This article was downloaded by: [Acadia University]

On: 04 January 2013, At: 05:49

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Simulation
and Computation

Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/Issp20

Developments in Maximum Likelihood
Unit Root Tests

Ying Zhang @, Hao Yu ® & A. lan McLeod °

% Department of Mathematics and Statistics, Acadia University,
Wolfville, Nova Scotia, Canada

b Department of Statistical and Actuarial Sciences, University of

Western Ontario, London, Ontario, Canada
Version of record first published: 02 Jan 2013.

LK B LS N R T

To cite this article: Ying Zhang , Hao Yu & A. lan McLeod (2013): Developments in Maximum
Likelihood Unit Root Tests, Communications in Statistics - Simulation and Computation, 42:5,
1088-1103

To link to this article: http://dx.doi.org/10.1080/03610918.2012.655828

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.



http://www.tandfonline.com/loi/lssp20
http://dx.doi.org/10.1080/03610918.2012.655828
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Acadia University] at 05:49 04 January 2013

Taylor & Francis

Taylor & Francis Group

Communications in Statistics—Simulation and Computaii0n®, 42:1088-1103, 2013
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0918 print / 1532-4141 online

DOI: 10.1080/03610918.2012.655828

Developments in Maximum Likelihood Unit Root
Tests

YING ZHANG,' HAO YU,> AND A. IAN McLEOD?

lDepartment of Mathematics and Statistics, Acadia University, Wolfville, Nova
Scotia, Canada

’Department of Statistical and Actuarial Sciences, University of Western
Ontario, London, Ontario, Canada

The exact maximum likelihood estimate provides a test statistic for the unit root test that
is more powerful than the usual least-squares approach. In this article, a new derivation
is given for the asymptotic distribution of this test statistic that is simpler and more direct
than the previous method. The response surface regression method is used to obtain a
fast algorithm that computes accurate finite-sample critical values. This algorithm is
available in the R package mleur that is available on CRAN. The empirical power of
the new test is shown to be much better than the usual test not only in the normal case
but also for innovations generated from an infinite variance stable distribution as well
as for innovations generated from a GARCH(1,1) process.

Keywords Exact maximum likelihood estimator; Response surface regression; Robust
unit root test; Symbolic computation

Mathematics Subject Classification Primary 62M10; Secondary 91B84

1. Introduction

The AR(1) model is widely used in many applications as well as in unit root testing. Modern
approaches to the unit root testing problem emphasize the importance of model selection
(Enders, 2010; Patterson, 2010; Pfaff, 2006). This article focuses on testing the null model
known as random walk,

Vzi=a,, t=1,2,..., (D)

where Vz, = z; — 7, and a, are independent and normally distributed with mean zero and
variance o72. The alternative is assumed to be the stationary AR(1) model with intercept
term 3,

w=pf+pz1+a, t=12,..., )

where |p| < 1.
Sometimes it is assumed that 8 = 0 is known. This case corresponds to the zero-mean
AR(1) processes. Both of these models were discussed in the original formulation of the
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unit root testing problem by Dickey and Fuller (1979) but using the least-squares estimates
(LSE) instead of the maximum likelihood estimate (MLE). The random walk model and
the stationary AR(1) alternative provide a suitable family of models for many financial and
economic time series. However, as is discussed in Sec. 6, other methods are needed if the
diagnostic checks reveal that further lagged values need to be included in the model.

Fuller (1996, p. 577) indicates that if the objective is to test the hypothesis of a unit
root against the alternative of a stationary process with an unknown mean, the test statistics
associated with the exact MLE are more powerful than that with the LSE. The exact MLE
referred to is the MLE in the stationary case that corresponds to the alternative hypothesis in
the unit root test. Empirical power comparisons among various unit root tests showed that
the MLE-based tests had much higher power than the Dickey—Fuller (DF) tests (Pantula
et al., 1994). Extensions of the MLE method to the ARMAC(1, 1) and other autoregressive
moving average (ARMA) processes were discussed by Shin and Fuller (1998).

