Chapter 15

Spatial Statistics

Spatial statistics is a recent and graphical subject that is ideally suited to imple-
mentation in §; S-PLUS itself includes one spatial interpolation method, akima,
and loess which can be used for two-dimensional smoothing, but the specialist
methods of spatial statistics have been added and are given in our library section
spatial. The main references for spatial statistics are Ripley (1981, 1988), Dig-
gle (1983), Upton and Fingleton (1985) and Cressie (1991). Not surprisingly, our
notation is closest to that of Ripley (1981).

The S-PLUS module' S+SPATIALSTATS (Kaluzny and Vega, 1997) provides
more comprehensive (and more polished) facilities for spatial statistics than those
provided in our library section spatial. Details of how to work through our
examples in that module may be found in the on-line complements? to this book.

More recently other contributed software has become available. There are
geostatistical packages called geoR/geoS* and sgeostat,® and point-process
packages splancs? and spatstat.’

15.1 Spatial Interpolation and Smoothing

We provide three examples of datasets for spatial interpolation. The dataset topo
contains 52 measurements of topographic height (in feet) within a square of side
310 feet (labelled in 50 feet units). The dataset npr1 contains permeability mea-
surements (a measure of the ease of oil flow in the rock) and porosity {(the vol-
umetric proportion of the rock which is pore space) measurements from an oil
reserve in the USA.

Suppose we are given n observations Z(z;) and we wish to map the process
Z(x) within a region D. (The sample points x; are usually, but not always,
within D.) Although our treatment is quite general, our S code assumes D to
be a two-dimensional region, which covers the majority of examples. There are

18-PLUS modules are additional-cost products; contact your S-PLUS distributor for details.
2See page 461 for where to obtain these,

3http://www.maths.lancs.ac. uk/~ribeiro/geocR.html and on CRAN.
*http://www.gis. iastate .edu/SGeoStat /homepage. html; R port on CRAN

nttp: //www .maths. lancs . ac. uk/~rowlings/Splancs/; R port on CRAN.
Shttp:/fwww . maths.uwa.adu. au/~adrian/spatstat.html and on CRAN.

419

420 Spatial Statistics

however applications to the terrestrial sphere and in three dimensions in mineral
and oil applications.

Trend surfaces

One of the earliest methods was fitting trend surfaces, polynomial regression sur-

faces of the form
@)= Y anay” (15.1)
rasp

where the parameter p is the order of the surface. There are P = (p+1)(p+2) /2
coefficients. Originally (15.1) was fitted by least squares, and could for example
be fitted using 1m with poly which will give polynomials in one or more vari-
ables. However, there will be difficulties in prediction, and this is rather inefficient
in applications such as ours in which the number of points at which prediction is
needed may far exceed n. Qur function surf.1ls implicitly rescales z and ¥ to
[—1, 1], which ensures that the first few polynomials are far from collinear. We
show some low-order trerd surfaces for the tope dataset in Figure 15.1, gener-
ated by:

library(spatial)

par{mfrow = ¢(2, 2), pty = "s")

topo.ls <- surf.1s(2, topo)

trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)

eqscplot (trsurf, , xlab = "", ylab = "", type = "a")
contour(trsurf, levels = seq(600, 1000, 25), add = T)
points{topo)

title{"Degree = 2")
topo.ls <- surf.ls(3, topo)

topo.ls <- surf.ls(4, topo)

topo.ls <- surf.ls(6, topo)

Notice how eqscplot is used to generate geometrically accurate plots,

Figure 15.1 shows trend surfaces for the topo dataset. The highest degree,
6, has 28 coefficients fitted from 52 points. The higher-order surfaces begin to
show the difficulties of fitting by polynomials in two or more dimensions, when
inevitably extrapolation is needed at the edges.

There are several other ways to show trend surfaces. Figure 15.2 uses Trellis to
show a greyscale plot from levelplot and a perspective plot from wireframe.
They were generated by

topo.ls <~ surf.1s(4, topo)
trs <- trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)
trsfe("x", "y"}] <- expand.grid(x = trs$x, y = tr$y)
pltl <- levelplot(z ~ x * y, trs, aspect = 1,

at = seq(650, 1000, 10), xlab = "', ylab = "n)

Spatial Interpolation and Smoothing 421

Degree=3

Degree=2

Figure 15.1: Trend surfaces for the topo dataset, of degrees 2,3,4and6.

