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ABSTRACT. We summarize and discuss the current state of spatial point process theory and direc-
tions for future research, making an analogy with generalized linear models and random effect
models, and illustrating the theory with various examples of applications. In particular, we consider
Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte
Carlo algorithms, computational methods for likelihood-based inference, and quick non-likelihood
approaches to inference.
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1. Introduction

Spatial point pattern data occur frequently in a wide variety of scientific disciplines, including
seismology, ecology, forestry, geography, spatial epidemiology and material science, see e.g.
Stoyan & Stoyan (1998), Kerscher (2000), Boots, Okabe & Thomas (2003), Diggle (2003) and
Ballani (2006). The classical spatial point process textbooks (Ripley, 1981, 1988; Diggle, 1983;
Stoyan, Kendall & Mecke, 1995; Stoyan & Stoyan, 1995) usually deal with relatively small
point patterns, where the assumption of stationarity is central and non-parametric methods
based on summary statistics play a major role. In recent years, fast computers and advances
in computational statistics, particularly Markov chain Monte Carlo (MCMC) methods, have
had a major impact on the development of statistics for spatial point processes. The focus has
now changed to likelihood-based inference for flexible parametric models, often depending
on covariates, and liberated from restrictive assumptions of stationarity. In short, ‘Modern
statistics for spatial point processes’, where recent textbooks include Van Lieshout (2000),
Diggle (2003), Mpller & Waagepetersen (2003b), and Baddeley et al. (2006).

Much of the literature on spatial point processes is fairly technical with extensive use of
measure theoretical terminology and statistical physics parlance. This has made the theory
seem rather difficult. Moreover, in connection with likelihood-based inference, many statis-
ticians may be unfamiliar with the concept of defining a density with respect to a Poisson
process. It is our intention in sections 3-9 to give a concise and non-technical introduction
to the modern theory, making analogies with generalized linear models and random effect
models, and illustrating the theory with various examples of applications introduced in sec-
tion 2. In particular, we discuss Poisson, Gibbs and Cox process models, diagnostic tools
and model checking, MCMC algorithms and computational methods for likelihood-based
inference, and quick non-likelihood approaches to inference. Section 10 summarizes the
current state of spatial point process theory and discusses directions for future research.

For definiteness, we mostly work with point processes defined in the plane R?, but most
ideas easily extend to the general case of R or more abstract spaces. For ease of exposition,
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no measure theoretical details are given; see instead Moller & Waagepetersen (2003b) and the
references therein. The computations for the data examples were done using the R package
spatstat (Baddeley & Turner, 2005, 2006) or our own programmes in C and R, where the
code is available at http://www.math.aau.dk/"rw/sppcode. As we shall often refer to our own
monograph, please notice the comments and corrections to Moller & Waagepetersen (2003b)
at http://www.math.aau.dk/7jm.

2. Data examples

The following four examples of spatial point pattern data are from plant and animal ecol-
ogy, and are considered for illustrative purposes in subsequent sections. In each example,
the observation window refers to the area where points of the pattern can possibly be
observed, i.e. when the point pattern is viewed as a realization of a spatial point process
(section 3.1). Absence of points in a region, where they could potentially occur, is a source
of information complementary to the data on where points actually did occur. The specifica-
tion of the observation window is therefore an integral part of a spatial point pattern data
set.

Figure 1 shows positions of 55 minke whales (Balaneoptera acutorostrata) observed in a
part of the North Atlantic near Spitzbergen. The whales are observed visually from a ship
sailing along predetermined so-called transect lines. The point pattern can be thought of as
an incomplete observation of all the whale positions, as it is only possible to observe whales
within the vicinity of the ship. Moreover, whales within sighting distance may fail to be
observed because of bad weather conditions or if they are diving. The probability of observing
a whale is a decreasing function of the distance from the whale to the ship and is effectively
zero for distances larger than 2 km. The observation window is therefore a union of narrow
strips of width 4 km around the transect lines. The data in Fig. 1 do not reflect the fact
that the whales move and that the whales are observed at different points in time. However,
the observations from different transect lines may be considered approximately independent
due to the large spatial separation between the transect lines. More details on the data set
and analysis of line transect data can be found in Skaug, Qien, Schweder & Bothun (2004),
Waagepetersen & Schweder (2006), and Buckland e al. (2004). The objective is to estimate
the abundance of the whales, or equivalently the whale intensity. The whales tend to cluster
around locations of high prey intensity, and a point process model for all whale positions
(including those not observed) should take this into account. The point process model used
in Waagepetersen & Schweder (2006) is described in example 2 and analyzed in examples 8
and 9.

Fig. 1. Observed whales along transect lines. The enclosing rectangle is of dimensions 263km by
116 km.
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Fig 2. Locations of Beilschmiedia pendula Lauraceae trees observed in a 1000 m by 500 m rectangular
window.

In studies of biodiversity of tropical rainforests, it is of interest to study whether the spatial
patterns of the many different tree species can be related to spatial variations in environ-
mental variables concerning topography and soil properties. Figure 2 shows positions of 3605
Beilschmiedia pendula Lauraceae trees in the tropical rainforest of Barro Colorado Island.
This data set is a part of a much larger data set containing positions of hundreds of thousands
of trees belonging to hundreds of species; see Hubbell & Foster (1983), Condit et al. (1996),
and Condit (1998). In addition to the tree positions, covariate information on altitude and
norm of altitude gradient is available, see Fig. 3. Phrased in point process terminology, the
question is whether the intensity of Beilschmiedia trees may be viewed as a spatially varying
function of the covariates. In the study of this question, it is, as for the whales, important to
take into account clustering, which in the present case may be due to tree reproduction by
seed dispersal and possibly unobserved covariates. Different point process models for the tree
positions are introduced in examples 1 and 3 and further considered in Fig. 9 and examples
10, 11, 13 and 14.
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Fig. 3. Altitude (upper plot) in meter and norm of altitude gradient (lower plot).
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Fig. 4. Norwegian spruces observed in a rectangular 56 m by 38 m window. The radii of the discs equal
five times the stem diameters.

Another pertinent question in plant ecology is how trees interact due to competition.
Figure 4 shows positions and stem diameters of 134 Norwegian spruces. This data set was
collected in Tharandter Forest, Germany, by the forester G. Klier and was first analyzed
using point process methods by Fiksel (1984). The data set is an example of a marked point
pattern, with points given by the tree locations and marks by the stem diameters. The discs
in Fig. 4 are of radii five times the stem diameters and may be thought of as ‘influence zones’
of the trees; see Penttinen ef al. (1992) and Goulard et al. (1996). The regularity in the point
pattern is to a large extent due to forest management. From an ecological point of view it is
of interest to study how neighbouring trees interact, i.e. when their influence zones overlap.
It is then natural to model the conditional intensity, which roughly speaking determines the
probability of observing a tree at a given location and of given stem diameter conditional
on the neighbouring trees. In example 4, we consider a simple model where the conditional
intensity depends on the amount of overlap between the influence zones of a tree and its
neighbouring trees. The spruces are also considered in Fig. 10 and example 6.

Our last data set is an example of a multitype point pattern, with two types of points speci-
fying the positions of nests for two types of ants, Messor wasmanni and Cataglyphis bicolor;
see Fig. 5 and Harkness & Isham (1983). Note the rather atypical shape of the observation
window. The interaction between the two types of ants is of main interest for this data set.
Biological knowledge suggests that the Messor ants are not influenced by presence or absence
of Cataglyphis ants when choosing sites for their nests. The Catagplyphis ants, on the other
hand, feed on dead Messors and hence the positions of Messor nests might affect the choice
of sites for Cataglyphis nests. Hogmander & Sarkkd (1999) therefore specify a hierarchical
model: first a model for the conditional intensity of a Messor nest at a particular location
given the neighbouring Messor nests, and second a conditional intensity for a Cataglyphis
nest given the neighbouring Cataglyphis nests and the neighbouring Messor nests. Further
details are given in example 5, Figs. 7-8, and examples 7 and 12.

These examples illustrate many important features of interest for spatial point process anal-
ysis: clustering due to, e.g. seed dispersal or unobserved variation in prey intensity (as for
the tropical rainforest trees and the whales), inhomogeneity, e.g. caused by a thinning mech-
anism or covariates (as for the whales and tropical rainforest trees), and interaction
between points, where the interaction possibly depends on marks associated with the points
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Fig 5. Locations of nests for Messor (triangles) and Cataglyphis (circles) ants. Enclosing rectangle for
observation window is 414.5ft by 383 ft.

(as for the Norwegian spruces). The examples also illustrate different types of observation
windows.

3. Preliminaries
3.1. Spatial point processes

In the simplest case, a spatial point process X is a finite random subset of a given bounded
region S C R?, and a realization of such a process is a spatial point pattern x ={xy,...,x,}
of n > 0 points contained in S. We say that the point process is defined on S, and we write
x =) for the empty point pattern. To specify the distribution of X, one may specify the dis-
tribution of the number of points, n(X), and for each n> 1, conditional on n(X)=n, the joint
distribution of the n points in X. An equivalent approach is to specify the distribution of the
variables N(B)=n(X3) for subsets BC S, where Xz =XNB.

If it is not known on which region the point process is defined, or if the process extends
over a very large region, or if certain invariance assumptions such as stationarity are imposed,
then it may be appropriate to consider an infinite point process on R>. We define a spatial
point process X on R* as a locally finite random subset of R?, i.e. N(B) is a finite random
variable whenever B C R” is a bounded region. We say that X is stationary respective iso-
tropic if its distribution is invariant under translations in R* respective rotations about the
origin in R?. Stationarity and isotropy may be reasonable assumptions for point processes
observed within a homogeneous environment. These assumptions appeared commonly in the
older point process literature, where typically rather small study regions were considered. We
shall abandon them when spatial covariate information is available.

In most applications, the observation window W (see section 2) is strictly contained in
the region S, where the point process is defined. As X\ W is unobserved, we face a missing
data problem, which in the spatial point process literature is referred to as a problem of edge

effects.
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3.2. Moments

The mean structure of the count variables N(B), B C R, is summarized by the moment
measure

w(B)=EN(B), BCR’. (1)

In practice the mean structure is modelled in terms of a non-negative intensity function p, i.e.

u(B)= /B p(n) du

where we may interpret p(u)du as the probability that precisely one point falls in an infini-
tesimally small region containing the location u and of areadu.

The covariance structure of the count variables is most conveniently given in terms of the
second-order factorial moment measure p®. This is defined by

7&
pPA)=E> 1[wv)ed], ACR* xR, %))
u, veX
where # over the summation sign means that the sum runs over all pairwise different points
u,v in X, and 1[-] is the indicator function. For bounded regions BC R? and C CR?,

Cov[N(B), N(O)]= (B x C)+ (BN C) — u(B)u(C).

