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ABSTRACT 
Geostatistics grew from meteorologists' desire to interpolate weather characteristics from sparse data, and from mining 
engineers who wanted to estimate quantities of minerals in bodies of rock from drill cores. In both cases the properties of 
interest behaved as spatially correlated random variables. Practice in mining is now underpinned by sound theory, the 
theory of regionalized variables. It is widely recognized that the theory is properly applicable in many other branches of 
earth, atmospheric and marine science. 

Part I of this paper reviews the more elementary aspects of the theory and its assumptions. It describes the method of 
local estimation embodied in regionalized variable theory known as kriging. The central tool of geostatistics is the 
variogram, which expresses quantitatively and succinctly spatially correlated variation, and its estimation is described. The 
more common forms of variogram are illustrated, and authorized models for them are listed. There are sound procedures for 
choosing and fitting models to variograms now using well-tried computer programs such as MLP and Genstat. 

Regionalized variable theory provides geographers with a concise and coherent methodology for describing and 
analysing spatially distributed data. 

KEY WORDS: Autocorrelation, Estimation, Geostatistics, Kriging, Modelling, Regionalized variable theory, Variogram 

INTRODUCTION are intuitively reasonable, but they lack intellectual 
rigour. One approach designed to put interpolation 

For many years geographers had to be content with on a sounder theoretical basis has been to treat 
the qualitative description of the variation of con- geographic attributes as mathematical variables that 
tinuous variables over the earth's surface and to depend on their positions on or above the earth's 
display it on maps. O n  these maps regions of interest surface; i.e. to treat their values as functions of their 
were divided into areas with a characteristic type of spatial coordinates. Thus geographers envisaged a 
rock, soil, vegetation, climate, or other attribute of model of the kind: 
concern. An exception in geography was topographic 
mapping: this represents a contrasting quantitative 
tradition that was followed later in meteorology. 

Geographers realized that they could not measure where z(x,y) is the value of a variable z at a place 
all the attributes that interested them with the same whose coordinates in two dimensions are x and y, and 
resolution as topographic height to produce accurate f denotes some deterministic function. The quantity e 
descriptions and maps. They usually had to work is an error term embracing random fluctuation plus 
from fragmentary information and to use it sensibly other residual information not described by the 
to estimate and predict the properties at intermediate function. Polynomial functions such as 
positions with confidence. 

Many techniques have been devised for interpola- 
tion and mapping. Most are quite empirical and many 
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have been popular. They are linear in their 
parameters, the spatial coordinates can usually be 
determined without serious error, and the equations 
can be fitted by standard regression techniques to 
produce 'trend surfaces'. This has the disadvantage 
that the deterministic element of the trend is not 
always present and if so it might not be very large. As 
it happens the random component is usually the 
larger of the two, and is often so large as to mask any 
deterministic variation. The natural properties of the 
earth's surface seem to behave as essentially random 
variables, albeit spatially dependent, rather than as 
mathematical ones. There appeared to be no general 
theory and methodology that were applicable to 
them. 

Similar problems of estimating and mapping 
properties arose in meteorology (Gandin, 1965) and 
in mining (Matheron, 1965) where the concentra- 
tions of minerals and the thickness of ore bodies 
vary in space. Gandin (1965) describes the application 
of optimum interpolation, developed by A. N. 
Kolmogorov as early as 1941, for estimating the 
values of atmospheric pressure and rainfall at sites 
between the recording stations. The need for sol- 
utions was more pressing in mining because of the 
enormous costs incurred, and it was in mining that 
the advance in spatial analysis was made. Matheron 
(1965, 1971) brought together a number of isolated 
results in spatial statistics (Kolmogorov, 1941; Krige, 
1951; Matem, 1960; Yaglom, 1962) into a coherent 
body of theory, the theory of regionalized variables. 
This theory describes comprehensively and quanti- 
tatively the kind of variation that is characteristic of 
geological deposits and many other properties of the 
earth's surface. All can be treated as spatially depen- 
dent random variables. Geostatistics is largely the 
application of this theory to practical problems. 