Figure 15.2: The quartic trend surfaces for the topo dataset.

plt2 < wireframe(z -~ x * y, trs, aspect = ¢(1, 0.5),
screen = list{z = -30, x = -60))

print(pltl, position = c(0, 0, 0.5, 1), more = T)
{1+ macition = c(0.45, O,

1, 10

S+Win

422 Spatial Statisticg

Users of S-PLUS under Windows can use the rotatable 3D-plots in the GUI
graphics, for example by

tr <- data.frame(x = trs$x, y = trs$y, z = as.vector(trs$z))
guiPlot (PlotType = "32 Color Surface", Dataset = "grv)
guiModify ("Graph3b", Name = guiGetGraphiame(),

xSizeRatio = 2.2, ySizeRatio = 2.2)

where the final commands sets a square box. For R under Windows we can get g
rotatable 3D-plot by (see page 69 for package rgl)

library(rgl)
persp3d(trsurf)

One difficuity with fitting trend surfaces is that in most applications the ob-
servations are not regularly spaced, and sometimes they are most dense where the
surface is high (for example, in mineral prospecting). This makes it important to
take the spatial correlation of the errors into consideration. We thus suppose that

Z(z) = f(2)78 + e(x)
for a parametrized trend term such as (15.1) and a zero-mean spatial stochastic
process e(x) of errors. We assume that €(z) possesses second moments, and
has covariance matrix
Cle, y) = cov (e(z), e(y))

{this assumption is relaxed slightly later). Then the natural way to estimate 3 is
by generalized least squares, that is, to minimize

[Z(x:) - F ()T B)[Cmi,)] [Z(as) FCHRNC)
We need some simplified notation. Let Z — FB+ € where
Flz)T Z(wy) e(z1)
F=p i z=| |, =]
Flza)® Z(zn) &(@n)
andlet K = [C(x;, @;)]. We assume that X is of full rank. Then the problem is
to minimize
|Z - FBITKYZ - Fg| (15.2)

The Choleski decomposition (Golub and Van Loan, 1989; Nash, 1990) finds a
lower-triangular matrix £ such that K = LLT, (The S function chol is unusual
in working with I/ = LT) Then minimizing (15.2) is equivalent to

min|L~HZ - Fg)|*

which reduces the problem to one of ordinary least squares. To solve this we use
the QR decomposition (Golub and Van Loan, 1989) of L=1F as

-

15.1 Spatial Interpolation and Smoothing 423

for an orthogonal matrix @ and upper-triangular P x P matrix R. Write
Y,
-1 _ | 1
QL' Z = [YE]

as the upper P and lower n — P rows. Then ,@ solves

RB=Y

which is easy to compute as R is triangular.
Trend surfaces for the topo data fitted by generalized least squares are shown
later (Figure 15.5), where we discuss the choice of the covariance function C.

Local trend surfaces

" We have commented on the difficulties of using polynomials as global surfaces.
There are two ways to make their effect Jocal. The first is to fit a polynomial
surface for each predicted point, using only the nearby data points. The function
loess is of this class, and provides a wide range of options. By default it fits
a quadratic surface by weighted least squares, the weights ensuring that ‘local’
data points are most influential. We only give details for the span parameter o
less than one. Let ¢ = |an|, and let § denote the Euclidean distance to the gth
nearest point to 2. Then the weights are

e[(5]

for the observation at @;. (]]+ denotes the positive part.) Full details of
loess are given by Cleveland, Grosse and Shyu {1992). For our example we
have (Figure 15.3):

3

+

par (mfcol = c{2,2), pty = "s")
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25,
normalize = F)
topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1})
topo.lo <~ predict(topo.loess, expand.grid(topo.mar}, se = T)
agscplot(topo.mar, xlab = "fit", ylab = w1, type = "n")
contour (topo.mar$x, topo.mar$y, topo.lobfit,
levels = seq{700, 1000, 25), add = T)
points(topo)
eqacplot{trsurf, , xlab = "standard error”, ylab = "', type = "n")
contour (topo.mar$x, topo.marfy, topo.lo$se.fit,
levels = seq(5, 25, 5), add = T)
points{topo)
title{"Loess degres = 2") i
topo.loess <- loess{z ~ X * y, topo, degree = 1, span = 0.25,
normalize = F, xlab = "*, ylab = "")

424 Spatial Statistics

T

© | fs +5 e t5-2 \ﬁ
.
w -
1 »
f. :
+ o ap .
] -
O .Q?cJ/\;O
“1,. 3. <
LS G
o 15"“—‘—%
s ? T T g
[+] t 2 3 4 5 B Q 1 2 3 4 3 6
standard error standard armor

Figure 15.3: 1oess surfaces and prediction standard errors for the topo dataset.