Fuller (1996, Sec. 10.1.3) and Gonzalez-Farias and Dickey (1999) derive the limiting
distributions of normalized statistics associated with the exact MLE unit root test under
Egs. (1) and (2). This approach is indirect whereas our new derivation in Sec. 3 is essentially
simpler and more direct. Our method using the Taylor series linearization of the test statistic
is carried out through symbolic computer algebra. The exact MLE itself is also derived
symbolically through the solution of a cubic equation in Sec. 2. The usual approach to the
exact MLE using a numerical optimization technique can occasionally have convergence
problems. This more direct approach using a symbolic Taylor series linearization is easier
to generalize to other problems as well. It is known that computer algebra may handle
complicated statistical inference problems (Andrews and Stafford, 2000). There are several
examples in time series analysis. Smith and Field (2001) show how a symbolic operator can
be used to calculate the joint cumulants of the linear combinations of products of discrete
Fourier transforms. Zhang and McLeod (2006) discuss a computer algebra approach to the
asymptotic bias and variance coefficients to order O(1/n) for linear estimators in stationary
time series. Computer algebra no doubt has many more applications in statistics and time
series analysis.

In Sec. 4, using response surface curves, we show that the critical values for the MLE
test may be efficiently computed. With our fast algorithm, in Sec. 5, we demonstrate that
the exact MLE test provides not only a sizeable increase in power but also the robustness
against alternative specifications for the innovations such as an infinite variance stable
distribution and a GARCH(1, 1) process. We illustrate how to implement the exact MLE
unit root test with two real world examples in Sec. 6.

2. Exact MLE
The AR(1) model (2) may also be written as

Zf_MZ,O(Zf_]_M)+al,t=1,2,..., (3)

where E(z;) = p and 8 = pu(l — p). When p is known, without loss of generality, it is
assumed that © = 0. The time series process is stationary if |p| < 1. In the random walk
case, p = 1 and the process is said to be unit root nonstationary. If p > 1, the process is
explosively nonstationary.

Most of unit root tests have been derived under the data generation model,

Zf_l’l’zp(zf—l_M)+al7t=172""7 (4)
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where zo = u is a fixed value. The only difference between model (3) and (4) is the initial
value. The time series represented by (4) is mostly same as that by (3), except that under
(4) the process is asymptotically stationary when |p| < 1 and the LSE is the maximum
likelihood estimator of p conditionally on the initial value.

First consider the zero-mean stationary time series under (3). Its initial value follows
a normally distributed random variable with zero mean and a variance of /(1 — p?).
The exact log-likelihood function of n consecutive observations, z;,¢ = 1, ..., n, may be
written as (Minozzo and Azzalini, 1993)

162, ) = — M 1og@1) — “log(e?) + Llog(l — 02— (@ — 2pb + p? 5
» p) = —5 log(2m) — S log(o™) + ~ logll = p%) — 55 (a — 2pb + p7c). ()

where

n n n—1
— 2 _ _ 2
a—Zz, , b—Zz,zz-l, C—er . (6)
=1 =2 =2

Maximizing / (02, p)in Eq. (5), White (1961) and Minozzo and Azzalini (1993) show that
the exact MLE of p is the unique real root of the following equation, whose absolute value
is less than one:

n—1

n

-2
cp3—nn bp2—<c+%>p+b=0. @)

Dent and Min (1978), Hasza (1980), and Minozzo and Azzalini (1993) point out that the
exact MLE may be written as

5 — 2 2 —3d,\ "> 0, 4\ _db "
=2 ——— cos| =+ — ) — =,
P 9 373 3

where
. {9a’2d1 —27d0—2d23}
6 = cos 5
2(dy* — 3d)3/?
and
n—2b n a n b
=122 4 =_ (1+—),d0= 2.
n—1c n—1 nc n—1c

Using Mathematica (Wolfram, 1999), the cubic Eq. (7) is easily solved and the exact MLE
0 may be expressed as the ratio of complex polynomials,

p= (n—2)b/3c(—1+n)+ (1 —iv3)
(—b*(=2 + n)* + 3c(—1 4+ n)(—a — cn)))/(32*3c(1 — n)
(16b* — 18abc — 24b°n + 27abcn + 9bc*n + 12b°n® — 9aben?
—27bc?n* — 2b°n? + 18bc*n® + ((16b° — 18abc — 24b°n + 27aben
+9bc?n + 12b°n% — 9aben® — 27bc*n® — 2% + 18bc*n)? + 4(—b* (=2 + n)?
+3c(=1+n)(—a — )N = 1/(62' (1 — n))
(1 4+ iv/3)(16b° — 18abe — 24b°n + 27aben + 9bc?n + 12b°n?
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—9abcen® — 27bc*n* — 200 + 18bc*n® + ((166° — 18abe —
—24b%n + 27aben + 9bcn + 126312 — 9aben® — 27bc*n* — 2b°n°
+18bc*n®)? + 4(—=b* (=2 4 n)* 4 3c(=1 + n)(—a — cn))*)VH1/3),

where i = «/—1, and a, b, and ¢ are defined in (6).