For many important model classes, u? is given in terms of an explicitly known second order
product density p®,

12(A4) = / 1[(u, v) € A]p®(u, v) dudv

where p®(u,v) dudv may be interpreted as the probability of observing a point in each of
two regions of infinitesimally small areas du and dv and containing u and v. More generally,
for integers n> 1, the nth-order factorial moment measure p is defined by

#*
WO =E Y Ma....u)edl ACRY, (3)

Uy, ..., upeX

with corresponding nth-order product density p". From (3) we obtain Campbell’s theorem

#
E D hu....u)= /h(ul,...,un)p(”)(ul,...,u,l)dul,...dun )
up,..., upeX
for non-negative functions 4. The nth order moment measure is given by the right hand side
of (3) without #. The reason for preferring the factorial moment measures are the nicer
expressions for the product densities, cf. (6) and (16).
In order to characterize the tendency of points to attract or repel each other, while adjust-
ing for the effect of a large or small intensity function, it is useful to consider the pair cor-
relation function

g(u,v) = p?(u, v)/(p(u)p(v)) Q)

(provided p(#)>0 and p(v)>0). If points appear independently of each other, p@(u,v)=
p(u)p(v) and g(u,v)=1; see also (6). When g(u, v)>1 we interpret this as attraction between
points of the process at locations « and v, while if g(u,v)<1 we have repulsion at the two
locations. Translation invariance g(u, v) = g(u —v) of g implies that X is second-order intensity
reweighted stationary (Baddeley et al., 2000 and section titled ‘second-order summary
statistics’), and in applications it is often assumed that g(u, v) = g(||lu — v||), i.e. that g depends
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only on the distance |ju — v||. Notice that very different point process models can share the
same g function (Baddeley & Silverman, 1984; Baddeley er al., 2000; Diggle, 2003, section
5.8.3).

Suppose n(u) €[0, 1], u < R?, are given numbers. An independent m-thinning of X is obtained
by independently retaining each point # in X with probability n(u). It follows easily from (4)
that m(uy)...7m(u,)p" (uy,...,u,) is the nth order product density of the thinned process. In
particular, n(u)p(u) is the intensity function of the thinned process, while g is the same for
the two processes.

3.3. Marked point processes

In addition to each point u in a spatial point process X, we may have an associated random
variable m, called a mark. The mark often carries some information about the point, for
example the radius of a disc as in Fig. 4, the type of ants as in Fig 5, or another point process
(e.g. the clusters in a shot noise Cox process, see section titled ‘Shot noise Cox processes’).
The process ® = {(u,m,):ucX} is called a marked point process, and indeed marked point
processes are important for many applications; see Stoyan & Stoyan (1995), Stoyan & Wélder
(2000), Schlather et al. (2004), Schlather (2001), Moller & Waagepetersen (2003b). For the
models presented later in this paper, the marked point process model of discs in Fig. 4 will
be viewed as a point process in R* x (0, c0), and the bivariate point process model of ants’
nests in Fig. 5 will be specified by a hierarchical model so that no methodology specific to
marked point processes is needed.

3.4. Generic notation
Unless otherwise stated,

X denotes a generic spatial point process defined on a region S C R*;

W C S is a bounded observation window;

X ={x1,...,Xx,} is either a generic finite point configuration or a realization of Xy (the
meaning of x will always be clear from the context);

z(u) =(z1(u),...,zx(u)) is a vector of covariates depending on locations u € S such as
spatially varying environmental variables, known functions of the spatial coordinates them-
selves or distances to known environmental features, cf. Berman & Turner (1992) and
Rathbun (1996);

p=(B,,...,P;) is a corresponding regression parameter;

0 is the vector of all parameters (including f) in a given parametric model.

4. Modelling the intensity function

This section discusses spatial point process models specified by a deterministic or random
intensity function by analogy with generalized linear models and random effects models.
Particularly, two important model classes, namely Poisson and Cox/cluster point processes
are introduced. Roughly speaking, the two classes provide models for no interaction and
aggregated point patterns, respectively.

4.1. The Poisson process

A Poisson process X defined on S and with intensity measure p and intensity function p
satisfies for any bounded region BC S with u(B)>0,
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(1) N(B) is Poisson distributed with mean u(B),
(if) conditional on N(B), the points in X are i.i.d. with density proportional to p(u), u € B.

Poisson processes are studied in detail in Kingman (1993). They play a fundamental role as a
reference process for exploratory and diagnostic tools and when more advanced spatial point
process models are constructed.

If p(u) is constant for all u€ S, we say that the Poisson process is homogeneous. Realiza-
tions of the process may appear to be rather chaotic with large empty space and close pairs of
points, even when the process is homogeneous. The Poisson process is a model for ‘no inter-
action’ or ‘complete spatial randomness’, since X, and X3 are independent whenever 4, BC S
are disjoint. Moreover,

p(n)(ub---aun):p(ul)---p(un)a QEI, (6)

reflecting the lack of interaction. Stationarity means that p(u) is constant, and implies isotropy
of X. Note that another Poisson process results if we make an independent thinning of a
Poisson process.

Typically, a log linear model of the intensity function is considered (Cox, 1972),

log p(u)=z(u)p". (7

The independence properties of a Poisson process are usually not realistic for real data.
Despite of this the Poisson process has enjoyed much popularity due to its mathematical
tractability.

4.2. Cox processes

One natural extension of the Poisson process is a Cox process X driven by a non-negative
process A =(A(u)),es, such that conditional on A, X is a Poisson process with intensity func-
tion A (Cox, 1955; Matérn, 1971; Grandell, 1976; Daley & Vere-Jones, 2003).

Three points of statistical importance should be noticed. First, though A may be mod-
elling a random environmental heterogeneity, X is stationary if A is stationary. Second, we
cannot distinguish the Cox process X from its corresponding Poisson process X| A when only
one realization of Xy is available, cf. Moller & Waagepetersen (2003b) section 5.1. Third, the
likelihood is in general unknown, while product densities may be tractable. The consequences
of the latter point are discussed in sections 7 and 8.

Log Gaussian Cox processes. In analogy with random effect models, as an extension of the
log linear model (7), take

log A(u) = z(u)f" + W (u) ®)

where W= (¥(u)),cs is a zero-mean Gaussian process. Then we call X a log Gaussian Cox
process (Meller et al., 1998). The covariance function c(u,v)=-cov[¥(u), Y(v)] typically
depends on some lower-dimensional parameter; see, e.g. example 1 below. To ensure local
integrability of A(u), the covariance function has to satisfy certain mild conditions, which
are satisfied for models used in practice.

The product densities are particularly tractable. The intensity function

log p(u) = )" + c(a, u) /2 ©)
is log linear, g and ¢ are in a one-to-one correspondence as

g(u, v) =exp(c(u, v))
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and higher-order product densities are nicely expressed in terms of p and g (Mgller et al.,
1998). Another advantageous property is that we have no problem with edge effects, since
Xy is specified by the Gaussian process restricted to W.

Example 1 (Log Gaussian Cox process model for tropical rainforest trees). For the tropical
rainforest trees in Fig. 2, we consider in example 10 inference for a log Gaussian Cox process
with z(u)=(1, z5(u), z3(1)), where z(u) and z3(u) denote the altitude and gradient covariates
given in Fig 3. An exponential covariance function c¢(u, v) = 6% exp(—||u — v||/2) is used for the
Gaussian process, where ¢ and o are positive parameters.

Shot noise Cox processes. A shot noise Cox process X has random intensity function

Aw= Y yk(c.u) (10)

(c,7)ed

where ¢ € R?, y>0, ® is a Poisson process on R* x (0, c0), and k(c, -) is a density for a two-
dimensional continuous random variable (Mgller, 2003). Note that X is distributed as the
superposition (i.e. union) of independent Poisson processes X, with intensity functions
yk(c, ), (c,7) € @, where we interpret X ,) as a cluster with centre ¢ and mean number of
points y. Thus X is an example of a Poisson cluster process (Bartlett, 1964), and provides
a natural model for seed setting mechanisms causing clustering, see e.g. Brix & Chadoeuf
(2002). Simple formulae for the intensity and pair correlation functions of a shot noise Cox
process are provided in Moller (2003).

Example 2 (Shot noise Cox process for minke whales). In Waagepetersen & Schweder (2006),
the positions of minke whales in Fig. 1 are modelled as an independent thinning of a shot
noise Cox process. Letting p(u#) denote the probability of observing a whale at location u,
the process of observed whales is a Cox process driven by A(w)=p(u)}_. neo Vk(c,u). The
cluster centres are assumed to form a stationary Poisson process with intensity x, the c’s
are independent of the y’s, and the 7’s are i.i.d. gamma random variables with mean o and
unit scale parameter. To handle edge effects, k(c, ) is the density of N,(c, w’I) restricted to
c+[-3w, 30

A particular simple case of a shot noise Cox process is a Neyman—Scott process X, where
the centre points form a stationary Poisson process with intensity x and the y’s are all equal to
a positive parameter o (Neyman & Scott, 1958). If furthermore k(c,-) is a bivariate
normal density with mean ¢ and covariance matrix w’I, then X is a (modified) Thomas
process (Thomas, 1949). A Neyman-Scott process is stationary with intensity p=ox, and
the Thomas process is also isotropic with

g(r)=14exp(—r/(4w?))(4nkw?), r>0. an

Shot noise Cox process can be extended in various interesting ways by allowing the kernel
k to depend on a random band-width b and replacing ® by a Poisson or non-Poisson process
model for the points (c, 7, b) (Meller & Torrisi, 2005). In this paper, we consider instead an
extension which incorporates covariate information in a multiplicative way, i.e. an inhomo-
geneous Cox process driven by
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Aw=exp (20087) 3 k(e (12)
(c, ped
(Waagepetersen, 2007). A nice feature is that the pair correlation function of X is the same
for (10) and (12), i.e. it does not depend on the parameter f.

Example 3 (Inhomogeneous Thomas model for tropical rainforest trees). In addition to the
log Gaussian Cox process model for the tropical trees (example 1), we consider an inhomo-
geneous Thomas process of the form (12),

W)= 5 exp (B2 + Bzs(w) Y exp (<lu—cl /o))
ced

where now ® denotes a stationary Poisson process with intensity k. Then the intensity func-
tion is

p(u) = roexp (Byz2(u) + B3z3(u)) (13)

while the pair correlation function is equal to (11).

5. Modelling the conditional intensity function

Gibbs point processes arose in statistical physics as models for interacting particle systems.
The intensity function for a Gibbs process is unknown; instead, the Papangelou conditional
intensity (u, x) (Papangelou, 1974) becomes the appropriate starting point for modelling. The
definition and interpretation of A(u,X) are given in section 5.2 in terms of the density of a
finite point process and in section 5.4 using a more technical account for infinite point pro-
cesses. The density of a Gibbs point process is specified in section 5.3. Though the density
has an unknown normalizing constant, likelihood inference based on MCMC methods is eas-
ier for parametric Gibbs point process models than for Cox processes; see section 7. While
Cox processes provide flexible models for aggregation or clustering in a point pattern, Gibbs
point processes provide flexible models for regularity or repulsion (sections 5.3 and 10.3).

5.1. Finite point processes with a density

Throughout this section we assume that S is bounded and X is a finite point process defined
on S. Moreover, Y, denotes a Poisson process on S with intensity measure y and intensity
function p. In particular, Y; is the unit rate Poisson process on S with intensity p=1. Before
defining what is meant by the density of X, we need the following useful Poisson expansion.
If F denotes any event of spatial point patterns contained in S, by (i)—(ii) in section 4.1,

e

u(S)
o [ keI pt d s, (14)
. Sn

P(Y,,eF)=i

n=0
where x={xy,...,x,}.
By (14), X has density f with respect to Y; if

P(Xe F)=E[[Y, € F]f(Y))]

=S
=ZeTvS /S 1[x € FIf(x) dx... dx, "
n=0 ! "

where |S| is the area of S. Combining (3) and (15) it follows that
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PPy, u)=EBf (Y, U{u,...,u,}) (16)

for any n€ N and pairwise different points uy,...,u, € S. Conversely, under mild conditions,
f can be expressed in terms of the product densities p® (Macchi, 1975). Furthermore, con-
ditional on n(X)=n with n>1, the n points in X have a symmetric joint density

Ja(xt, o x) o f ({x,. .0 %)) 17

on S”.