We turn normalization off to use Euclidean distance on unscaled variables. Note
that the predictions from Loess are confined to the range of the data in each of
the x and y directions even though we requested them to cover the square; this
is a side effect of the algorithms used. The standard-error calculations are slow;
loess is much faster without them.

Although loess allows a wide range of smoothing via its parameter span, it
is designed for exploratory work and has no way to choose the smoothness except
to ‘look good’.

The Dirichlet tessellation’ of a set of points is the set of files, each of which
is associated with a data point, and is the set of points nearer to that data point
than any other. There is an associated triangulation, the Delaunay triangulation, in
which data points are connected by an edge of the triangulation if and only if their
Dirichlet tiles share an edge. (Algorithms and examples are given in Ripley, 1981,
§4.3)) There is S code in library section delaunay available from statlib (see
page 464), and in the R packages deldir and tripack on CRAN.) Akima's
(1978) fitting method fits a fifth-order trend surface within each triangle of the

7 Also known as Voronoi or Thiessen polygons,

15.2 Kriging 425

inlerp default intarp

Figure 15.4: interp surfaces for the topo dataset.

Delaunay triangulation; details are given in Ripley (1981, §4.3). The S imple-
mentation is the function interp; Akima’s example is in datasets akima.z,
akima.y and akima.z The method is forced to interpolate the data, and has
no flexibility at all to choose the smoothness of the surface. The arguments ncp
and extrap control details of the method: see the on-line help for details. For
Figure 15.4 we used

R: library(akima) # replace interp by jnterp.old

par{mfrow = ¢(1, 2), pty= "s")
topo.int <- interp(topo$x, topoy, topo$z)

eqscplot(topo.int, xlab = "interp default"”, ylab = "", type = "a")
contour{topo.int, levels = seq{600, 1000, 25), add = T)
points (topo)

topo.mar <- list(x = seq(0, 6.5, 0.1), y = seq(0, 6.5, 0.1))

topo.int2 <- interp(topo$x, topody, topo$z, topo.mar$x, topo.mardy,

ncp = 4, extrap = T)

egscplot(topo.int2, xlab = "interp", ylab = "', type = "a")
contour{topo.int2, levels = seq(600, 1000, 25), add = T)
points(topo)

15.2 Kriging

Kriging is the name of a technique developed by Matheron in the carly 1960s
for mining applications, which has been independently discovered many times.
Journel and Huijbregts (1978) give a comprehensive guide to its application in the
mining industry. See also Chiles and Delfiner (1999). In its full form, universal
kriging, it amounts to fitting a process of the form

Z(w) = f(z) B + e(x)

by generalized least squares, predicting the value at = of both terms and taking
their sum. Thus it differs from trend-surface prediction which predicts e(z) by

426 Spatial Statistics

zero. In what is most commonly termed kriging, the trend surface is of degree
zero, that is, a constant, _

Our derivation of the predictions is given by Ripley (1981, pp. 48-50). Let
k(x) = [C(z, z;)]. The computational steps are as follows.

1. Form K = [C(=;, ¥:)), with Choleski decomposition L.
2. Form F and Z.

3. Minimize |[L~1Z — L= F3]|?, reducing L'F to R.
4, Form W = Z — F3, and y such that L(LTy) = W.
5.

Predict Z(x) by Z(z) = yTk(x) + f(x)7 3, with error variance given
by C(x, @) - lel2 + llg|/* where

Le=k(z), RTg= f(z)—- (L 'F) e

This recipe involves only linear algebra and so can be implemented in S, but our
C version is about 10 times faster. For the topo data we have (Figure 15.5):

topo.ls <- surf.ls(2, topo)

trsurf <- trmat(topo.ls, 0, 6.5, 0, 6.5, 30)

eqscplot (trsurf, , xlab = "", ylab = "", type = "n")
contour(trsurf, levels = seq(600, 1000, 25}, add = T)
points(topo); title{"LS tremd surface")

topo.gls <- surf.gls(2, expcov, topo, d = 0.7)

trsurf <- trmat(topo.gls, 0, 6.5, 0, 8.5, 30)
eqscplot (trsurf, , xlab = "", ylab = "', type = "n")
contour (trsurf, levels = seq{600, 1000, 25), add = T)
points(topo); title("GLS trend surface")

prsurf <- prmat(topo.gls, 0, 6.5, 0, 6.5, 5O}
eqscplot (prsurf, , xlab = "', ylab = ", type = "n’
contour(prasurf, levels = seq(600, 1000, 25), add =
points(topo); title("Kriging prediction")

sesurf <~ semat(topo.gls, 0, 6.5, 0, 6.5, 30)
eqscplot (sesurf, , xlab = "", ylab = ", type = "n")
contour (sesurf, levels = c(20, 25), add = T)
pointa(topo); title("Kriging s.e.")