In Part I of this paper we summarize those aspects 
of regionalized variable theory that are most likely to 
be useful to physical geographers and environmental 
scientists. Part I1 (Oliver e t  al., 1989) brings together 
examples derived from several fields of study to illus- 
trate their application. 

Applications 
Regionalized variable theory was developed largely 
by Matheron at the Paris School of Mines, and it is 
now applied widely in mining (e.g., Guarascio e l  al., 
1976; David, 1977; Joumel and Huijbregts, 1978; 
Verly e t  al., 1984) for estimating the concentrations of 
minerals in ore bodies and recoverable reserves, and 
in planning operations. Geostatistical methods are 

applicable throughout the earth sciences, especially 
where information is fragmentary and there is a need 
to maximize its use. Examples of such applications 
include the mapping and modelling of ground water 
(Gambolati and Volpi, 1979; Kitanidis and Vomvoris, 
1983), rainfall monitoring (McCullagh, 1975), and 
the distribution of atmospheric pollutants (Lajaunie, 
1984). In soil science the methods have been used to 
estimate nutrients and other soil constituents at 
unvisited sites and over larger areas (Burgess and 
Webster, 1980; McBratney e t  al., 1982; Yost e t  al., 
1982a and b; Webster and McBratney, 1987), to 
improve the efficiency of sampling (Burgess e l  al., 
1981; Webster and Burgess, 1984; Oliver and 
Webster, 1986a), and to rationalize spatial classifi- 
cation (Wackemagel e l  al., 1988; Oliver and Webster, 
1989). Geostatistical methods can be used to explore 
the processes responsible for variation. Moffat e l  al. 
(1986) used geostatistics to determine the structure of 
the Chalk and Tertiary surfaces in the Chiltern Hills, 
and Yost e t  al. (1982a) and Oliver and Webster 
(1986b) to identify the causes of spatial variation in 
soil properties. 

Geostatistical procedures are also applicable where 
there is a complete cover of information. For instance, 
stereo plotters and satellite sensors can produce 
unlimited digital data that need to be sampled for 
storage, analysis and comparison with data from 
other sources (Atkinson e t  al., forthcoming). Sampling 
should be efficient whether the cover is complete 
or fragmentary, and this can be determined by a 
preliminary spatial analysis. 

Physical geographers can encounter both situations 
described above, and so geostatistics is potentially 
very valuable to  them. They can use it, for example, 
to estimate the values of properties at unsampled 
locations and over larger areas, determine the spatial 
scale of variation, plan efficient sampling, and deter- 
mine the structure or pattern in particular variables to 
suggest likely causes of the variation. 

THEORY 

The general statistical approach to prediction 
embodied in regionalized variable theory combines a 
deterministic component, such as that of trend surface 
analysis, with a stochastic one, so that the spatial 
variation in an attribute is expressed by 

where x denotes the spatial coordinates in one, two 
or three dimensions, the fk, k =  0, 1, . . ., are functions 
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of the spatial position, the a, are unknown coef-
ficients, and ~ ( x )is a random component that is itself 
spatially dependent. Thus, the first term on the right- 
hand side of equation ( 3 )represents the deterministic 
element of the variation, and the stochastic element is 
embodied in the second. As mentioned earlier, earth 
scientists have discovered empirically that the 
stochastic component is by far the larger in most 
instances. So for practical purposes all the variation 
can be represented by the second term in equation (3) ,  
and the first can be replaced by a constant to give 

where p, is the mean, and the quantity E ( X )  is the 
spatially dependent random component defined as 
follows. It has a mean of zero, 

and a variance defined by 

where h is a vector, the lag, that separates the two 
places x and x + h  in both distance and direction. 
Thus the variance of ~ ( x )depends on the separation h 
and not on the actual position of x .  Matheron realized 
that with a constant mean equation ( 6 )was equivalent 
to 

var[z(x)-z (x+h)]=E[{z(x)-Z ( X  +h))']=2y(h).  ( 7 )  