Apart from the Poisson process and a few other simple models such as the mixed
Poisson process (Grandell, 1997), the density is not expressible in closed form. For the
Poisson process Y,, (14) gives

F00=¢59 ] ptx). ()

i=1

Thus, for a Cox process driven by A=(A(«)),cs,

exp <\S\ - /S Au) du) [[Aw

ueX

Jx)=E (19)

which in general is not expressible in closed form.

5.2. The conditional intensity

The usual conditional intensity of a one-dimensional point process does not extend to two-
dimensional point processes because of the lack of a natural ordering in R*. Instead, the
Papangelou conditional intensity becomes the appropriate counterpart (Papangelou, 1974);
a formal definition is given below.

Let the situation be as in section 5.1, and suppose that f is hereditary, i.e.

fx)>0 and yCcx = f(y)>0 (20)

for finite point configurations x C S. This condition is usually assumed in practice.
Now, for locations u € S and finite point configurations x C S, the Papangelou conditional
intensity is defined by

Mu, x)=f(xU{up)lf (x\ {u}) @1

if f(x\{u})>0, and A(u,x)=0 otherwise. The precise definition of A(u,x) when u €x is
not that important, and (21) just covers this case for completeness. Note that A(u,x)=
Mu,x\ {u}), and (20) implies that f and A are in a one-to-one correspondence.

For a Poisson process, the Papangelou conditional intensity is simply the intensity: if
f(x)>0is given by (18), then A(u, x)= p(u) does not depend on x, again showing the absence
of interaction in a Poisson process.

Combining (16) and (20)—(21),

p(u) = EA(u, X). (22)

Recall that the conditional probability P(4|x) of an event A given X=x satisfies P(4)=
E[P(A4|X)]. Thus, due to the infinitesimal interpretation of p(u) du (section 3.2), it follows
from (22) that A(u,x)du may be interpreted as the conditional probability that there is a
point of the process in an infinitesimally small region containing # and of area du given that
the rest of the point process coincides with x.

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



654 J. Moller and R. P. Waagepetersen Scand J Statist 34

Often a density f is specified by an unnormalized density h, i.e. f och where h is an hereditary
function, for which the normalizing constant EAi(Y) is well defined but unknown. However,

Au, )= h(x U {ub) h(x\ {u})

does not depend on the normalizing constant. This is one reason why inference and simu-
lation procedures are often based on the conditional intensity rather than the density of the
point process.

In practically all cases of spatial point process models, an unnormalized density / is locally
stable, that is, there is a constant K such that

h(xU{u}) < Kh(x) (23)

for all u€ S and finite x C S. Local stability implies both that / is hereditary and integrable
with respect the to unit rate Poisson process. Local stability also plays a fundamental role
when studying stability properties of MCMC algorithms (section 9.2).

5.3. Finite Gibbs point processes

Consider again a finite point process X defined on the bounded region S and with hereditary
density f. This is a Gibbs point process (also called a canonical ensemble in statistical physics)
if
log A(u,x)=>_U(yU{u}) when f(x)>0 (24)
yx

where the function U(x)€[—o00,00) is defined for all non-empty finite point configurations
X C S, and we set log0=—o0. In statistical mechanical terms, U is a potential.

A large selection of Gibbs point process models are given in Van Lieshout (2000) and
Moller & Waagepetersen (2003b). Usually, a log linear model is considered, where the first-
order potential is either constant or depends on spatial covariates

Uw=U{up)=zwp"
and higher-order potentials are of the form
U=V XYy, n(x)>2

where the , are so-called interaction parameters. Then A is parameterized by 0=
(B, ¥, ¥5,...) and is on log linear form

log 29(u,x) =(t(x U {u}) — 1(x))0" (25)
where
)=> zw, > YV, >, V... | (26)
UEX yCxin(y)=2 yCxin(y)=3

Combining (21) and (24), the Gibbs process has density

fX)xexp | > Uy 7
0#yCx

defining exp(—oo)=0. Unless X is Poisson, i.e. when U(y)=0 whenever n(y) > 2, the

normalizing constant of the density is unknown. Usually for models used in practice, U(y) <0

if n(y) > 2, which implies local stability (and hence integrability). This means that the points

in the process repel one other, so that realizations of the process tend to be more regular
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than for a Poisson process. Most Gibbs models are pairwise interaction processes, i.e. U(y)=0
whenever n(y) > 3, and typically the second order potential depends on distance only,
U(u,v)=U(|lu—vl||). A hard-core process with hard core r>0 has U({u,v})=—oo whenever
||lu—v| <r.

The Hammersley—Clifford theorem for Markov random fields was modified to the case of
spatial point processes by Ripley & Kelly (1977), stating that any hereditary density is of the
form (27) and the following properties (I) and (II) are equivalent.

(I) U(x)=0 whenever there exist two points {u, v} Cx such that ||u—v||>R.
D) If f(x)>0 and ue S\x, then A(u,x)=A(u,xNb(u, R)).

Here b(u, R) is the closed disc with centre # and radius R. When (I) or (II) is satisfied, X is
said to be Markov with interaction radius R, or more precisely, Markov with respect to the
R-close neighbourhood relation. This definition and the Hammersley—Clifford theorem can
be extended to an arbitrary symmetric relation on S (Ripley & Kelly, 1977) or even a relation
which depends on realizations of the point process (Baddeley & Magller, 1989). Markov point
processes constitute a particular important subclass of Gibbs point processes, since the local
Markov property (1) very much simplifies the computation of the Papangelou conditional
intensity in relation to parameter estimation and simulation.

The property (I) implies a spatial Markov property. If BC S and 0B={u¢ B:b(u, R)N
B#(} is its R-close neighbourhood, then the process Xp conditional on Xz depends only
on Xpe through Xyp. The conditional process Xp | Xop =Xsp is also Gibbs, with density

Fo(xs [ xamocexp (D UvUxan)) (28)
0#yCxp
where the normalizing constant depends on xyp (the conditional density may be arbitrarily
defined if U(y)=—oco for some non-empty point configuration y C xs5). The corresponding
Papangelou conditional intensity is

Mu,Xp | Xpp) = Mu,XgUXpp), u€B. (29)

Example 4 (Overlap interaction model for Norwegian spruces). The conditional intensity for a
Norwegian spruce with a certain influence zone should depend not only on the positions but
also on the influence zones of the neighbouring trees; see Fig. 4. A tree with influence zone
given by the disc b(u, m,), where u is the spatial location of the tree and m,, is the influence
zone radius, is treated as a point (u,m,) in R*. Confining ourselves to a pairwise interaction
process, we define the pairwise potential by

U({(u,m,), (v,m,)}) =v|b(u, m,) N b(v,m,)|, ¥ <O0.

Hence, the strength of the repulsion between two trees (u,m,) and (v, m,) is given by ¥ times
the area of overlap between the influence zones of the two trees. We assume that the influence
zone radii belong to a bounded interval M =[a, b], where a and b are estimated by the mini-
mal and maximal observed influence zone radii. We divide M into six disjoint subintervals
of equal size, and define the first order potential by

U({(u,m,)})=p(m,)=p, if m, falls in the kth subinterval

where f§, is a real parameter. This enables modelling the varying numbers of trees in the six
different size classes. However, the interpretation of the conditional intensity

(s ), ) =exp (Bom)+3 > |bGsm) N b(o,m)]) (30)

(v, my)EX
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is not straightforward; it is for instance not in general a monotone function of m,. On the
other hand, for a fixed (u, m,), the conditional intensity will always decrease if the neighbour-
ing influence zones increase.

Example 5 (Hierarchical model for ants’ nests). The hierarchical model in Hégmander &
Sarkkad (1999) for the positions of ants’ nests is based on so-called Strauss processes with
hard cores as described below.

For distances >0, define

—oo if t<r
Vit,r)=4 1 if r<t<R
0 otherwise

where R is the interaction range and r >0 denotes a hard core distance (or no hard core
if r=0). For the Messor nests, the Strauss process with hard core ry, is given by first- and
second-order potentials

Uni({up) =By, U, o) =y V([Ju—0|l;740),

and no higher-order interactions. The conditional intensity for a putative nest at a location
u is thus zero if an existing nest occur within distance ry, from u, and otherwise the log
conditional density is given by the sum of f,, and ,, times the number of neighbouring
nests within distance R. Given the pattern x,, of Messor nests, the Cataglyphis nests are
modelled as an inhomogeneous Strauss process with one hard core rcy, to the Messor nests
and another hard-core r¢ between the Cataglyphis nests, i.e. using potentials

Uat({u=Bc+Veu D Vlu—vllsres).  Uaa({u,o}) =y V(Jlu—vlf;re).
VEX )
Finally, the hard cores are estimated by the observed minimum interpoint distances, which
are biased maximum likelihood estimates.

Using positive hard cores ry; and rc may be viewed as an ad-hoc approach to obtain a
model that is well-defined for all real values of the parameters f,,, B¢, Vs Veurr and Yo,
whereby both repulsive and attractive interaction within and between the two types of ants
can be modelled. However, as noted by Meller (1994), the Strauss hard core process is a poor
model for clustering due to the following ‘phase transition property’: for positive values of
the interaction parameter, except for a narrow range of values, the distribution will either
be concentrated on point patterns with one dense cluster of points or in ‘Poisson-like’ point
patterns.

We use maximum likelihood estimates ry; =9.35 and r¢c =2.45 (distances are measured in
ft) but in contrast to Hogmander & Sarkké (1999) we find it more natural to consider a model
with no hard core between the two types of ants’ nests, i.e. to let rcy =0. Figure 6 shows
the covariate function z;(u)=3_ ., V([lu—v[;0) for the Cataglyphis model with rcy =0.
To facilitate comparison with previous studies we fix R at the value 45 used in Hogmander
& Sarkkéd (1999). Note however, that profile-pseudo-likelihood computations indicate that
more appropriate intra-species interaction ranges would be 15 and 30 for the Messor and
Cataglyphis ants, respectively.

5.4. Infinite Gibbs point processes

In general it is not possible to deal with densities of infinite point processes. For example,
a stationary Poisson process has a density with respect to another stationary Poisson
process if and only if their intensities are equal. However, the Papangelou conditional intensity

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



Scand J Statist 34 Modern statistics for spatial point processes 657

100 200 300 400 500 600 700
1 1 1 1 1 1 1

0
L

Fig. 6. The covariate function ZZ(M):ZUEXM V(|lu—v]|;0) for the Cataglyphis model (light greyscales
correspond to high values of z»(u)). The dots show the locations of Cataglyphis nests.

for a point process X on R* can be indirectly defined as follows. If A(u,X) is a non-negative
function defined for locations u € R* and locally finite point configurations x C R* such that

EZh(u,X\{u})=/E[/1(u, X)h(u, X)] du (€2))]
ueX

for all non-negative functions /%, then A is the Papangelou conditional intensity of X. In

fact two infinite point processes can share the same Papangelou conditional intensity; this

phenomenon is known in statistical physics as phase transition.

The integral formula (31) is called the Georgii-Nguyen—Zessin formula (Georgii, 1976;
Nguyen & Zessin, 1979), and this together with the Campbell theorem are basically the only
known general formulae for spatial point processes. It is straightforward to verify (31) when X
is defined on a bounded region, so that it is a finite point process with Papangelou
conditional intensity (21). Using induction we obtain the iterated GNZ-formula

7&
E > h(xl,...,x,,,X\{xl,...,x,,})=/-~-/E[A(xl,X)A(xz,XU{xl})
X5 s Xp€X
A, XU{X1, o X DAY, - X, X)] A d, (32)
for non-negative functions 4. Combining (3) and (32), we see that
Py, . ., u)=E[Muy, X)Au2, XUt 1), . At XU {1y, ..o 1y 1 D] (33)

Notice that the iterated GNZ-formula (32) implies the Campbell theorem (4).
For instance, for a Cox process driven by A,

Mu, X)=E [A(u)|X] . (34)

However, this conditional expectation is usually unknown, and the GNZ-formula is more
useful in connection with Gibbs point processes as described below.