"
)

Covariance estimation

To use either generalized least squares or kriging we have to know the covariance
functicn C. We assume that

Clz,y) = c(d(=z, y)) {15.3)

where d() is Euclidean distance. (An extension known as geometric anisotropy
can be incorporated by rescaling the variables, as we did for the Mahalanobis

152 Kriging 427

LS trend surface GLS trend surface

R .
o gms
Y

[+] 1 2 3 4 5 5]] 1 2 3 4 S]

Figure 15.5: Trend surfaces by least squares and generalized least squares, and a kriged
surface and standard error of prediction, for the topo dataset.

distance in Chapter 11.) We can compute a correlogram by dividing the distance
into a number of bins and finding the covariance between pairs whose distance
falls into that bin, then dividing by the overali variance.

Choosing the covariance is very much an iterative process, as we need the
covariance of the residuals, and the fitting of the trend surface by generalized least
squares depends on the assumed form of the covariance function. Furthermore, as
we have residuals their covariance function is a biased estimator of c. In practice
itis important to get the form right for small distances, for which the bias is least.

Although c{0) must be one, there is no reason why c¢(0+) should not be
less than one. This is known in the kriging literature as a nugget effect since it
could arise from a very short-range component of the process Z(z). Another
explanation is measurement error. In any case, if there is a nugget effect, the
predicted surface will have spikes at the data points, and so effectively will not
interpolate but smooth,

The kriging literature tends to work with the variogram rather than the covari-

428 Spatial Statistics

ance function. More properly termed the semi-variogram, this is defined by
1
Viz.y) = 5 ElZ(z) - Z)?
and is related to C by

Viz,y) = %[C(w, 2)+ Cly, y)] — Clz.y) = c(0) - cld(z,)

under our assumption (15.3). However, since different variance estimates will be
used in different bins, the empirical versions will not be so exactly related. Much
heat and little light emerges from discussions of their comparison.

There are a number of standard forms of covariance functions that are com-
monly used. A nugget effect can be added to each. The exponential covariance
has

o(r) = 0% exp—r/d

the so-called Gaussian covariance is
c(r) = a®exp —(r/d)?

and the spherical covariance is in two dimensions

2(r r# T
.2 _Z1 - _ in—1 =
e(ry=ro {1 - (d 1 B + sin d)]

and in three dimensions (but also valid as a covariance function in two)

3r
_ 9
o) =1~ 55 * 3

for r < d and zero for r > d. Note that this is genuinely local, since points at a
greater distance than d from z are given zero weight at step 5 (although they do
affect the trend surface).

We promised to relax the assumption of second-order stationarity slightly. As
we only need to predict residuals, we only need a covariance to exist in the space
of linear combinations ¥ a; Z(z;) that are orthogonal to the trend surface. For
degree 0, this corresponds to combinations with sum zero. It is possible that the
variogram is finite, without the covariance existing, and there are extensions to
more general trend surfaces given by Matheron (1973) and reproduced by Cressie
(1991, §5.4). In particular, we can always add a constant to ¢ without affecting the
predictions (except perhaps numerically). Thus if the variogram v is specified,
we work with covariance function ¢ = const ~ v for a suitably large constant.
The main advantage is in allowing us to use certain functional forms that do not
correspond to covariances, such as

pd)=d*0€a<2 or & —ad

15.2 Kriging

& 1 s . "~
=] IR
w - . .
S . ..
o . . " . . e . .
= v p— | @ .
- e T
@ gl .
N
el L.
o 2 4 [0 2 4 6
xp %p

Figure 15.6: Correlogram (left) and variogram (right) for the residuals of topo dataset
from a least-squares quadratic trend surface.

2 o —]
0 w
=] . o
&3 — - & 3
s . . e e
in : n T
? < ,'."
a o
\] 2 4 6 0 2 4 6
xp xp

Figure 15.7; Correlograms for the topo dataset: (left) residuals from quadratic trend
surface showing exponential covariance (solid) and Gaussian covariance (dashed); (right)
raw data with fitted Gaussian covariance function.