For a stationary AR(1) process with an unknown mean under (3), there are two mean
correction methods: sample mean correction and the maximum likelihood mean estimation.
It is well known that for ARMA(p, ¢g) model, the sample mean is asymptotically efficient
(Brockwell and Davis, 1987, Sec. 7.1). The exact MLE for the u may be obtained iteratively
as in McLeod and Zhang (2008) but in the AR(1) case the sample mean has close to 100%
efficiency in finite samples (McLeod and Zhang, 2008, Table 3). For speed and convenience,
we may just consider the sample mean estimator in Eq. (3). That is, the exact MLE is the
0 described above with z; — z, (f = 1, ..., n) replacing z, where z,, is the sample mean,
which is denoted as 0.

Under the stationary alternative, the exact MLE and the LSE have the same limit-
ing distribution (Brockwell and Davis, 1987, Sec. 8) but this is not the case under the
nonstationary null hypothesis Eq. (1). The next section provides a new derivation of this
distribution.

3. Computer Algebra Derivations to Limiting Distributions

In the unit root case, p = 1, we consider the random walk
Zf:Zl—l+a[’ t=172""7 (9)

where {a,} is a sequence of i.i.d. random variables with mean 0 and finite variance aaz > 0.
Fixing zo = 0, the random walk process may be generated by

t
o= Zaj. (10)
j=1

For the zero-mean case, the normalized and pivotal type statistics may be written as

§=np-1), (11)

1/ ) 1/2
i=2(X2) o-n. 12)

where
n
==Y @ —pu-)
t=2

For the unknown mean case, the normalized statistic may be written as

A

8 = npu — 1), (13)
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where p,, is described in Sec. 2, and the corresponding pivotal statistic may be written by

12
=6, <Z(Zz 1 —2Zn) > (Pu — 1), (14)

where

= =37 @ =% — hulz — T

t=2

The limiting distributions of statistics in Eqs. (11)—(14) are given in Theorems 1 and 2
below.

Theorem 3.1. Under a random walk (9),

1

n(pp — 1) - 5 (% - Je —4c, +2%M) , (15)
o]

£ 2 L (% —Je —ae, +2%M), (16)

1 1 2
mﬂzf W2(t)dt — (/ W(t)dt) :
1 2
B, =2, ((/ W(t)dt) <W(1)—f W(t)dt> )
0
1 1 1 2
¢, =" (5 (W) — 1) — W(l)/ W(t)dr + (/ W(t)dt) ) :
0 0

and {W(t), 0 <t < 1} is a standard Wiener process.

where

Theorem 3.2. Under a random walk (9),
1
n(p—1) 2> 5 (@—\/62—4Qi+2£8), 17)
A
fig(c—\/@—mu%), (18)

1
= f W () dt,
0

B =A"'W(1)?,

where

¢ = er% (W3 (1) — 1)

and {W(t), 0 <t < 1} is a standard Wiener process.
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To fix ideas, below is demonstrated how Mathematica helping to prove the limiting
distribution of n(p,, — 1), Eq. (15) in Theorem 3.1.
0, may be further simplified as follows:

. (n-2G (1 —iBu (14 iv/3)(v + VV2 + 4ud)s
Pu = — 2 - 5
: 3 —=n)  233(1 — n)(v + VoI + 4ud)s 256(1 — n)
where
u= —(n—2°G*+3(1 —n)(H +n),
v= 16G® — 18GH —24G*n + 27GHn + 9Gn
+12G*n®> —=9GHnR? — 27Gn® — 2G°n® + 18Gn?,
where
G=b/c, H=alc, (19)
where a, b, and c are defined in (6) with z; — z, (¢t = 1, ..., n) replacing z,. The limiting

distributions of G and H are given in the following lemma.
Lemma 3.1 Under a random walk (9),
(c/(@*n®), n(H — 1), n(G — 1)) —=> A, B, €,), (20)

where ., B,,, €, are defined in Theorem 3.1.