The most common approach for defining a Gibbs point process X on R? is to assume that
X satisfies the spatial Markov property with respect to the R-close neighbourhood relation,
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and has conditional densities of a similar form as in the finite case. That is, for any bounded
region BC R?, X; | X depends on Xpe only through Xyp, and (28) specifies the conditional
density. An equivalent approach is to assume that X has a Papangelou conditional intensity,
which in accordance with (28) and (29) satisfies A(u, X) = A(u, X N b(u, R)), where for finite
point configurations x C R? and locations u e R?,

AMu, x)=exp (Z U(yU{u})) ifudx, Mu,x)=Au,x\{u}) ifuex

yCx

Unfortunately, (33) is not of much use here, and in general a closed form expression for p®
is unknown when X is Gibbs.

Questions of much interest in statistical physics are if a Gibbs process exists for 4 speci-
fied by a given potential U as above, and if the process is unique (i.e. no phase tran-
sition) and stationary (even in that case it may not be unique); see Ruelle (1969), Preston
(1976), Georgii (1976), Nguyen & Zessin (1979) or the review in Mgller & Waagepetersen
(2003b). These questions are of less importance in spatial statistics, where the process is
observed within a bounded window W and, to deal with edge effects, we may use the
so-called border method. That is, we base inference on Xy,_, | Xow_,» where Wy is the clipped
observation window

Wer={ueW:bu,R)C W}

and the Papangelou conditional intensity is given by A(u, Xw_, | Xaw_,) = A(u,X) when Xy =x
is observed. We return to this issue in section titled ‘Edge effects’ and 7.2.

6. Exploratory and diagnostic tools

It is often difficult to assess the properties of a spatial point pattern by eye. A realization
of a homogeneous Poisson process may for example appear clustered due to points that
happen to be close just by chance. This section explains how to explore the features of a
spatial point pattern with the aim of suggesting an appropriate model, and how to check
and critize a fitted model. The residuals described in section 6.1 are useful to assess the ade-
quacy of the specified (conditional) intensity function in relation to a given data set. The
second-order properties specified by the pair correlation function and the distribution of
interpoint distances may be assessed using the more classical summary statistics in section
6.2.

In this section, p and / denote estimates of the intensity function and the Papangelou
conditional intensity, respectively. These estimates may be obtained by non-parametric or
parametric methods. In the stationary case, or at least if p is constant on S, a natural un-
biased estimate is p=n/|W |. In the inhomogeneous case, a non-parametric kernel estimate
is

p(u)= ; fe(u—x,) / /W k(v —1u) dv (35)

where k is a kernel with finite bandwidth, and where the denominator is an edge correc-
tion factor ensuring that fW p(u) du is an unbiased estimate of u(W) (Diggle, 1985). If the
intensity or conditional intensity is specified by a parametric model, p=p, or =74, and 6
is estimated by 0(x) (sections 7-8), we let p= Pi) ©OF i=)@(x).
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6.1. Residuals

For a Gibbs point process with log Papangelou conditional intensity (24), the first-order
potential corresponds to the linear predictor of a generalized linear model (GLM), while the
higher order potentials are roughly analogous to the distribution of the errors in a GLM.
Recently, Baddeley et al. (2005) developed a residual analysis for spatial point processes based
on the GNZ-formula (31) and guided by the analogy with residual analysis for (non-spatial)
GLMs. For a Cox process, the Papangelou conditional intensity (34) is usually not expres-
sible in closed form, while the intensity function may be tractable. In such cases, Waagepe-
tersen (2005) suggested residuals be defined using instead the intensity function. Whether
we base residuals on the conditional intensity or the intensity, the two approaches are very
similar.

Definition of innovations and residuals. For ease of exposition we assume first that the point
process X is defined on the observation window W the case where X extends outside W is
considered in section titled ‘Edge effects’.

For non-negative functions /(u, x), define the h-weighted innovation by

I,(B)= Z h(u, X\ {u})— / Au, X)h(u, X)du, BCW. (36)
ueXp B

We will allow infinite values of /(u,x) if u € x, in which case we define A(u, x)h(u, x)=0
if 2(u, x)=0. Baddeley et al. (2005) study in particular the raw, Pearson, and inverse-2 innova-
tions given by A(u,x)=1, 1/1/A(u,x), 1/A(u, x), respectively. Note that I, is a signed measure,
where we may interpret AI(u)=/h(u, X\ {u}) as the innovation increment (‘error’) attached
to a point u in X, and dI(u)=—A(u, X)1(u, X) du as the innovation increment attached to a
background location u € . Assuming that the sum or equivalently the integral in (36) has
finite mean, the GNZ-formula (31) gives

EI,(B)=0. (37)

The h-weighted residual is defined by

Ry(B)=> h(u,x\ {u})— /B 2, X)h(u,x) du, BC W, (38)

uexpg

where, as the function # may depend on the model, h denotes an estimate. This also is a
signed measure, and we hope that the mean of the residual measure is approximately zero.
The raw, Pearson, and inverse-A residuals are

R(B)=n(xp) — /B Z(u,x) du,

R, A(B)=)1 / \/jv(u,x)— /B \/i(u,x) du,

uexp

Ry;(B)=" " 1/i(u,x)— /B 1[(u, x) > 0] du,

uexp

respectively. In order that the Pearson and inverse-/ residuals be well defined, we require that
Z(u,Xx) >0 for all u € x. Properties of these innovations and residuals are analyzed in Baddeley
et al. (2006).
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Similarly, we define innovations and residuals based on p, where in all expressions above
we replace 1 and 1 by p and p, respectively, and /(u, x) and /(u, x) by A(u) and h(u), respec-
tively. Here it is required that [ w h(w)p(u) du<oo, so that (37) also holds in this case.

Diagnostic plots. Baddeley et al. (2005) suggest various diagnostic plots for spatial trend,
dependence of covariates, interaction between points, and other effects. In particular, the
plots can check for the presence of such features when the fitted model does not include
them. The plots are briefly described below in the case of residuals based on 4; if we instead
consider residuals based on p, we use the same substitutions as in the preceding paragraph.
Figures 7 and 8 show specific examples of the plots in the case of the Cataglyphis nests model
(example 5) fitted in example 12 and based on raw residuals (#=1). The plots are corrected
for edge effects, cf. section titled ‘Edge effects’.

The mark plot is a pixel image with greyscale proportional to A(u, x)h(u,x) and a cir-
cle centred at each point u € x with radius proportional to the residual mass A(u, x \ {u}).
The plot may sometimes identify ‘extreme points’. For example, for Pearson residuals and a
fitted model of correct form, large/small circles and dark/light greyscales should correspond
to low/high values of the conditional intensity, and in regions of the same greyscale the
circles should be uniformly distributed. The upper left plot in Fig. 7 is a mark plot for the
raw residuals obtained from the model fitted to the Cataglyphis nests in example 12. In this
case, the circles are of the same radii and just show the locations of the nests.

The smoothed residual field at location ue W is

SO ke — x)h(xi, X\ {x;}) — [, k(u— 0)A(v, X)h(v, x) dv
S k@ —v)do

s(u,x)= (39)

Cumulative sum of raw residuals
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Cumulative sum of raw residuals
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Fig. 7. Plots for Cataglyphis nests based on raw residuals: mark plot (upper left), lurking variable plots
for covariates given by y and x coordinates (upper right, lower left), and smoothed residual field (lower
right). Dark greyscales correspond to small values.
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where k is a kernel and the denominator is an edge correction factor. For example, for raw
residuals, the numerator of (39) has mean fW k(u — v)E[A(v, X) — jv(v,X)] dv, so positive/
negative values of s suggest that the fitted model under/overestimates the intensity function.
The smoothed residual field may be presented as a greyscale image and a contour plot. For
example, the lower right plot in Fig. 7 suggests some underestimation of the conditional
intensity at the middle lower part of the plot and overestimation in the left and top part
of the plot.

For a given covariate z: W +— R and numbers ¢, define W(t)={ue W :z(u)<t}. A plot
of the ‘cumulative residual function’ A(7)= R;(W (¢)) is called a lurking variable plot, since
it may detect if z should be included in the model. If the fitted model is correct, we expect
A(t)=0. The upper right and lower left plots in Fig. 7 show lurking variable plots for the
covariates given by the y and x spatial coordinates, respectively. The upper right plot indicates
(in accordance with the lower right plot) a decreasing trend in the y direction, whereas there
is no indication of trend in the x direction. The possible defects of the model indicated by
the right plots in Fig. 7 might be related to inhomogeneity; the observation window consists
of a ‘field” and a ‘scrub’ part divided by a boundary that runs roughly along the diagonal
from the lower left to the upper right corner (Harkness & Isham, 1983). Including covari-
ates given by an indicator for the field and the spatial y-coordinate improved somewhat the
appearance of the diagnostic plots.

Baddeley et al. (2005) also consider a Q-Q plot comparing empirical quantiles of s(u, x)
with corresponding expected empirical quantiles estimated from s(u, xV), ..., s(u, x™), where
x(V, ..., x" are simulations from the fitted model. This is done using a grid of fixed locations
weWﬁj=L”wimemhk=Q”wmmex@=xmﬂmdM&wewﬂ$“=ﬂwxwx
j=1,...,J to obtain the order statistics s[({‘]) <... gs[(/;]) . We then plot s[(g) versus the estimated
expected empirical quantile > ; _, SEI;])/I’I for j=1,...,J. The Q-Q plot in Fig. 8 shows some
deviations between the observed and estimated quantiles but each observed order statistic fall
with in the 95% intervals obtained from corresponding simulated order statistics.

5e-05

Data quantile
0e+00
|

-5e-05

T T T
-5e-05 0e+00 5e-05

Mean quantile of simulations
Residuals: raw

Fig. 8. Q-Q plot for Cataglyphis nests based on smoothed raw residual field. The dotted lines show the
2.5% and 97.5% percentiles for the simulated order statistics.
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Edge effects. Substantial bias and other artifacts in the diagnostic plots for residuals based
on / may occur if edge effects are ignored. We therefore use the border method as follows
(see also Baddeley et al, 2007a). Suppose the fitted model is Gibbs with interaction radius
R (sections 5.3-5.4). For locations u in W\ Wor=0W-r, M(u,x) may depend on points in
x which are outside the observation window W. Since the Papangelou conditional inten-
sity (29) with B= Wy does not depend on points outside the observation window, we con-
dition on X, =Xow., and plot residuals only for u€ Wg. See, e.g. the upper left plot in
Fig. 7.

For residuals based on p instead, we have no edge effects, so no adjustment of the diag-
nostic tools in the section ‘Diagnostic plots’ is needed.

6.2. Summary statistics

This section considers the more classical summary statistics such as Ripley’s K-function and
the nearest-neighbour function G. See also Baddeley er al. (2007b) who develop residual
versions of such summary statistics.

Second-order summary statistics. Second order properties are described by the pair correlation
function g, where it is convenient if g(u,v) only depends on the distance ||u — v|| or at least
the difference u — v (note that g(u,v) is symmetric). Kernel estimation of g is discussed in
Stoyan & Stoyan (2000). Alternatively, if g(u, v)=g(u —v) is translation invariant, one may
consider the inhomogeneous reduced second moment measure (Baddeley et al., 2000)

K(B)= /B g(u)du, BCR.