These assumptions that the mean and the variance 
of the differences are both stationary constitute 
Matheron's Intrinsic Hypothesis. The quantity y(h)is 
known as the semi-variance: it is half the expected 
squared difference between two values. As above, it 
depends on h ,  and the function that relates y to h is 
the semi-variogram or increasingly just the variogram. 
Where the intrinsic hypothesis holds, the variogram 
contains all the information about the s~a t ia l  vari- 
ation of the attribute of interest. Furthermore it 
enables the semi-variances to be estimated from a 
sample of a single realization of the underlying 
process: 

Where a variable is second-order stationary, i.e. 
where both the mean and variance are constant, the 
semi-variance is equivalent to the auto-covariance of 
time-series analysis. The covariance at lag h is 

where p is the mean of the attribute. The semi- 
variance is then 

where C ( 0 ) is the covariance at zero lag, or the a 
priori variance of the process. The autocorrelation 
coefficient, used in earth sciences by, for example, 
Nieuwenhuis and van den Berg (1971), Thornes 
(1973),and Webster and Cuanalo (1975) is closely 
related: 

In many instances the variance appears to increase 
without limit as the lag distance increases. There is no 
finite covariance then, and equations (a),  ( 9 )  and (10)  
do not apply. The covariance and autocorrelation 
functions cannot be used. The variogram, however, 
still exists, and because of its weaker underlying 
assumptions it is useful in a wider range of situations. 
In particular, it can be used with greater confidence 
for reconnaissance when little or nothing is known 
beforehand. 

In large regions the mean values of variables will 
vary from one part to another. A variable will usually 
be locally stationary within some neighbourhood v, 
however. The variable is then said to be quasi-
intrinsic, and it is for this reason that the subscript Vis 
inserted in equation (4) .In practice it means that the 
intrinsic hypothesis can be assumed and the vario- 
gram used to describe the variation within limited 
neighbourhoods. This is frequently all that is required 
to estimate or interpolate the variable at unvisited 
sites satisfactorily. 

KRIGING 

One of the most important uses of regionalized 
variable theory is for local estimation by the method 
known as kriging. D. G. Krige (1951, 1966) devel-
oped the method empirically for estimating amounts 
of gold in bodies of rock from fragmentary infor- 
mation in the mines of South Africa. Kolmogorov's 
(1941)method of optimum interpolation is, however, 
the first recognizable formulation of kriging. Kriging 
is a general term that embraces several estimation 
procedures (Krige ef al., 1989). What makes kriging 
unique and highly commendable compared with 
other methods of estimation is that its estimates are 
unbiased and have minimum variances. In this sense it 
is optimal. Furthermore the estimation variances 
themselves can be estimated, and so the techniaue can 
be used with known confidence. Kriging is also an 
exact interpolator, i.e. the kriged value at a sampling 
point is the measured value there and the variance is 
zero. Laslett ef al. (1987)compared kriging with other 
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techniques of interpolation and showed that kriging 
was the only one that performed reliably in all 
circumstances. 

At its simplest kriging is a method of weighted 
averaging of the observed values of a property Z 
within a neighbourhood, V, from the measured 
values z(x,) of the property at n sites, xi, i = 1,2 . . ., n. 
Estimates can be made over a block of land or in a 
body of rock B by 

n 


where A, are weights associated with the sampling 
points. To ensure that the estimates are unbiased the 
weights Ai sum to 1: 

n 


The estimation variance for i(B) is given by 

where y(xi,x,) is the semi-variance between the ith 
and jth sampling points, T(x,B) is the average semi- 
variance between the block B and the ith sampling 
point, and T(B,B) is the average semi-variance within 
the block B, i.e. the within-block variance. The esti- 
mation variance is minimized subject to condition 
(12)when 

n 

12, y(x,,xj)+w =7(x,,B) for all j, (14) 
, = I  

which introduces a Lagrange multiplier, y / ,  to achieve 
minimization. The weights are found by solving these 
kriging equations, and the estimate is then obtained 
by inserting the weights into equation (11). The esti- 
mation variance or kriging variance is estimated from 
the solution by 