The variogram d?logd corresponds to a thin-plate spline in R? (see Wahba,
1990, and the review in Cressie, 1991, §3.4.5).

Our functions correlogram and variogram allow the empirical correlo-
gram and variogram to be plotted and functions expcov, gaucov and sphercov
compute the exponential, Gaussian and spherical covariance functions (the latter
in two and three dimensions) and can be used as arguments 10 surf.gls. For
our running example we have

topo.kr <- surf.ls(2, topo)
correlogram(tope.kr, 25)

d <- seq(0, 7, 0.1)
lines{d, expcov(d, 0.7))
variogram(tope.kr, 25)

See Figure 15.6. We then consider fits by generalized least squares.

left panel of Figure 15.7

topo.kr <- surf.gls(2, expcov, tope, d=0.7)
correlogram(topo.kr, 25)

lines(d, expcov(d, 0.7))

1ines(d, gaucov(d, 1.0, 0.3}, 1ty = 3) # try nugget effect

430 Spatial Statistics

right panel

topo.kr <- surf.1s(0, topo)
correlogram(topo.kr, 25)
lines(d, gaucov(d, 2, 0.05))

top row of Figure 15.8

topo.kr <- surf.gls(2, gaucov, topo, d = 1, alph = 0.3)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot{prsurf, , xlab = "fit", ylab = v, type = "n")
contour{prsurf, levels = seq{600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
egscplot(sesurf, , xlab = "standard error”, ylab = "' type = "n"}
contour (sesurf, levels = c(15, 20, 25), add = T)
points{topo)
bottom row of Figure 15.8
topo.kr <- surf.gls(0, gaucov, topo, d = 2, alph = 0.05,
nx = 10000)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
egscplot (prsurf, , xlab = "fit", ylab = "", type = "p")
contour(prsurf, levels = 5eq(600, 1000, 25), add = T)
points(topo)
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 25)
eqscplot (sesurf, , xlab = "standard error”, ylab = "', typg = wpny
contour{sesurf, levels = c(15, 20, 25), add = T)
points{topo)

We first fit a quadratic surface by least squares, then try one plausible covariance
function (Figure 15.7). Re-fitting by generalized least squares suggests this func-
tion and another with a nugget effect, and we predict the surface from both. The
first was shown in Figure 15.5, the second in Figure 15.8. We also consider not
using a trend surface but a longer-range covariance function, also shown in Fig-
ure 15.8. (The small nugget effect is to ensure numerical stability as without it
the matrix K is very ill-conditioned; the correlations at short distances are very
near one. We increased nx for a more accurate lookup table of covariances.)

18.3 Point Process Analysis

A spatial point pattern is a collection of n points within a region D C R2, The
number of points is thought of as random, and the points are considered to be
generated by a stationary isotropic point process in R?, (This means that there
is no preferred origin or orientation of the pattern.) For such patterns probably
the most useful summaries of the process are the first and second moments of the
counts N(A) of the numbers of points within a set A € D. The first moment
can be specified by a single number, the intensity A giving the expected number
of points per unit area, obviously estimated by 7/a where o denotes the area of
D.

T 15.3 Point Process Analysis 431

fit standard emor

Figure 15.8: Two more kriged surfaces and standard errors of prediction for the topo
dataset. The top row uses a quadratic trend surface and a nugget effect. The bottom row is
without a trend surface.

The second moment can be specified by Ripley’s K function. For example,
MK (t) is the expected number of points within distance ¢ of a point of the pat-
tern. The benchmark of complete randomness is the Poisson process, for which
K(t) = nt?, the area of the search region for the points. Values larger than this
indicate clustering on that distance scale, and smaller values indicate regularity.
This suggests working with L(t) = /K (t)/m, which will be linear for a Poisson
process.