A detailed proof of Lemma 3.1 can be found in the Appendix.
Proof of Eq. (15) in Theorem 3.1. Let W =n(G — 1) and X = n(H — 1). Lemma 3.1
implies that W = O,(1) and X = O,(1). p, can be considered as a function of 1/n with
1+ W/n and 1 + X/n replacing G and H. In order to obtain the limit distribution of p,,,
taking p,, with one-term Taylor expansion with respect to 1/n at zero,

1 1
Pu=1+ 2 (W= VWI—4W £2X) + — Ry(W. X), @1)
n

2n

where sup,..; |R,(W, X)| < C(W, X) that is a continuous function of W and X. Below is a
Mathematica script and its output for deriving Eq. (21).
In[1]l:= u = -(n-2)"2G"2+3(1-n) (H+n);
In[2]:=v = 16 G°3-18 GH - 24 G°3 n+27 GHn + 9G n + 12 G°3 n"2
-9 G Hn"2-27 Gn™2-2 G°3 n"3+18 G n"3;
In[3]:= rho = -(-2+n)G/(3(1-n))
+((1-1 Sqrt([3]) (u))/(3 27(2/3) (1-n) (v+Sqrt [v~2+4u~3]) ~(1/3))
-1/(6 27(1/3) (1-n)) ((1+i Sqrt[3]) (v+Sqrt[v™2+4u~3])~(1/3));
Inf4]l]:=G =1+ W/n; H=1+ X/n; n = 1/z;
Simplify[Series[rho, {z, 0, 1}1]
and the output of the final input is
Out[4]= 1+1/2(W+i(4W-W"2-2X)"(1/2))z+0[z] "2
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which leads to Eq. (21). Following the fact that W = O,(1), X = O,(1), and the continuity
of C(W, X),

1 P
-R,(W,X) — 0.
n

By Lemma 1,

(W, X) 2> (€, B,).

Thus, applying the continuous mapping theorem described in the Appendix and the Slut-
sky’s theorem to Eq. (21), Eq. (15) is obtained.

The limiting distributions of 7,, o, and 7 in Eqs. (16)—-(18) can be very similarly
derived.

Fuller (1996, Theorem 10.1.10 and Corollary 10.1.10) shows that Eq. (15) and Eq.
(17) hold, which indicates that the computer algebra derivations implemented here are
appropriate. Other than the normalized statistics, Eqgs. (16) and (18) show the limiting
distributions on the unit root boundary of pivotal statistics for both zero-mean and unknown
mean cases.

4. Methods of Implementing the Test

The asymptotic distribution may be evaluated by computer simulation methods for Brown-
ian motion. Such methods are discussed in the book by Iacus (2008). Then this asymptotic
distribution could be used to obtain critical values and/or p-values for the test. As we will
show below, this method will not work unless the series length is very long.

The simplest approach is to use a Monte Carlo test. Under general conditions, this
approach provides an accurate test that can be efficiently computed using parallel processing
capabilities found on many modern computer environments. For example, the necessary
steps are outlined below for the normalized test:

(1) Simulate M random walks under (1) with the length of #» and compute the simulated
testing statistic sample, n(p, — 1), n(p; — 1), ... ,n(py = 1).

(2) Compute the observed testing statistic value for the given time series {z,}, n(,bg —1).

(3) Count the number of times k that the simulated test statistic ”(ﬁ’L -1 G=
1,..., M) is less than or equal to the observed test statistic n(f)g —1).

(4) Compute the p-value as (k + 1)/(M + 1).

Instead of using independent normal random variables to generate the random walks in
Step (1), we could use a bootstrap sample of the residuals. This test has been implemented
in the function mctest in our R package for MLE unit root tests (McLeod et al., 2011).

An even more computationally efficient approach is to use response surface regres-
sion (MacKinnon, 2000) to estimate the quantile functions for the exact distribution. The
response surface regressions are of the form

Q%) =0 + 61 /n+0,/n> 4+ 63/n° + ¢,

where Q%(n) is an o percentile of the finite-sample distribution that is estimated using N
replications and € is an error term. The curve was fit with the cluster computer SHARC-
NET (Shared Hierarchical Academic Research Computing Network) utilizing 221 compute
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nodes for about 1 hour. Thirty-six series lengths n used were 20, (5), 100, (20), 300, (50),
500, (100), 1000. For each series length, N = 200,000 replications were done and this was
repeated M = 100 times. From this the mean and variance of each percentile were esti-
mated and used in a weighted least-squares regression to obtain the final fitted regression.
The weighted least-squares approach is needed to account for heteroscedasticity in the error
terms.