n 


g2(B)= 1T(x,,B)+ w -RB,B). (15) 
, = I  

Equations (13) to (15) show that the weights and 
the kriging variances depend on the variogram and 
on the configuration of the sampling points in relation 
to the block to be estimated and not on the obser- 
vations themselves. To obtain the semi-variances for 
equation (13) involves finding a function for the 
variogram, and we deal with this later. In general the 
sampling points within or near the block carry large 
weights while more distant ones have small weights. 
Points that are clustered individually have smaller 
weights than isolated points, and near points can be 

screened by others lying between them and the block. 
Thus the estimate is local. The variogram must be 
estimated as accurately as possible over the first few 
lags, and the model should fit well there. 

The block B may be of any reasonable size and 
shape. At its smallest it can be a 'point', x,, of the same 
size and shape as that on which the original measure- 
ments were made, i.e. the support of the sample. In 
these circumstances x, replaces B in equations (11)to 
(15)and we have p u n c f ~ l  kriging. The quantity Y(B,B) 
is zero and so disappears from equations (13) and (15). 
Punctual kriging can be used for predicting values at 
unvisited or unrecorded sites from data in the neigh- 
bourhood, and with the same support. Both punctual 
and block estimates can be used for interpolation in 
mapping. Values of the property can be estimated at 
points and blocks spaced a s  closely as desired to 
produce a statistical surface that can be 'contoured' 
by any of the standard computer programs. 

A map drawn from punctual-estimates is often 
regarded as the best that can be made because the 
interpolated surface passes through the data. In the 
presence of a nugget variance, however, there will be 
local discontinuities at the sampling points. These can 
obscure the spatially dependent variation. By com- 
puting estimates over larger blocks this nugget effect, 
which may be due either to measurement error or 
very short range variation that is conservatively 
represented in the variogram or both, can be avoided. 
The interpolated surface from block kriging is 
smoother, and the longer range variation can be 
detected more easily. We illustrate this in Part 11 of 
the paper. There is often little difference between the 
estimates themselves for points and blocks, but the 
estimation variances decrease as the block size over 
which estimates are made increases: it is another 
facet of the spatial smoothing. Consequently block 
estimates appear more reliable than those for points. 

Simple kriging described above is, however, just 
the simplest in a family of techniques of spatial esti- 
mation. Co-kriging is the most obvious extension in 
which additional variables are incorporated into the 
linear kriging model to improve the estimation in a 
way analogous to their use in multiple regression 
(McBratney and Webster, 1983; Vauclin ef al., 1983). 
A more complex extension is universal kriging. Here 
the simple model of equation (4) no longer applies. 
Variation is assumed to comprise both a drift and 
a random component, equation (3), and universal 
kriging takes account of both. However, the method 
is by no means universally applicable (Webster and 
Burgess, 1980), and investigators need to be quite 
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sure that it is appropriate to their circumstances 
when using it. Lastly we mention disjunctive kriging 
(Matheron, 1976). An investigator may wish to make 
decisions based on the probability that the estimates 
exceed or are less than some critical threshold. If the 
variable has a known probability distribution, ideally 
normal, then such probabilities can be estimated from 
that distribution. In many instances this is not so, and 
in these circumstances disjunctive kriging solves the 
problem. It transforms the data non-linearly to  a nor- 
mal distribution and then combines them, also non- 
linearly, to arrive at its estimates. Its estimation vari- 
ances are often less than those of simple kriging. 
Webster and Oliver (1989) describe the technique 
and give examples elsewhere. 

OPTIMIZING SAMPLING 

As described above the estimation variances for 
simple kriging, equation (13), depend on knowing 
only the variogram and the configuration of the 
observations in relation to  the point or block to be 
estimated; they do not depend on the observed 
values themselves. This fact can be exploited in 
designing sampling schemes for mapping spatial 
variables. Burgess ef al. (1981) and McBratney el  a / .  
(1981) showed how to d o  this. They computed the 
estimation variances for estimates at points and over 
blocks on regular grids for a range of sampling 
intensities. They plotted the variances against the 
grid spacing and then determined the optimal 
spacing for a given precision from the graph. Oliver 
and Webster (1987) used this technique and then 
followed it by sampling to map the particle size dis- 
tribution of the soil. Webster and Burgess (1984) 
showed that the approach can also be used to opti- 
mize the location of sites from which to bulk samples. 
If the variogram is known and used in this way the 
necessary sampling effort is usually found to be less 
than that suggested by classical statistics; in many 
instances much less. 

