error to (?J()i and
then substitute these two values into Equation (3). If the z;
series 1s not transformed by a Box-Cox transformation, the
percentage change in the mean for the ith month is given by

)

Percent Change =

where zy,; is the monthly mean for the ith month before the
intervention.

Total Organic Carbon Application. As was explained ear-
lier, exploratory data analyses clearly detect the effects of the
forest clearing upon the total organic carbon series for the
Cabin Creek. For example, when the box-and-whisker graphs
for before and after the intervention are compared in Figures 5
and 0, respectively, the decrease in the median level after the
intervention can be easily seen for almost all the months. Like-
wise, the average annual plot in Figure 7 and the blurred
smooth in Figure 8 clearly detect the drop in the mean level
of total organic carbon in later years.

The foregoing exploratory facts are rigorously confirmed
in a statistical sense by fitting the intervention model in Equa-
tion (3) to the total organic carbon series (mg/Q) which is avail-
able from the start of 1971 to the end of 1978. Natural
logarithms are used for the two total organic carbon series
given by z¢ and y, for the Cabin and Middle Fork Creeks, re-
spectively. The seasonal ARIMA models identified for the
noise term, Nt, contains one nonseasonal autoregressive param-
eter and one seasonal autoregressive parameter. The param-
eter w13 which relates the Cabin Creek flows to the total
organic carbon in the Cabin Creek has a MLE of 0.081 with a
standard error of 0.095. Since the MLE of w(13 is about the
same size as its standard error, it may be worthwhile to in-
clude the flows as a covariate series in the intervention model.
The MLE for wg14 is 0.620 with a standard error of 0.082
and, consequently, it is very informative to incorporate the
covariate total organic series from Middle Fork Creek into the
model. In Table 1, the MLE's and standard errors are presented
for the 12 Intervention parameters contained in the first com-
porient on the right hand side of Equation (3). Also included
in Table 1 is the percentage change in mean level for each
month along with the 95 percent confidence limits which are
calculated using kquation (4). For all the months where zero
is not mcluded in the 95 percent confidence limits, the per-
centage change s the mean level is confirmed to be significant-

ly different trom zero. Accordingly, from Table 1 it can be
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seen that there is a significant drop in the mean level of total
organic carbon in the Cabin Creek during the months of June,
July, and August.

CONCLUSIONS

As demonstrated by the practical applications, a compre-
hensive procedure is now available for identifying and model-
ing trends in environmental time series caused by known or
unknown interventions. Box-and-whiskers graphs, for example
(see Figures 3 to 6), are useful at the exploratory data analysis
stage for discovering basic statistical characteristics of the data
such as the types of trends caused within each season due to
an intervention. Even though environmental data are often
measured at irregular time intervals and large segments of the
measurements may be missing, the new seasonal adjustment
algorithm can often be employed to obtain reasonable esti-
mates for equally spaced data. In this way, the exploratory
data analysis tools such as Tukey Smoothing and the ACF
which depend upon evenly spaced data, can be used by practi-
tioners. Furthermore, at the confirmatory data analysis stage,
intervention analysis can be utilized to ascertain if there is a
significant change in the mean level of a time series due to
trends caused by known interventions. When available, co-
variate series can be incorporated into the intervention model
to make it more precise and if there are not too many missing
data points they can be estimated by introducing appropriate
components into the intervention model.
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