In the case of the model specified in Egs. (1) and (2), the critical values for the test
statistic 7, given in Eq. (14) are

—3.110 — 4.652/n — 51.466/n? 1% point
0%n) = { —2.531 —2.062/n — 17.529/n> 5% point 22)
—2.233 — 1.219/n — 8.178/n* 10% point.

Fig. 1 illustrates these curves for series lengths up to 500. The dashed line shows the critical
point from the asymptotic distribution. It is seen that a reasonably large sample is needed
to obtain accurate critical values using the asymptotic distribution. The y-axis in each panel
is scaled so scaling unit is the same. This scaling reveals the critical values corresponding
10% converge more quickly while the 1% critical values converge slowly.

10%

-2.20

-2.25
|

5%

-2.50 -2.30

critical value for test
-2.55
1

-2.60

-3.15

-3.20

T T T T T
100 200 300 400 500

series length, n

Figure 1. The 1%, 5%, and 10% critical values for the MLE test statistic .
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Extensive simulation experiments were performed for a variety of series lengths, n,
and parameters, p, to check that the p-values produced by the Monte Carlo method agreed
with that produced by the critical values from Eq. (22).

Implementing the explicit expression of the exact MLE derived in Sec. 2 and the
critical value equations such as Eq. (22), our R function mleur for the MLE unit root tests
is available in our R package mleur (McLeod et al., 2011).

5. Power Comparisons

We investigated the power of the MLE unit root tests under various types of innovations
in comparison with that of the standard DF test. Under our null model (1), and alternative
model (2) or (3), the unknown mean case is more realistic than the known mean case. Thus,
the MLE unit root test was implemented with the sample mean correction in the normalized
form n(p, — 1) or the pivotal form 7, denoted by MLEn or MLEp, respectively. In R,
the standard DF test is implemented in several packages and usually the pivotal form
of test statistic is used. We used the implementation of the DF pivotal test for the same
model as (1) and (2) with an unknown mean or intercept in the R package urca by Pfaff
(2010), represented by DF in this article. The function GetPower for making such power
comparisons is given in our package (McLeod et al., 2011).

money velocity

T T T T T
1880 1900 1920 1940 1960

year

Figure 2. Time series plot for money velocity.
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Table 1
Empirical power of 5% unit root tests based on 25,000 simulations using innovations from
various distributions. Tests were Dickey—Fuller (DF), MLE normalized (MLEn), and MLE
pivotal (MLEp). The distributions used were standard normal, stable distribution with index
parameter 1.5, and a GARCH(1, 1) process. The 0.95 level MOE for the table percentage
is 0.62

Normal Stable GARCH(1, 1)

n P DF MLEn MLEp DF MLEn MLEp DF MLEn MLEp

30 0.65 398 56.5 59.6 36.5 55.7 594 420 56.2 59.0
70 0.65 97.6 99.8 99.7 97.7 98.6 98.1 95.6 98.9 98.8
100 0.65 100.0 100.0 100.0 99.7 99.3 99.1 99.7 100.0 99.9
200 0.65 100.0 100.0 100.0 99.9 99.7 99.6 100.0 100.0 100.0
30 085 121 16.6 183 11.6 12.5 13.6 14.1 18.3 20.0
70 0.85 374 55.1 574 336 53.9 57.0 397 55.9 57.8
100 0.85 632 83.2 842 652 84.3 84.6 645 81.4 82.1
200 0.85 99.6 100.0 100.0 99.4 98.9 984  98.7 99.7 99.6
30 0.90 8.4 10.7 11.9 89 8.3 8.9 9.8 11.8 13.1
70 090 194 29.8 314 174 24.6 26.8  22.0 32.0 33.7
100 090 333 51.0 52.8 29.7 49.4 528 363 51.9 53.5
200 090 86.8 97.2 97.0 89.3 95.7 948 843 94.7 94.7
30 0.95 6.7 7.6 83 6.5 5.5 5.7 7.8 8.1 9.1
70 0.95 9.2 12.5 133 9.0 9.5 99 110 14.7 15.4
100 095 125 19.0 19.8 11.8 14.2 15.1 14.6 21.2 22.0
200 095 325 51.1 525 289 47.7 50.7  36.0 52.6 53.9
30 1.00 55 4.9 55 63 43 44 7.0 6.1 6.7
70 1.00 52 5.1 53 60 3.7 3.7 7.0 6.1 6.4
100 1.00 5.0 53 56 60 39 3.8 6.7 6.3 6.3
200 1.00 4.9 4.8 49 59 3.8 3.8 6.2 6.2 6.3