ESTIMATING THE VARIOGRAM 

The variogram is central to geostatistics. We have 
already shown that it is essential for optimal esti- 
mation and interpolation by kriging. In addition the 
variogram summarizes the spatial variation in the 
region of interest provided that the intrinsic hypoth- 
esis holds. The semi-variance for any given lag h in 
one, two or three dimensions is readily estimated 
from sample data. The usual formula for computing 
it is 

(a) 
lag 1 

FIGURE 1. Comparisons for estimating semi-variances on linear 
transects at lags of I, 2, and 3 sampling intervals, (a) for complete 
data, and (b) where some observations are missing, marked by 
crosses 

where M ( h )  is the number of pairs of observations 
separated by the lag h. Figure l a  shows how the 
comparisons between points are made along a regular 
transect for /hi = I, 2 and 3 lag intervals. Thus by 
increasing h an ordered set of values is obtained, and 
this constitutes the sample or experimental vario- 
gram. Missing values are allowed for by including 
only the actual number of comparisons as in Figure 
Ib. For two-dimensional data the lag interval h can be 
grouped by both distance and direction (David, 1977; 
Webster, 1985). To detect directional differences or 
anisotropy the variogram should be estimated in at 
least three directions. 

The variogram describes the magnitude, spatial 
scale and general form of the variation. It can indicate 
whether the data are second-order stationary or just 
intrinsic. A variogram that appears to rise with a con- 
cave upward form from the origin may indicate local 
drift or global trend. A full structural analysis, in 
Olea's (1975) sense, should then be performed so 
that the deterministic and stochastic components, 
equation (3), can be distinguished. The variogram 
then describes the residuals from the drift or trend. 

Several points must be considered when estimating 
and interpreting the variogram. The sample vario- 
gram of any property in a given region is not unique. 
It is a function of the scale of the investigation, i,e. the 
size of the region, and the support of the sample, that 
is the size, shape and orientation of the areas of land 
or bodies of material on which individual measure- 
ments are made. The larger the support the more 
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variation each measurement encompasses, and so the 
less there is in the intervening space. This has a 
smoothing effect on the variogram. The support must 
remain constant throughout an investigation and 
should be reported. When the support is small the 
variogram can be regarded as a punctual variogram. 
Estimated semi-variances are subject to error, and 
their precision depends on the number of compari- 
sons at each lag and therefore on the sample size. We 
recommend a minimum of a hundred comparisons at 
the first lag, and following practice in the analysis of 
time series, suggest that estimates should be made for 
lag distances no more than a fifth of the entire transect 
for one dimension. There is no simple way of deter- 
mining confidence limits on variograms analytically. 
Simulation studies by Omre (1984) and McBratney 
and Webster (1986) show that confidence limits are 
very wide for the longer lags. The larger the sample 
and the shorter the lag the better the semi-variance is 
estimated. 

In some instances the data contain outliers, in 
others they are strongly skewed. Geochemical data in 
particular have long upper tails in their distributions. 
Both outliers and long tails can have a disproportion- 
ate effect on the value of the semi-variance. Cressie 
and Hawkins (1980) proposed a robust method for 
estimating the variogram. They discovered that the 
fourth root of the squared differences has a distri- 
bution close to normal, and they used this to  compute 
a mean, ij,given by 

The quantity ij must be transformed back to a semi- 
variance, and Cressie and Hawkins showed that the 
required transformation is 

McBratney and Webster (1986) examined the 
method and concluded that it conferred little benefit. 
Positive skewness can usually be removed by trans- 
formation. Taking logarithms is often effective. A 
more general normalizing transformation is that 
embodied in disjunctive kriging which uses Hermite 
polynomials (Matheron, 1976). This will convert 
almost any distribution to normal, though the later 
use of the variogram does assume second-order 
stationarity. 