More generally, if g is not assumed to exist or to be translation invariant, we may define

1[u—ve B]
K(B)= E w
1§4 LEXZ\{u} p(u)p(v)

provided that X is second-order reweighted stationary which means that the right hand side
of (40) does not depend on the choice of 4 C R?, where 0<|A4|<oo. Note that K is invariant
under independent thinning.

The (inhomogeneous) K-function is defined by K(r)=K(b(0,r)), r>0. Clearly, if g(u,v)=
g([lu—vl]), then K is determined by K, and K(r)=2x [ sg(s)ds, so that g and K are in a
one-to-one correspondence. In the case of a stationary point process, it follows from (40)
that pK(r) has the interpretation as the expected number of further points within distance
r from a typical point in X, and p?>K(r)/2 is the expected number of (unordered) pairs of
distinct points not more than distance r apart and with at least one point in a set of unit
area (Ripley, 1976). A formal definition of ‘typical point’ is given in terms of Palm measures,
see, e.g. Moller & Waagepetersen (2003b). For a Poisson process, K(r)=nr?.

In our experience, non-parametric estimation of K is more reliable than that of g, since the
latter involves kernel estimation, which is sensitive to the choice of the bandwidth. Various
edge corrections have been suggested, the simplest and most widely applicable being

#*

. 1o <71
K0=2 . spmawo] “h

u, VEX

where W, is W translated by u, and p is an estimate of the intensity function. The choice of
p is crucial since this determines how much variation is attributed to inhomogeneity rather
than random clustering. In general we prefer to use a parametric estimate of the intensity
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Fig 9. Estimated K-function for tropical rainforest trees and theoretical K-functions for fitted Thomas,
log Gaussian Cox, and Poisson processes.

function. Another possibility is the non-parametric estimate of p given in (35) but the degree
of clustering exhibited by the resulting estimate K(r) is very sensitive to the choice of kernel
band-width.

An estimate of the K-function for the tropical rainforest trees obtained with a parametric
estimate of the intensity function (see example 11) is shown in Fig. 9. The plot also shows
theoretical K-functions for fitted log Gaussian Cox, Thomas and Poisson processes, where
all three processes share the same intensity function (details are given later in example 13).
The trees seem to form a clustered point pattern since the estimated K-function is markedly
larger than the theoretical K-function for a Poisson process.

One often considers the L-function L(r)=+/K(r)/m, which at least for a stationary
Poisson process is a variance stabilizing transformation when K is estimated by non-
parametric methods (Besag, 1977). Moreover, for a Poisson process, L(r)=r. In general, at
least for small distances, L(r)>r indicates aggregation and L(r)<r indicates regularity.
Usually when a model is fitted, L(r)=/K(r)/m or L(r)—r is plotted together with the aver-
age and 2.5% and 97.5% quantiles based on simulated L-functions under the fitted model;
we refer to these bounds as 95% envelopes. Examples are given in the right plots of Figs 11
and 12.

Estimation of third-order properties and of directional properties (so-called directional
K-functions) is discussed in Stoyan & Stoyan (1995), Meller et al. (1998), Schladitz &
Baddeley (2000) and Guan, Sherman & Calvin (2006).

Interpoint distances. In order to interpret the following summary statistics based on inter-
point distances, we assume stationarity of X. The empty space function F is the distribution
function of the distance from an arbitrary location to the nearest point in X,

F(r)=P(XNb0,r)£0), r>0.
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Fig 10. Left to right: estimated F, G, and J-functions for the Norwegian spruces (solid lines) and 95%
envelopes calculated from simulations of a homogeneous Poisson process (dashed lines) with expected
number of points equal to the observed number of points. The long-dashed curves show the theoretical
values of F, G, and J for a Poisson process.

The nearest-neighbour function is defined by

G(r)=pLWE > XN\ {up) b, r)#0), >0,

‘ | ueXnNw

which has the interpretation as the cumulative distribution function for the distance from a
‘typical’ point in X to its nearest-neighbour point in X. Thus, for small distances, G(r) and
pK(r) are closely related. For a stationary Poisson process, F(r)=G(r)=1—exp(—nr?). In
general, at least for small distances, F(r)<G(r) indicates aggregation and F(r)> G(r) indi-
cates regularity. Van Lieshout & Baddeley (1996) study the nice properties of the J-function
defined by J(r)=(1— G(r))/(1 — F(r)) for F(r)<1.

Non-parametric estimation of F and G accounting for edge effects is straightforward using
border methods; see, e.g. Moller & Waagepetersen (2003b). An estimate of J is obtained by
plugging in the estimates of F and G in the expression for J. Estimates of F, G, and J for
the positions of Norwegian spruces shown in Fig. 10 provide evidence of repulsion.

7. Likelihood-based inference and MCMC methods

Computation of the likelihood function is usually easy for Poisson process models (section
7.1), while the likelihood contains an unknown normalizing constant for Gibbs point pro-
cess models, and is given in terms of a complicated integral for Cox process models. Using
MCMC methods, it is now becoming quite feasible to compute accurate approximations of
the likelihood function for Gibbs and Cox process models (sections 7.2 and 7.3). However,
the computations may be time consuming and standard software is yet not available. Quick
non-likelihood approaches to inference are reviewed in section 8.

7.1. Poisson process models

For a Poisson process with a parameterized intensity function p,, the log likelihood function
is

0= togpw)~ [ p) du. @)
uex w
cf. (18), where in general numerical integration is needed to compute the integral. A clever

implementation for finding the maximum likelihood estimate (MLE) numerically, based on
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software for generalized linear models (Berman and Turner, 1992), is available in spatstat
when the intensity function is of the log linear form (7).

Rathbun & Cressie (1994) study increasing domain asymptotics for inhomogeneous
Poisson point processes and provide fairly weak conditions for asymptotic normality of the
MLE in the case of a log linear intensity function. Waagepetersen (2007) instead suggests
asymptotics for a fixed observation window when the intercept in the log linear intensity
function tends to infinity, and the only condition for asymptotic normality of the MLE of
the remaining parameters is positive definiteness of the observed information matrix. Infer-
ence for a log linear Poisson process model is exemplified in example 11.

7.2. Gibbs point process models

We restrict attention to parametric models for Gibbs point processes X as in sections 5.3—
5.4, assuming that the interaction radius R is finite and the conditional intensity is on the
log linear form (25) (no matter whether X is finite or infinite). We assume to begin with that
R is known.

First, suppose that the observation window W coincides with S. The density is then on
exponential family form

fo(x) =exp(t(x)0")/cy

where ¢ is given by (26) and ¢y is the unknown normalizing constant. The score function and
observed information are

u(0)=1(x) — Egr(X), j(0)=vary1(X),

where Ej and var, denote expectation and variance with respect to X~ fj.
Consider a fixed reference parameter value 0. The score function and observed informa-
tion may then be evaluated using the importance sampling formula

Ek(X) = Ey, [k(X)exp (¢(X)(0—00)")] /(colea,) (43)
with k(X) given by #X) or #X)"#(X). The importance sampling formula also yields
colea, = Eay [exp (X007 )| (44)

Approximations of the likelihood ratio f3(x)/fy,(X), score, and observed information are then
obtained by Monte Carlo approximation of the expectations Eg[...] using MCMC
samples from fj,, see section 9.2.

The path sampling identity (e.g. Gelman & Meng, 1998)

1
log(colco,) = /O Eg1(X) (d6(s)/ds)" ds (45)

provides an alternative and often numerically more stable way of computing a ratio of nor-
malizing constants. Here 0(s) is a differentiable curve, e.g. a straight line segment, connecting
0o=0(0) and 8=06(1). The log ratio of normalizing constants is approximated by evaluating
the outer integral in (45) using e.g. the trapezoidal rule and the expectation using MCMC
methods (Berthelsen & Mogller, 2003; Meller & Waagepetersen, 2003b).

Second, suppose that W is strictly contained in S and let fj o(x|Xpn) denote the con-
ditional density of Xy, given Xsp =xXsy-. The likelihood function

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



666 J. Moller and R. P. Waagepetersen Scand J Statist 34

L(0)=Eqfw.o (x| Xow)

may be computed using a missing data approach, see Geyer (1999) and Moller & Waagepe-
tersen (2003b). A simpler but less efficient alternative is the border method, considering the
conditional likelihood function

Swer 0w g | Xow.p)

where the score, observed information, and likelihood ratios may be computed by analogy
with the W =S case, cf. sections 5.3-5.4. These and other approaches for handling edge ef-
fects are discussed in Moller & Waagepetersen (2003b).

For a fixed R, the approximate (conditional) likelihood function can be maximized with re-
spect to 6 using Newton—Raphson updates. In our experience the Newton—Raphson updates
converge quickly, and in the examples below, the computing times for obtaining an MLE
are modest — less than half a minute. MLE’s of R are often found using a profile likelihood
approach, since the likelihood function is typically not differentiable and log concave as a
function of R.

Asymptotic results for MLE’s of Gibbs point process models are reviewed in Mgller &
Waagepetersen (2003b) but these results are derived under restrictive assumptions of station-
arity and weak interaction. According to standard asymptotic results, the inverse observed
information provides an approximate covariance matrix of the MLE, but if one is suspicious
about the validity of this approach, an alternative is to use a parametric bootstrap.

Example 6 (Maximum likelihood estimation for overlap interaction model). For the over-
lap interaction model in example 4, Moller & Waagepetersen (2003b) compute maximum
likelihood estimates using both missing data and conditional likelihood approaches. Letting
W =]0, 56] x [0, 38], the conditional likelihood approach is based on the trees with locations
in Wey, as trees with locations outside W do not interact with trees located inside Wep.
The conditional MLE is given by (,231,...,[?6)2(—1402, —0.41,0.60, — 0.67, —0.58, — 0.22)
and =—1.13. Confidence intervals for y obtained from the observed information and a
parametric bootstrap are [—1.61, —0.65] and [—1.74, —0.79], respectively. As expected, due
to the repulsive interaction term in the conditional intensity (30), the i?k tend to be larger
than expected under the Poisson model with y =0. This is illustrated in Fig. 11 (left plot),
where the exp(ffk) are shown together with relative frequencies of trees within each of the
six size classes (the frequencies are proportional to the MLE of the exp(f5;) under the
Poisson model). The fitted overlap interaction process seems to capture well the second
order characteristics for the point pattern of tree locations; see Fig. 11 (right plot).

Example 7 ( Maximum likelihood estimation for ants’ nests). Hogmander & Sarkka (1999)
consider a subset of the data in Fig. 5 within a rectangular region, and they condition on
the observed number of points for the two species when computing MLE’s and MPLE’s
for the hierarchical model described in example 5, whereby the parameters f,, and f.
vanish. Instead we fit the hierarchical model to the full data set, we do not condition on the
observed number of points, and we set rcy =0. No edge correction is used for our MLE’s,
but in example 12 we compare maximum pseudo-likelihood estimates (section 8.1) obtained
both with and without edge correction. The MLE’s ZiM =—-8.39 and @M =—0.06 indicate
a weak repulsion within the Messor nests, and the MLE’s BC=—9.24, @CM:O.O4, and
I,IA/C=70.39 indicate positive association between Messor and Cataglyphis nests, and repul-
sion within the Cataglyphis nests. Confidence intervals for y,, are [—0.20,0.28] (based on

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



Scand J Statist 34 Modern statistics for spatial point processes

667

0.0

-0.5

L(r)-r

-1.0

r

Fig. 11. Model assessment for Norwegian spruces (example 6). Dark grey bars: frequencies of trees for
the six size classes (scaled so that light and dark bars are of the same height for the first class). Light
grey bars: MLE of exp(fi;), k=1,..., 6. Right plot: estimated L(r)—r function for spruces (solid line)
and average and 95% envelopes computed from simulations of fitted overlap interaction model (dashed

lines).

observed information) and [—0.16, 0.30] (parametric bootstrap). To avoid the phase transition
property of the Strauss hard core process (example 5), we restrict /- <0 in the Monte
Carlo computations for the bootstrap simulated data sets. The results in Hogmander &
Sarkka (1999) differ from ours, since they estimate a stronger repulsion within the Cataglyphis
nests and a weak repulsion between the two species. This seems partly due to the fact that
Hogmander & Séarkka (1999) use a smaller observation window which excludes a pair of very

close Cataglyphis nests, see also example 12.