In constructing critical value (Eq. (22)), the simulated series were assumed to be
Gaussian. But since the asymptotic distribution only relies on the assumption that the
innovations are independent with mean zero and finite variance o2, it is plausible that the
critical values given in Eq. (22) may also be applicable for other nonnormal distributions
with finite variance. In fact, using our R function GetPower, we found no difference
from the normal distribution results with Student’s ¢ on five degrees of freedom. A more
challenging question is how well these results continue to hold when these assumptions
are not met as in the case of infinite variance distributions, or series exhibiting conditional
heteroscedasticity and nonlinear dependence. To answer this question, a portion of our
simulation results is shown in Table 1. A total of 25,000 replications were done for a
series of lengths n = 30, 70, 100, 200 and parameters p = 0.65, 0.85, 0.9, 0.95, 1.0 for the
innovations generated by a stable distribution and a Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model described in the following. With so many replications
the 95% margin of error (MOE) was about 0.0062 or 0.62 in percentage terms. These
computations took less than 3 hours on a multicore PC.
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The random variable Z has a stable distribution with index «, scale o > 0, skewness
|B| < 1, and location p € R, if its characteristic function is given by

. exp {—olt|* (1 —if sgn(t) tan 5¥) + ipr} if o # 1
E(e”z) =
exp {—olt| (1+iB2 sgn() logl]) + ipt} ifa =1,

where

1if >0
sgn(t) = 0if r=0
—1if ¢t <0O.

Since it has been suggested that many financial time series appear to have a stable distri-
bution with « in the range (1.35, 1.75), « was set to 1.5 for our simulations. Also, o = 1,
B=0,and u =0.

A GARCH(1, 1) sequence a;,t = ..., —1,0, 1, ... is of the form

a, = 0,&;
and
2 2 2
of =w+taa,_;+ pio_y,

where we took ¢, to be independent standard normal, @ = 107, o; = 0.2, and 8; = 0.7.
The parameters were chosen to approximate models that have been used in actual applica-
tions.

Table 1 shows that there can be substantial difference in power between the MLE unit
root test and the DF tests not only in the normal case but also for innovations generated
from an infinite variance stable distribution as well as for innovations generated from a
GARCH(1,1) process. It is observed that the size of the test is slightly inflated for the
nonnormal case, so this needs to be taken into account in the power comparison. In general,
it appears that the pivotal form of the test statistic, MLEp, is preferable to the normalized
form, MLEn. MLEp is just as robust as MLEn and has slightly better power.

Further empirical power analysis may easily be carried out similarly with our R function
GetPower.

6. Illustrative Applications

In actual applications, it is recommended that diagnostic checks should be done for residual
autocorrelation. If there is significant autocorrelation in the residuals of the fitted AR(1)
model, then other methods such as the augmented DF test must be used. The model building
procedure needed for this DF test family is discussed by Pfaff (2006) and is available in the R
package urca (Pfaff, 2010). Our R package mleur (McLeod et al., 2011) provides suitable
model diagnostic checks for applying the MLE root test and is used in the applications
discussed below. R scripts to generate the analyses reported below are available in our
package documentation.
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Figure 3. Diagnostic plots for money velocity time series.