There is an alternative and much older procedure 
for estimating the variogram, albeit more crudely. 

Miesch (1975) has shown that a first approximation 
to the variogram can be obtained by a nested analysis. 
The procedure has an important role in an overall 
spatial investigation, as we shall demonstrate in Part 
11. It is an adaptation of classical multi-stage sampling 
and analysis originally devised by Youden and 
Mehlich (1937) to determine the range of distances 
over which most of the spatial variation in the soil of 
a region occurred. The principle of multi-stage 
sampling is that an individual observation embodies 
variation from each stage in a hierarchy, including 
the unresolved variation from the lowest stage, and 
the contributions from each stage are estimated 
by the analysis. These contributions are known as 
components of variance, and provided they can be 
regarded as independent their confidence limits can 
be estimated. If the sampling is suitably randomized 
the estimates are unbiased. The sum of the individual 
components of variance is the total variance of the 
sample. Snedecor and Cochran (1980) and Webster 
(1977) describe the method fully. 

In Youden and Mehlich's (1937) adaptation the 
stages in the heirarchy represent specific spatial 
scales, and the components of variance estimate the 
variation attributable to them. When the components 
of variance are accumulated, starting with the 
smallest spacing, they are equivalent to the semi- 
variances of regionalized variable theory (Miesch, 
1975). We describe this link in Part I1 of the paper. 

The ordered set of accumulated components of 
variance form a crude variogram, and they can be 
plotted against sample spacing (see Part 11 for an 
example). The crudeness is a consequence of the 
sampling design because it is feasible to include only a 
few lag distances. The great merit of the method is 
that the variation over several orders of magnitude of 
distance can be covered in a single sampling. It is 
especially valuable when little or nothing is known 
about the spatial scale of variation (Oliver and 
Webster, 1986a), and so can be used as the first stage 
in a more comprehensive survey (McBratney ef al., 
1981). 

FORMS AND MODELS OF VARIOGRAMS 

An ordered set of values, y(h), a sample variogram, 
when plotted displays the average change of a 
property with changing lag. Semi-variances are esti- 
mated at discrete values of h, whereas the true 
variogram is continuous. Furthermore the estimates 
are subject to error, and unless a large sample is taken 
(several hundred points) the experimental variogram 
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will appear erratic. An investigatorwill usually want to 
fit some kind of model to the sample values to rep- 
resent the true variogram for a region. Suitable models 
should be able to incorporate the main features of 
variograms that we describe below. The models must 
also be conditional negative semi-definite, CNSD, 
(Joumel and Huijbregts, 1978). This means that the 
variance of any linear combination of the values of a 
regionalized variable provided by the model must be 
positive or zero: variances cannot be negative. 

As it happens there are just a few simple models 
that satisfy all these constraints. They fall into two 
broad groups which for convenience we may call 
unbounded (Fig. la, b and c) and bounded (Fig. 
2d, e, f, g and h) models. Unbounded models have no 
finite a priori variance and the intrinsic hypothesis 
only holds. Bounded or transitive models reach an 
upper bound, known as the sill. The bound is the a 
priori variance of the random process, and its presence 
means that the variable is second-order stationary. 
Such models may indicate the occurrence of transition 
structures, e.g. blocks of land that are independent of 
each other but within which the values are highly 
correlated. The transition structures might represent 
discrete units with similar properties, such as types of 
strata, or they can overlap in all degrees to give rise to 
continuous variation. Their precise behaviour can be 
determined only by further investigation. 

Figure 2 shows a few of the characteristic vario- 
grams and models for one dimension. The simplest 
models for unbounded variation are power functions. 
Their general form in one dimension or for isotropic 
variation in more is 

y(h)=wha for o < a  <2. (19) 

where w is a linear parameter describing the intensity 
of the spatial variation, and h =  (hl is the lag. The 
parameter a determines the shape of the variogram as 
Figure 2a to c shows. If a =1 then we have the linear 
form. If a <1 then the curve is convex upward, and 
conversely if a >  1 then the curve is concave 
upwards. The limits a =0 and a =2 are strict and 
excluded: a value of a =0 would indicate white noise 
and therefore discontinuous variation, while a value 
of 2 would imply smooth differentiable variation and 
therefore not random. This type of model can be 
linked with the theory of fractals (Mandelbrot, 1982; 
Burrough, 1981, 1983). 