We only have a single pattern from which to estimate K or L. The definition
in the previous paragraph suggests an estimator of AK (t); average over all points
of the pattern the number seen within distance ¢ of that point. This would be
valid but for the fact that some of the points will be outside D and so invisible.
There are a number of edge-corrections available, but that of Ripley (1976) is
both simple to compute and rather efficient. This considers a circle centred on the
point 2 and passing through another point /. If the circle lies entirely within D),
the point is counted once. If a proportion p(x, y) of the circle lies within D, the
point is counted as 1/p points. (We may want to puta limit on small p, to reduce

T ERTEASTE L L

432 Spatial Statistics

-

L

distanca

Lm

distance

Figure 15.9: The Swedish pines dataset from Ripley (1981}, with two plots of L(t). That
at the upper right shows the envelope of [00 binomial simulations, that at the lower left the
average and the envelope (dotted) of 100 simulations of a Strauss process with ¢ = (0.2
and R = 0.7. Also shown (dashed) is the average for ¢ = 0.15. All units are in metres,

the variance at the expense of some bias.) This gives an estimator A\ {t) which
is unbiased for ¢ up to the circumradius of D (so that it is possible to observe two
points 2¢ apart). Since we do not know), we estimate it by A =n/a. Finally

Kh=2 Y L

oD d(y,2) Kt p(=, v)

and obviously we estimate L{t) by \/I? (t)/m. We find that on square-root scale
the variance of the estimator varies little with .

Our example is the Swedish pines data from Ripley (1981, §8.6). This records
72 trees within a 10-metre square. Figure 15.9 shows that 7, is not straight, and
comparison with simulations from a binomial process (a Poisson process condi-

ATy

T T T S

15.3 Point Process Analysis 433

tioned on N(D) = n, so n independently uniformly distributed points within
13) shows that the lack of straightness is significant. The upper two panels of
Figure 15.9 were produced by the following code:

library(spatial)

pines <- ppinit("pines.dat")

par{mfrow = ¢(2, 2), pty = "a")

plot{pines, xlim = c¢(0, 10), ylim = c{0, 10),
xlab = "", ylab = "", xaxs = "i", yaxs = "i")

plot(Kfn(pines,5), type = "s", xlab = "distance", ylab = "L(t)")

lims <- Kenvl{5, 100, Psim(72))

lines (lima$x, lims$l, 1ty = 2)

lines(lims$x, lims$u, lty = 2)

The function ppinit reads the data from the file and also the coordinates of
a rectangular domain D. The latter can be reset, or set up for simulations, by the
function ppregion. (It must be set for each session.) The function Kfn returns
an estimate of L{t) and other useful information for plotting, for distances up to
its second argument £s (for full-scale).

The functions Kaver and Kenvl return the average and, for Kenvl, also
the extremes of K -functions {on L scale) for a series of simulations. The func-
tion Psim(n) simulates the binomial process on n points within the domain D,
which has already been set,

Alternative processes

We need to consider alternative point processes to the Poisson. One of the most
useful for regular point patterns is the so-called Strauss process, which is simu-
lated by Strauss(n, <, r). This has a density of n points proportional to

cnumbcr of H-close pairs

and so has K(t) < =t? for ¢ < R (and up to about 2R). For ¢ = 0 we
have a ‘hard-core’ process that never generates pairs closer than R and so can
be envisaged as laying down the centres of non-overlapping discs of diameter
r=R.

Figure 15.9 also shows the average and envelope of the L-plots for a Strauss
process fitted to the pines data by Ripley (1981). There the parameters were
chosen by trial-and-error based on a knowledge of how the L-plot changed with
(¢, B). Ripley (1988) considers the estimation of ¢ for known R by the pseudo-
likelihood. This is done by our function pplik and returns an estimate of about
¢ = 0.15 (‘about’ since it uses numerical integration}. As Figure 15.9 shows, the
difference between ¢ = 0.2 and ¢ = 0.15 is small. We used the following code:

ppregion(pines)
plot (Kfn(pines, 1.5), type = "s",
xlab = "distance", ylab = "L(t)")
lims <- Kenvl1(1.5, 100, Strauss(72, 0.2, 0.7))
lines(lims$x, lims$a, lty = 2)

434 Spatial Statistics

2)
2)

lines(lims$x, lims$l, 1ty
lines{1lims$x, lims$u, 1ty
pplik(pines, 0.7)

lines{Kaver(1.5, 100, Strauss(72, 0.15, 0.7}, 1ty = 3)

The theory is given by Ripley (1988, p. 67). For a point £ € D let (¢)
denote the number of points of the pattern within distance ¢ of £. Then the
pseundo-likelihood estimator solves

JpH€)H€ dg _ #(R-close pairs) _ nK(R)
f D ct(€)d¢ B n a

and the left-hand side is an increasing function of ¢. The function pplik uses
the S-PLUS function uniroot to find a solution in the range (0, 1].

Other processes for which simulation functions are provided are the bi-
nomial process (Psim(n)) and Matém’s sequential spatial inhibition process
(85I(n, 1)), which sequentially lays down centres of discs of radius r that
do not overlap existing discs.