6.1. Velocity of Money

The time series plot for the velocity of money in the United States (1869—1970) is shown
in Fig. 2. From the plot, we see that the series has historically exhibited a strong stochastic
trends characteristic of random walk behavior. No doubt with modern emphasis on fiscal
policies to control inflation the series has stabilized. But just for a numerical illustration
of the difference in the unit root tests, we will compare the maximum likelihood and
least squares or DF tests. The first step in the analysis is the check that the fitted model
is adequate and that no additional lags are required. Fig. 3 shows the diagnostic checks
for this data. The residuals appear nonnormal but in view of the simulation results this is
not a concern. Most importantly no evidence of residual autocorrelation is found in the
fitted AR(1) model. Applying the unit root tests, the pivotal test statistics for the MLE and
DF tests were, respectively, —0.26 and —3.28. The MLE test is not even close to being
significant at the 10% level while the DF test has a p-value between 5% and 1%. The MLE
unit root test gives a result that appears to be more in line with the overall impression of
strong stochastic trends exhibited in Fig. 2. Even though the length of the series was 102,
there is a considerable difference in the conclusion between the two methods.
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Figure 4. Time series plot of difference in bond yields.

6.2. Bond Yield Differences

The annual difference in Moody’s BAA and AAA corporate bond yields from 1976 to 2010
is shown in Fig. 4. From the diagnostic check plots, we conclude that there is no significant
autocorrelation in the residuals and so the AR(1) may be fit. The DF test is not significant
at 10% whereas the MLE test does reject at the 10% level. This is not surprising in view of
the empirical power computations.

7. Summary

In this article, we presented a new derivation of the asymptotic distribution for the MLE
unit root test utilizing computer algebra to obtain an explicit expression for the MLE and
a Taylor series linearization for the test statistic. This technique is no doubt applicable in
other situations where the manual derivation is difficult.

An efficient computational method based on the response surface curves has been
implemented to obtain critical values of the MLE test statistics. An empirical power study
has demonstrated that not only does the MLE procedure outperform the LSE in the Gaus-
sian case but also for fat-tailed distributions, infinite variance distributions, and for weak
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dependence as exhibited in a GARCH(1, 1) process. The R package mleur based on the
developments in this article is available on CRAN.

Two illustrative applications of the test demonstrate that unit root testing also requires
diagnostic checking. It is important for proper applications that there should be no residual
autocorrelation present in the fitted AR(1) model.

Appendix

First, we state the Donsker’s theorem (Billingsley, 1999). Let {a,} be a sequence of i.i.d.

random variables with mean 0 and finite variance 02 > 0, z, = ZIJ: 1aj,and zo = 0. Then

Z[n[] D
,0<t<1} — {W(k),0<r<l1
EER A

in the Skorokhod space D[0, 1] with J; topology, where [x] denotes the integer part of
x. One of the important applications of the Donker’s theorem is the following continuous
mapping theorem. If f(-) is a continuous functional on [0, 1], then

LR
f <ﬁa> — f(WQ@)).

Proof of Lemma 3.1. We have

By the Donsker’s theorem

Similarly,

n—1 1 2 1
1 2 Z[n1] D 2
— 7 = dt — o W=(t)dt.
n2 Z t /0 (ﬁ

=1 0

It can be shown that
n—1 n—1
c=Y (@ -z =Y 2 —2—(n+2)7Z + 2% + 20)- (A.1)
=2 t=1

By some simple algebra steps,

n—1

b—c=Y (z41— 2@ —Z) + @1 —Z)’

t=1

1 1 ) n )
zzﬁ - E;a,z — Zn ;at +(z1 — Z0)%
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that is,
b_czl _i ‘ _n Zn Zn aj (Zl Z >2 A2
" z<) w2t wmw G A2
Moreover,
“‘C=(Z_1_Z_n)2 (Z" 7">2 (A3)
n NN NN '
Since
—c c
=G -1 (5)
and
a—c

:n(H—l)(nc—z),

where G and H are defined in Eq. (19). Egs. (A.1), (A.2), and (A.3) imply that

( ;z,n(H—l) n(G - 1) = f(jg;)-i-op(l),

where f is a functional. Hence, by the continuous mapping theorem described above and
Slutsky’s theorem,

( fz,n(H 1), n(G — 1)) Ly Fwa).

Applying the Cramer—Wold device, we find the marginal distributions as

2

c D 1 1
P A (t)dt—(/o W(t)dt) =,

D 1 1 1 2
n(G -1 — A (5 (w2 —1) — W(l)/ W(t)dt + (/ W(t)dt) ) =c,,
0 0

and

1 2 1 2
n(H — 1) = 21! <<f W(t)dt) + <W(1)—/ W(t)dt) ) =B,.
0 0
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