Figure 2d, e, f shows examples of bounded 
variograms. These describe second-order stationary 
variation. The simplest is the bounded linear model, 
Fig. 2d which is given by 

FIGURE 2. Examples of some characteristic forms of variogram 

y(hj=c (hla) for h 6 a 
y(h)=c. forh>a (20) 

The variogram rises linearly to its sill, c, at h =a, 
which is the range of the model. The range defines the 
limit of spatial dependence. The model is valid for one 
dimension only: it is not authorized for more because 
it is not CNSD in two and three dimensions. 

Figure 2e shows the type of transitive variogram 
that is very common in the earth sciences. The rising 
part curves before flattening to its sill. It is often 
fitted well by a spherical model, which for isotropic 
variation is given by 

where a is the range, and cis the sill variance as before. 
This model is also CNSD in two and three dimen- 
sions. This type of variogram has been interpreted as 
evidence of the variation consisting of transition 
structures in three dimensions, i.e. different types of 
soil or rock types that have similar extent. 
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Figure 2f is also a transitive variogram. It differs 
from the previous two in that it approaches its sill 
asymptotically and is fitted by an exponential model. 
The formula is 

r (h)=c {I -exp(- hlr)). (22) 

There is no finite range, though in practice an 
effective range a' is determined from the distance 
parameter r of the model, as a '=3 r. The model is 
CNSD for one, two or three dimensions, and it has 
been found to fit the experimental variogram well in 
many studies. It can arise from transition structures 
that vary in size in a random manner and also from 
autoregressive and Markov processes. 

We have already remarked that the power function 
for unbounded variation, equation ( IT) ,  may not have 
an exponent of zero since this would imply total 
independence in the variable and discontinuity. In 
equation (17) the semi-variance at lag Ih(= 0 would 
be w. Nevertheless there are many instances where 
the experimental variogram appears flat and to cut 
the ordinate at some such positive value. We can 
formalize this combination of a flat variogram and 
spatial variance of 0 at lag zero by defining 

where 6(h) is the Dirac function taking the value 1 
when h = 0 and zero otherwise. 

This kind of behaviour was recognized early in 
the history of geostatistics in gold mining. It was 
known as the 'nugget effect', and was attributed 
largely to the chance occurrence of gold nuggets in 
drill cores. In most other fields it arises from a 
combination of measurement errors and spatially 
dependent variation on scales much shorter than the 
smallest sampling interval. Horizontal variograms, 
such as the one in Fig. 2g, are 'pure nugget': they 
indicate that there is no spatial dependence among 
the observations at the scale of sampling. Soil vario- 
grams from an initial survey of the Wyre Forest 
(Oliver and Webster, 1987) were like this because the 
sampling sites were too far apart and thus spatially 
independent. More intensive sampling is needed in 
such situations to reveal the spatially dependent 
variation. 

Figure 2h is a 'hole effect' variogram. It suggests 
repetition in the variation that is neither wholly 
random nor yet periodic. The more marked the 
reversal of slope the more regular the repetition. One 
formula for a hole effect model that is CNSD in three 
dimensions is given by 

h = c 1 s i n  (  h , (24) 

where r is the wavelength of the hole effect and c its 
amplitude. 

1n manv instances the observed variation is too 
complex to be described by one of these simple 
models. More complex mathematical functions can 
be sought, but the usual solution is to combine two or 

w 

more of the simple functions listed above. Any com- 
bination of CNSD functions is itself CNSD and so 
there is no need to prove the function to be CNSD. 
which is not easy. The most common requirement is 
for a model with both nugget and spatially dependent 
variance. For example, an unbounded variogram 
might be represented by a nugget variance c, plus a 
power function (Fig. 2i): 

and a bounded one that approaches its sill asymp- 
totically by a nugget variance plus an exponential 
component (Fig. 2j): 

The Dirac function is usually omitted from the 
formulae, since it is understood that y(0) = 0. 