7.3. Cox process models

We consider MLE for shot noise Cox processes and log Gaussian Cox processes.

In the case of a shot noise Cox process (section titled ‘Shot noise Cox processes’), suppose
that the parameter vector 0= (o, w) consists of components o and w parameterizing respec-
tively the intensity function {, of ® and the kernel k(c, ) =k(c, -;w). Let f(x|A) denote the
Poisson density of Xy, given A(-)= A(-; @, w). For simplicity assume that & is of bounded sup-
port, i.e. there exists a bounded region W = W,, > W so that k(c, u; w) =0 whenever c € R?\ |74

and u€ W. The likelihood
LO=Ef (x| AC:®,0) =Eof (x| AG; D, 0))

is then given in terms of an expectation with respect to the Poisson process @y =
{(c,y)€®|ce W}. We assume moreover that Jo7 Cu(e,y) dy<oo whenever ¢ € W. Thereby
@y, is finite and we let f}; (-; «) denote the Poisson process density of @ ;. Choose a reference
parameter value 6y = (o, @p). Then L(0) is the normalizing constant of /(x| A(:; @, w))f; (¢; o)
viewed as an unnormalized density for the conditional distribution of @, given Xy =x. Con-

sequently, in analogy with (44),
/(X AG g, 0))fi (@2)
1 (XIAG @, 00))fi (@0)

Xw—x

L(O)/L(00) =E,,
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which can be approximated using samples from the conditional distribution of ®; given
Xy =x and 0=10,. Let

Vox(@y)= dlog(f (x| A Dy, )f (@55 0))/d6.

The score function and observed information are given by
u(0)=E[Vy (D) | Xw =X]

and
j(0)=—E, [ AV n( @) dOT | Xy =x] — varg [Vox(®5) | Xy =x].

Approximations of these conditional expectations can be obtained by applying importance
sampling (section 8.6.2 in Meller & Waagepetersen, 2003b). Samples from the conditional
distribution of @ can be generated using MCMC, see section 9.2.

For a log Gaussian Cox process (see section titled ‘Log Gaussian Cox processes’), we con-
sider a finite partition C;, i €I, of W and approximate the Gaussian process (W(u)).cw
by a step function with value W(x;) within C;, where u; is a representative point in C;. We
then proceed in a similar manner as for shot noise Cox processes, but now computing
conditional expectations with respect to the finite Gaussian vector (W(u;))ic; given Xy =x.
Conditional samples of (W(u;));c; may be obtained using Langevin—-Hastings MCMC algo-
rithms, see section 10.2.3 in Moller & Waagepetersen (2003b).

Asymptotic results for MLE’s have been established for certain Cox process models defined
on the real line, see Jensen (2005) and the references therein, but we are not aware of any
such results for spatial Cox processes.

Example 8 ( Maximum likelihood estimation for North Atlantic whales). For the shot noise
Cox process model in example 2, the unknown parameters are the intensity x of the cluster
centres, the mean number o of whales per cluster, and the standard deviation w of the
Gaussian density. As it is difficult to evaluate the components of the score function and
observed information corresponding to the parameter @, Waagepetersen & Schweder (2006)
compute the profile log likelihood function /,(w) =max,, , log L(0) for a finite set of values
o,. This is done using (46) repeatedly, i.e. by cumulating log likelihood ratios log L(0;4 1) —
logL(@,), where @;z(fc/, Gy, w;) and (&, &) =argmax. ,log L(x, o, ;) is obtained using
Newton—-Raphson. The profile likelihood function is shown in Fig. 12 (left plot) and gives
®=0.6 with corresponding values «=0.025 and a=2.4. These estimates yield an estimated
whale intensity of 0.06 whales/km? with a 95% parametric bootstrap confidence interval
[0.03,0.08]. Figure 12 (right plot) shows the fitted L-function; note the high variability of the
non-parametric estimate of the L-function, cf. the envelopes computed from simulations of
the fitted model. For this particular example, the computation of the profile likelihood func-
tion is very time consuming and Monte Carlo errors occasionally caused negative definite
estimated observed information matrices. From a computational point of view, the Bayesian
approach provides a more feasible alternative, see example 9.

7.4. Bayesian inference

To compute posterior distributions for 0 in a fully Bayesian approach to inference, we need
to know the likelihood function for all values of 0. For a Gibbs point process, the com-
putational problems which arise because of the need to evaluate the unknown normalizing
constant are therefore even harder than for finding the MLE (section 7.2) or the maximum «a
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Fig 12. Fitting a shot noise Cox process model to the North Atlantic whales data set. Upper plot:
profile log likelihood function /,(w)=max, ¢y log L(0) obtained by cumulating estimated log likelihood
ratios, see text. The small horizontal bars indicate 95% Monte Carlo confidence intervals for the log
likelihood ratios. Lower plot: non-parametric estimate of L(r)—r (solid line), 95% confidence envelopes
based on simulations of fitted shot noise Cox process (dotted lines), L(r) —r=0 for a Poisson process
(lower dashed line), and L(r)—r>0 for the fitted shot noise Cox process (upper dashed line).

posteriori estimate (Heikkinen & Penttinen, 1999). Based on perfect simulation (section 9.3)
and auxiliary variable MCMC methods (Meller et al., 2006), progress on Bayesian inference
for Markov point processes has been made in Berthelsen & Moeller (2003, 2004, 2006,
2007).

In the examples below, we restrict attention to Cox processes for which the Bayesian
approach is quite appealing from a computational point of view. The need for computing
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the likelihood function is eliminated by a demarginalization strategy, where the unknown
random intensity function or cluster centre process is considered as an unknown parameter
along with the original parameter 0. This simplifies computations, since the likelihood of
the data given 0 and the random intensity function is just a Poisson likelihood function.
References on Bayesian inference for Cox processes include Heikkinen & Arjas (1998),
Wolpert & Ickstadt (1998), Best, Ickstadt & Wolpert (2000), Cressie & Lawson (2000), Meller
& Waagepetersen (2003a, 2003b), Benés et al (2005) and Waagepetersen & Schweder
(2006).

Example 9 (Bayesian inference for North Atlantic whales). In Waagepetersen & Schweder
(2006), the unknown parameters x, o and o (examples 2 and 8) are assumed to be a priori
independent with uniform priors on bounded intervals for k and @ and an informative N(2, 1)
(truncated at zero) prior for o (the whales are a priori believed to appear in small groups of
one to three animals). Posterior distributions are computed by extending an MCMC algo-
rithm for simulation of the cluster centres (see section 9.2) with random walk MCMC updates
for k, « and w. The posterior means for x, « and w are 0.027, 2.2 and 0.7, and the posterior
mean of the whale intensity is identical to MLE. There is moreover close agreement between
the 95% confidence interval (example 8) and the 95% central posterior interval [0.04,0.08]
for the whale intensity.

Example 10 (Bayesian inference for tropical rainforest trees). Considering the log
Gaussian Cox process model for the tropical rainforest trees (example 1), we assume that =
(B, By, B3), 0, and a are a priori independent, and use an improper uniform prior for  on R,
an improper uniform prior for ¢ on [0.001, 00), and a uniform prior for loga with 1 <o <235.
For a discussion of posterior propriety in similar models, see Christensen ez al. (2000). The
Gaussian process is discretized to a 200 x 100 grid, and the posterior distribution of the dis-
cretized Gaussian process and the parameters is computed using MCMC with Langevin—
Hastings updates for the Gaussian process (section 7.3). The marginal posterior distributions
of 8, logao, and logo are approximately normal. Posterior means and 95% central poster-
ior intervals for the parameters of primary interest are 0.06 and [0.02,0.10] for f3,, 8.76 and
[6.03,11.37] for 5, 1.61 and [1.44,1.85] for g, 42.5 and [32.1, 56.45] for o. Figure 13 shows
the posterior means of the systematic part f§; + f,z2(u) + f3z3(u) (upper plot) and the random
part W(u) (lower plot) of the log random intensity function (8). The systematic part seems
to depend more on z; (norm of altitude gradient) than z, (altitude), cf. Fig. 3. The fluc-
tuations of the random part may be caused by small scale clustering due to seed dispersal
and covariates concerning soil properties. The fluctuation may also be due to between-species
competition.

Denote by L(r; X, 6) the estimate of the L-function obtained from the point process X using
(41) with p(u) replaced by the parametric intensity function p,(u) =exp (z(u)ﬁT + 0'2/2) for X
given 0. Following the idea of posterior predictive model checking (Gelman et al., 1996), we
consider the posterior predictive distribution of the differences A(r)=L(r;x, 0) — L(r;X, 0),
r>0, i.e. the distribution obtained when (X, 0) are generated under the posterior predictive
distribution given the data x. If zero is an extreme value in the posterior predictive distribu-
tion of A(r) for a range of distances r, we may question the fit of our model. Figure 14
shows 95% central envelopes obtained from posterior predictive simulations of A(r). The
plot indicates that our model fails to accomodate clustering for small values of r less than
10m.
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Fig. 13. Posterior mean of S|+ fyz2(u)+ f3z3(u) (upper) and ¥(u) (lower), u € W, under the log
Gaussian Cox process model for the tropical rainforest trees.

8. Simulation free estimation procedures

This section reviews quick non-likelihood approaches to inference using various estimating
functions based on either first- or second-order properties of a spatial point process. Other
approaches for obtaining estimating equations for spatial point process models are studied
in Takacs (1986) and Baddeley (2000).

In section 8.1, estimating functions based on the (conditional) intensity function are moti-
vated heuristically as limits of composite likelihood functions (Lindsay, 1988) for Bernoulli
trials concerning absence or presence of points within infinitesimally small cells partitioning
the observation window. Section 8.2 considers minimum contrast or composite log likelihood
type estimating functions based on second-order properties. In case of minimum contrast esti-
mation, the parameter estimate minimizes the distance between a non-parametric estimate of
a second-order summary statistic and its theoretical expression.

8.1. Estimating functions based on intensities

For a given parametric model with parameter 0, suppose that the intensity function p,
is expressible in closed form. Consider a finite partitioning C;, i€ I, of the observation
window W into disjoint cells C; of small areas |C;|, and let u; denote a representative point
in C;. Let N;=1[N(C;)>0] and p;(0) =Py(N; =1). Then p;(0) = p,(u;)| C;|, and the composite
likelihood based on the N;, i€1, is

[ 1P =pi@) " = T [(pou)| G (1 = pylun)| i)' .
iel i

We neglect the factors |C;| in the first part of the product, since they cancel when we form
likelihood ratios. In the limit, under suitable regularity conditions and when the cell sizes |C;|
tend to zero, the log composite likelihood becomes
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Fig 14. Tropical rainforest trees: 95% central envelopes obtained from posterior predictive simulations
of A(r).

S log py(u) — /W po0) du

uex

which coincides with the log likelihood function (42) in the case of a Poisson process. The
corresponding estimating function is given by the derivative

Y1(0)=_ dlog py(u)/d0 — /W (dlog py(u)/d0)p,(u) du. @7)
uex

By the Campbell theorem (4), y,(0)=0 is an unbiased estimating equation, and it can easily
be solved using, e.g. spatstat, provided p, is on a log linear form. For Cox processes, as
exemplified in example 11 below, the solution may only provide an estimate of one component
of 0, while the other component may be estimated by another method. Asymptotic properties
of estimates obtained using (47) are derived in Schoenberg (2004) and Waagepetersen (2007).
For a Gibbs point process, it is more natural to consider the Papangelou conditional inten-
sity Ag. Hence, we redefine p;(0) =Pyo(N;=1|X\ C)) = Zo(u;, X\ C;)|C;|. In this case the limit

of log [T,(pi(0)/|Ci[)™1 (1 — pi(0)' " becomes

Zlog Ao(u, x)f/ Ao(u, x) du
w

uex

which is known as the log pseudo-likelihood function (Besag, 1977; Jensen & Maoller, 1991).
By the GNZ formula (31), the pseudo-score

s(0)= Z dlog Zg(u,x) /d0— / (dlog Ag(u, x) /d0)Ag(u, x) du
w

uex

provides an unbiased estimating equation s(6)=0. This can be solved using spatstat if 4y
is on a log linear form (Baddeley & Turner, 2000).
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Example 11 (Estimation of the intensity function for tropical rainforest trees). For both the
log Gaussian Cox process model in example 1 and the inhomogeneous Thomas process model
in example 3, the intensity function is of the form exp(z(u)(B,, . B3)7), where f, =a2/2+
for the log Gaussian Cox process and fil =log(ka) for the inhomggeneous Thomas process.

Using the estimating function (47) and spatstat, we obtain (f,, f,, ;) =(—4.989,0.021,
5.842), where f§, and i, are smaller than the posterior means obtained with the Bayesian
approach in example 10. The estimate of course coincides with the MLE under the Poisson
process with the same intensity function. Estimates of the clustering parameters, i.e. (¢2, o)
respectively (x, w), may be obtained using minimum contrast estimation, see example 13.

Assuming ([32, [33) is asymptotically normal (Waagepetersen, 2007), we obtain approximate
95% confidence intervals [—0.018,0.061] and [0.885, 10.797] for 8, and f;, respectively. Under
the Poisson process model much more narrow approximate 95% confidence intervals [0.017,
0.026] and [5.340, 6.342] are obtained.

Example 12 ( Maximum pseudo-likelihood estimation for ants’ nests). For the hierarchical
model in example 5, we first correct for edge effects by conditioning on the data in W'\ Weys.
Using spatstat, the maximum pseudo-likelihood estimate (MPLE) of (f,,, ¥,,) is (—8.21,
—0.09), indicating (weak) repulsion between the Messor ants’ nests. Without edge correction,
a rather similar MPLE (—8.22, —0.12) is obtained. The edge corrected MPLE of (B¢, Y cuss ¥ )
is (—9.51,0.13, —0.66), indicating a positive association between the two species and repul-
sion within the Cataglyphis nests. If no edge correction is used, the MPLE for (S, ¥ ¥ )
is (—9.39,0.04, — 0.30). As mentioned in example 7, Hogmander & Séarkka (1999) also found
a repulsion within the Cataglyphis nests, but a weak repulsive interaction between the two
types of nests. Baddeley & Turner (2006) modelled the Messor data conditional on the Cata-
glyphis data using an inhomogeneous Strauss hard core model and found that an apparent
positive interspecies’ interaction was not significant. Notice that this is a ‘reverse’ hierarchical
model compared to our and Hogmander & Sarkkéd’s model.

The differences between the MLE in example 7 and the MPLE (without edge correction)
seem rather minor. This is also the experience for MLE’s and corresponding MPLE’s in
Moller & Waagepetersen (2003b), though differences may appear in cases with a very strong
interaction.

8.2. Estimating functions based on the g or K-function

The pair correlation function g and the K-function in some sense describe the ‘normalized’
second order properties of a point process, cf. (5) and (40). For many Cox processes, g or
K has a closed form expression depending on the ‘clustering parameters’ of the model. Ex-
amples include log Gaussian Cox processes (see section titled ‘Log Gaussian Cox processes’)
and inhomogeneous Neyman-Scott processes with random intensity functions of the form
(12) where k is a radially symmetric Gaussian density or a uniform density on a disc. Clus-
tering parameter estimates may then be obtained using so-called minimum contrast estimation.
That is, using an estimating function given in terms of a discrepancy between the theoreti-
cal expression for g or K and a non- or semi-parametric estimate § or K, e.g. (41) where p
could be a parametric estimate obtained from (47). This is illustrated in example 13 for the
K function. Minimum contrast estimation based on the g-function is considered in Meller
et al. (1998). Asymptotic properties of minimum contrast estimates are derived in the case
of stationary processes in Heinrich (1992) and Guan & Sherman (2007).
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Alternatively, we may consider an estimating function based on the second order product
density pgz)(u, v) (Waagepetersen, 2007):

7&
Pa)=">" dlogp(u, v)/d0 - / (dlog PP, v)/dO) pP(u, v) du do. (48)
w2

u, vEX

This is the score of a limit of composite log likelihood functions based on Bernouilli obser-
vations N; =1[N(C;)>0, N(C;)>0], i#;. Unbiasedness of ,(0) =0 follows from Campbell’s
theorem (4). The integral in (48) typically must be evaluated using numerical integ-
ration. In the stationary case, Guan (2006) considers a related unbiased estimating function,
where the integral in (48) is replaced by the number of pairs of distinct points times
log [, PP (u, v) du dv.

Example 13 ( Minimum contrast estimation of clustering parameters for tropical rainforest trees).
The solid curve in Fig. 9 shows an estimate of the K-function for the tropical rain-
forest trees obtained using (41) with p given by the estimated parametric intensity function
from example 11. For the inhomogeneous Thomas process, a minimum contrast estimate
(&, ®)=(8 x 107>, 20) is obtained by minimizing

100

(K" = K(r; 1, 0)")? dr (49)
0

where
K(r;x, 0)y=mr? 4+ (1 —exp(—r*/(40?)))/x

is the theoretical expression for the K-function. For the log Gaussian Cox process, we cal-
culate instead the theoretical K-function

K(r;o,0)= Zn/ sexp(o? exp(—s/a)) ds
0

using numerical integration, and obtain the minimum contrast estimate (&, &) =(1.33,34.7).
The estimated theoretical K-functions are shown in Fig. 9.

Minimum contrast estimation is computationally very easy. A disadvantage is the need to
choose certain tuning parameters like the upper limit 100 and the exponent 1/4 in the integral
(49). Typically, these parameters are chosen on an ad-hoc basis.

Example 14 (Simultaneous estimation of parameters for tropical rainforest trees). To estimate
the parameters (Bl, B, p3) and (x, w) for the inhomogeneous Thomas process (see example
11) simultaneously, we apply the estimating function ¥, (48). We solve ,(0)=0 using a
grid search for w combined with Newton-Raphson for the remaining parameters (Newton-
Raphson for all the parameters jointly turns out to be numerically unstable). We then search
for an approximate solution with respect to o within a finite set of w-values. The resulting
estimates of (Bl,ﬁ2,/}3) and (k,w) are respectively (—5.001,0.021,5.735) and (7 x 1073, 30).
The estimate of w differs considerably from the minimum contrast estimate in example 13,
while the remaining estimates are quite similar to those obtained previously for the inhomo-
geneous Thomas process in examples 11 and 13. The numerical computation of ¥, and its
derivatives is quite time consuming, and the whole process of solving ,(0) =0 takes about
75 minutes.
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9. Simulation algorithms

As demonstrated several times, due to the complexity of spatial point process models, simu-
lations are often needed when fitting a model and studying the properties of various statistics
such as parameter estimates and summary statistics. This section reviews the most applicable
simulation algorithms.

9.1. Poisson and Cox processes

Even in the simple case of a Poisson point process, simulations are often needed, see e.g.
Fig. 10. Simulation of a Poisson process within a bounded region is usually easy, using
(1)—(ii) in section 4.1 or other simple constructions (section 3.2.3 in Moller & Waagepeter-
sen, 2003b).

For simulation of a Cox process on a bounded region S, given a realization of the random
intensity function (A(u)),cs, it is just a matter of simulating the Poisson process with intensity
function (A(u)),es. Details on how to simulate (A(u)),cs depend much on the particular type
of Cox process model. For a log Gaussian Cox process, there are many ways of simulating
the Gaussian process (log(A(u))),es, see e.g. Schlather (1999), Lantuejoul (2002), and Moller
& Waagepetersen (2003b). For a shot noise Cox process, edge effects may occur since the
Poisson process @ in (10) may be infinite or extend beyond S, and so clusters associated to
centre points outside S may generate points of the shot noise Cox process within S. Brix &
Kendall (2002), Meller (2003) and Meller & Waagepetersen (2003b) discuss how to handle
such edge effects.

9.2. Point processes specified by an unnormalized density

In this section, we consider simulation of a finite point process X with density f oc/# with
respect to the unit rate Poisson process defined on a bounded region S, where / is a ‘known’
unnormalized density. The normalizing constant of the density is not assumed to be known.

Simulation conditional on the number of points n(X) can be done using a variety of
Metropolis—Hastings algorithms, since the conditional process is just a vector of fixed
dimension when we order the points as in the density (17). Most algorithms used in practice
are a Gibbs sampler (Ripley, 1977, 1979) or a Metropolis-within-Gibbs algorithm, where at
each iteration a single point given the remaining points is updated, see Moller & Waagepetersen
(2003b, section 7.1.1).

Without conditioning on n(X), the standard algorithms are discrete or continuous time
algorithms of the birth—death type, where each transition is either the addition of a new point
(a birth) or the deletion of an existing point (a death). The algorithms can easily be extended
to birth-death-move type algorithms, where, e.g. in the discrete time case the number of points
is retained in a move by using a Metropolis—Hastings update as discussed in the previous
paragraph, see Moller & Waagepetersen (2003b, section 7.1.2).

For instance, in the discrete time case, a simple Metropolis—Hastings algorithm updates
a current state X, =x of the Markov chain as follows (Norman & Filinov, 1969; Geyer &
Moller, 1994). Assume that 4 is hereditary, and define r(u, x) = A(u, X)|S|/(n(x) + 1) where, as
usual, 4 is the Papangelou conditional intensity. With probability 0.5 propose a birth, i.e.
generate a uniform point u in S, and accept the proposal X, =xU{u} with probability
min{1, r(u,x)}. Otherwise propose a death, i.e. select a point u € x uniformly at random,
and accept the proposal X, =x\ {u} with probability min{l, 1/r(u,x\ {u})}. As usual in
a Metropolis—Hastings algorithm, if the proposal is not accepted, X, =X.
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This algorithm (like many other Metropolis—Hastings algorithms studied in Chapter 7 in
Moller & Waagepetersen, 2003b) is irreducible and aperiodic with invariant distribution f
in fact it is time reversible with respect to f. In other words, the distribution of X, converges
towards f. Moreover, if / is locally stable, the rate of convergence is geometrically fast, and
a central limit theorem holds for Monte Carlo errors (Geyer & Mpgller, 1994; Geyer, 1999).

An analogous continuous time algorithm is based on running a spatial birth—death pro-
cess X, with birth rate A(u,x) and death rate 1. This is also a reversible process with invari-
ant density f (Preston, 1976; Ripley, 1977). Convergence of X, towards f holds under weak
conditions, and local stability of & implies geometrically fast convergence (Mgller, 1989).

If 7 is highly multimodal, e.g. in the case of a strong interaction like in a hard-core model
with a high packing density, the birth-death (or birth-death-move) algorithms described
above may be slowly mixing. The algorithms may then be incorporated into a simulated
tempering scheme (Geyer & Thompson, 1995; Mase et al., 2001).

9.3. Perfect simulation

One of the most exciting recent developments in stochastic simulation is perfect (or exact)
simulation, which turns out to be particular applicable for locally stable point processes (Ken-
dall, 1998; Kendall & Maoller, 2000). By this we mean an algorithm where the running time
is a finite random variable and the output is a draw from a given target distribution (at least
in theory — of course the use of pseudo random number generators and practical constraints
of time imply that we cannot exactly return draws from the target distribution).

The most famous perfect simulation algorithm is due to Propp & Wilson (1996). It is
based on a coupling construction called coupling from the past (CFTP), which exploits the
fact that any Markov chain algorithm, at least when it is implemented on a computer, can
be viewed as a so-called stochastic recursive sequence X,, ;= ¢(X;, R,), where ¢ is a deter-
ministic function and the R, are i.i.d. random variables. The updating function ¢ is sup-
posed to be monotone with respect to some partial order <, that is, x <y implies ¢(x,r) <
&(v,r). Further, it is assumed that there exist unique minimal and maximal states 0 and 1,
so 0 <x <1 for any state x. The coupling construction is based on pairs of upper and
lower dominating chains generated for n=1,2,... by U/, | =¢(U/', R,) and L} ,=¢(L}, R,),

t+1

t=T,T,+1,..., — 1, where Uz, =1 and L7 =0, and the starting times T, <0 decrease to
—oo for n=1,2,.... Note that the R, are re-used for all n=1,2,.... By monotonicity and the

coupling construction, if X7, =x for an arbitrary state x, we have the sandwiching property
L"< X, < U" and the funneling property L" < L'*!' < UM+ < U", t=T,,...,0. Moreover, if
L!=U} then L} =U for s <t<0. Consequently, if the Markov chain is ergodic and with
probability one, Lj = U] for some sufficiently large n, then we need only to generate the pairs
of upper and lower chains (U", L") until we have coalescence at time 0, since Lj= U} will
follow the equilibrium distribution of the chain.

The Propp-Wilson algorithm applies only for a few spatial point process models
(Héggstrom et al., 1999; Moller & Waagepetersen, 2003b, Chapter 11). For the natural partial
ordering given by set inclusion, the empty point configuration is the unique minimal state, but
there is no maximal element. This problem is solved by a modification of the Propp—Wilson
algorithm, called dominating CFTP (Kendall & Moller, 2000), where the coupling construc-
tion is a dependent thinning from a dominating spatial birth—death process which is easy to
simulate. The algorithm does not assume monotonicity, and it applies to perfect simulation
for locally stable point processes. For instance, a spatial birth-death algorithm for a repulsive
Gibbs point process is anti-monotone, but this problem can be fixed by a certain cross-over
trick due to Kendall (1998). For an introduction to the dominated CFTP algorithm,
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including empirical findings and a discussion on how to choose the sequence of starting times
T,, see Berthelsen & Magller (2002) and Meller & Waagepetersen (2003b, Chapter 11).

10. Directions for future research
10.1. Spatial point pattern data sets

In this paper, we have for illustrative purposes and to limit space considered relatively
simple examples of data sets, where we could compare our results with results published
elsewhere. We have also not discussed more complicated models involving, for example, both
thinnings, movements, and superpositioning of points (Lund & Rudemo, 2000) or spatial
point processes generating geometric structures such as Voronoi tessellations (Baddeley &
Moller, 1989; Blackwell & Magller, 2003; Skare et al., 2006).

Many scientific problems call for new spatial point process methodology for analyzing com-
plex and large data sets (often with marks and possibly in space-time). For example, in the
tropical rainforest example, the data for the Beilschmiedia trees are just a very small part of a
very large data set containing positions and diameters at breast height for around 300 species
recorded over several instances in time, and between-species competition (which is ignored in
our analysis) should of course be taken into account (see, e.g. Illian, Moller & Waagepetersen,
2007). Another example is the Sloan Digital Sky Survey with millions of galaxies, where it
is of interest to model the clustering of galaxies. One question of practical importance is,
in which cases might the quick non-likelihood approaches be sufficient and how to choose
between them.

10.2. Inhomogeneity

We have pointed out that stationarity is often not a reasonable assumption, and the focus
on summary statistics based on the stationarity assumption (such as F, G, J) is therefore
often out of place. In our experience, it is often sufficient to consider K or g, which also are
well-defined in non-stationary situations. Residual analysis (Baddeley et al., 2005) does not
require stationarity, and using the GNZ-formula (31) or (32), it can be meaningful to use
functionals related to F, G, J in inhomogeneous cases (Baddeley ez al., 2007b).

Often we need to specify an inhomogeneous point process model. For Poisson and Cox
processes, log linear modelling as in examples 1 and 3 can be a useful approach, but it may
not always be scientifically reasonable. Furthermore, how much of the inhomogeneity should
be explained by varying intensity (first order effect) and how much by clustering (second
order property)? The same problem of unidentifiability is encountered in geostatistics (trend
versus spatial correlation).

For Gibbs point processes, as exemplified by the model for the Cataglyphis ants’ nests in
example 5, a simple way of modelling inhomogeneity is to introduce a non-constant first-
order potential (Ogata & Tanemura, 1986; Stoyan & Stoyan, 1998; Berthelsen & Moller,
2007). Another possibility is to consider an independent, but possibly inhomogeneous, thin-
ning of a stationary Gibbs point process, in which case we have second-order intensity
reweighted stationarity (Baddeley ez al, 2000). Yet other constructions, using transforma-
tions of homogeneous Markov point processes and location dependent scaling, are studied
in Jensen & Nielsen (2000), Hahn, Van Lieshout, Jensen & Nielsen (2003), and Nielsen &
Jensen (2004). It is an open problem to extend asymptotic results for MLE (and to some
extend also MPLE) to non-stationary situations.

Often, when inhomogeneity is modelled in terms of covariates observed on a grid, we face
a missing data problem, as the likelihood function depends on the covariate at any location
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in the observation window. In the tropical rainforest example, we assumed constant values
of the covariates within grid cells, but this may not be appropriate when the covariates are
observed on coarser grids. For the case of Poisson processes, the missing covariate problem
is considered in Rathbun (1996) and Rathbun, Shiffman & Gwaltney (2007).

10.3. Gibbs and other point processes

Markov or more generally Gibbs point processes originated naturally in statistical physics as
models for the study of phase transition behaviour and other physical phenomena. In spatial
statistics, Ripley (1977) noted that Markov point processes can be considered as the equi-
librium state of a reversible spatial birth—death process (section 9.2).We question their popu-
larity in spatial statistics for the following reasons.

Indeed, Markov point processes provide a flexible framework for modelling repulsive
spatial interaction as exemplified by the overlap model for the Norwegian spruces. However,
although the modelling using the influence zones is based on biological reasoning, one may
object that the model fails to reflect that the observed spatial pattern is the result of an on-
going dynamic development of the forest. In fact, for this and many other application areas,
we do not believe that spatial point patterns can be viewed as the equilibrium state of a
reversible spatial birth-death process.

The estimation of the interaction range R is a tricky issue which seems to require compu-
tation of a profile likelihood (or pseudo-likelihood) over a finite grid of R values. It is not
clear how to obtain e.g. confidence intervals for this parameter. A parametric bootstrap is a
computationally involved possibility although more research on the usefulness of this
approach seems required. The same can be said about Bayesian inference with a prior im-
posed on R (Berthelsen & Maeller, 2003, 2004, 2006, 2007).

There is a lack of satisfactory Gibbs point processes modelling attractive spatial inter-
action. As discussed in example 5, Strauss point processes with a hard core are not so flexible
due to a kind of phase transition behaviour; see also Gates & Westcott (1986) and Meller
(1999). The Widom—Rowlinson model or area-interaction point process, which is another well
known Gibbs point process with attractive spatial interaction (Widom & Rowlinson, 1970;
Baddeley & Van Lieshout, 1995), may be inflexible as well because of a somewhat similar
phase transition behaviour (Haggstrom et al, 1999). The saturation and triplet point pro-
cesses in Geyer (1999) are other examples of models for attraction between points, but in
applications the interpretation of these models is not clear. In contrast, we find Cox process
models more natural, and more generally we find hierarchical model constructions relevant,
cf. example 5 and Illian, Moller & Waagepetersen (2007).

As mentioned several times, closed form expressions for spatial point process densities are
rare. Shirai & Takahashi (2003) and McCullagh & Magller (2006) study a large model class
of non-Poisson point process models, called the permanental and determinantal processes in
McCullagh & Moller (2006), where both the density of the process and the product densi-
ties are of an analytic form. The processes possess many other appealing properties, and the
permanental process models aggregation of points (in some cases it is a Cox process), while
the determinantal process models repulsion. It remains to investigate the processes thoroughly
in connection to statistical inference.

10.4. Computational issues

Some of the earliest applications of computational methods and particularly MCMC
methods in statistics are related to spatial point processes (Meoller & Waagepetersen, 2003b,
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section A.1). As discussed in section 7, maximum likelihood inference is now quite feasible for
Markov point processes. For Cox processes, likelihood-based inference is computationally
more involved. The computing times can be discouraging and research to obtain more effi-
cient Monte Carlo methods for Cox processes seems needed. For log Gaussian Cox
processes, promising results in Rue & Martino (2005) suggest that it may be possible to com-
pute accurate approximations of posterior distributions without MCMC.

In the future, we expect simulation-based methods to play an increasingly important role
for spatial point process modelling and inference, though quick explorative tools and simu-
lation free estimation procedures will still be useful. Because of the fast increase in computer
power, we expect e.g. the development and use of perfect simulation techniques (section 9.3)
to become of much more practical relevance, especially in connection to Bayesian inference
(Berthelsen & Magller, 2003, 2004, 2006, 2007). Also the techniques in Meoller & Mengersen
(2007a, 2007b) for calculating ergodic averages, eliminating the problem of finding the burn-
in by using upper and lower dominating processes but without the need of doing perfect
simulation, should be studied in connection to spatial point process models. Simulation-
based methods for the permanental and determinantal processes mentioned in section 10.3
have not yet been investigated. In this connection, an open problem is to develop and imple-
ment efficient algorithms for calculation of cyclic products and permanent polynomials.

In order to make statisticians familiar with spatial point process modelling and inference,
there is an obvious need for user-friendly software. We therefore much appreciate the devel-
opment of spatstat, which offers a wide range of procedures for manipulation of point
pattern data, residuals, summary statistics, and maximum pseudo-likelihood estimation
(Baddeley & Turner, 2005, 2006); see also the other references to software in Moller &
Waagepetersen (2003b, Appendix A.3).

10.5. Spatio-temporal point processes

Because of space constraints, apart from sections 9 and 10.3, we have not considered space-
time point processes. One challenge is to develop tractable and yet interesting continuous-
time models, when spatial point process data are only available at discrete times; see, e.g. the
spatio-temporal extensions of log Gaussian Cox processes studied in Brix & Moller (2001)
and Brix & Diggle (2001), and the comparison of discrete and continuous time point pro-
cesses in Rasmussen et al. (2007). For space-time point processes in general, we refer to Daley
& Vere-Jones (2003), Moller & Waagepetersen (2003b, section 2.4), Diggle (2005), Lawson
(2006), and the references therein.

10.6. Conclusion

In conclusion, spatial point processes and their applications have undergone major develop-
ments in recent years, and we expect they will continue to do so, as statisticians and scientists
become aware of their importance and the tools for performing statistical analyses and, not
the least, the challenges of developing new tools.
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