Where spatial dependence can be detected at two 
distinct scales the model can combine two simple 
models from the above. One combination that has 
been much used in mining is the double spherical 
model which in one dimension and for isotropic 
variation is 

I.. 1,lh) = c, + c,, for h >a, (2 7) 

where c, and a ,  are the sill and range of the shorter 
range component and c, and a, are those of the longer 
range component. This can be combined further with 
a nugget component. McBratney ef al. (1982) used 
such a model Fig. 2k to describe the variation of 
copper and cobalt in the soil of south-east Scotland. 
The long-range component, with a, 2: 15 krn, seemed 
clearly attributable to  the major geological forma- 
tions. The shorter range one, with a1=3 krn, they 
attributed to variation from farm to farm. 
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The examples we have given here are for one- 
dimensional or isotropic variation. Natural features, 
however, d o  not always vary at the same rate in all 
directions. For instance river alluvium varies much 
more intensely at right angles to the river's course 
than it does parallel to it. The variogram will express 
this anisotropy. If the anisotropy can be accounted 
for by a simple linear transformation of the coordi- 
nates then it is said to be geometric or affine (Joumel 
and Huijbregts, 1978). Such anisotropy can then be 
represented by 

Here A is the gradient of the variogram in the direc- 
tion of maximum variation or distance parameter, B is 
the gradient in the direction of minimum variance or 
distance parameter in the perpendicular direction, and 
yl is the angle of the maximum gradient or distance 
parameter. The ratio A:B measures the anisotropy. 
The anisotropic function, SZ(9),can be applied to 
either the gradient of an unbounded model, such as a 
power function: 

or to  the distance parameter of a bounded model, 
such as an exponential function: 

We give an example of anisotropy in Part 11. 

CHOOSING AND FITTING MODELS 

We have shown above some of the common forms of 
variogram and the simple mathematical functions 
that may be used to describe them. There remain the 
tasks of choosing a function from among the plausible 
ones and fitting it to the experimental values. These 
are important especially where the variogram is to be 
used later for kriging. 

Some of the early geostatistical practitioners fitted 
models by eye, and there are many who still do it 
qualitatively by trial and error. McBratney and 
Webster (1986) found it unreliable, as might be 
expected, and we do not recommend it. The most 
generally satisfactory method is to  fit models by 
weighted least squares approximation (Cressie, 1985; 
McBratnev and Webster. 1986). 

The weights can be the number of pairs of com- 

themselves or the expected semi-variances: the larger 
the semi-variance the less confidence one has in it. 
McBratney and Webster (1986) discuss these and 
their merits at some length. Cressie proposed a 
weight 

where M(h)  is the number of pairs of comparisons at 
lag h and E[y(h)lz is the semi-variance expected from 
the model, while G. M. Laslett, quoted in McBratney 
and Webster (1986), suggested the improvement: 

The differences in the fitted models produced by 
these schemes are usually small, but they do produce 
models that fit better at the shorter lags. -

Most of the models are non-linear in one or more 
of their parameters. They must be fitted iteratively, 
and an efficient and numerically sound computer 
program is essential. We use MLP, the Maximum 
Likelihood Program, written by Ross (1987). The 
same algorithms are embodied in the more widely 
available Genstat 5 (Genstat 5 Committee, 1987). 

One can apply the same criteria of fitting, namely 
the minimum residual sum of squared deviations from 
the model, to choose among several plausible models. 
This works well if all the models have the same 
number of parameters. However, the goodness of fit 
can always be improved by adding parameters, and 
some kind of compromise must usually be struck 
between simple and elaborate close fit. 
Many criteria have been proposed for selecting 
models in regression analysis, all embracing a penalty 
for increased complexity. One that seems to work 
well is Akaike's (1973) Information Criterion, used by 
McBratney and Webster (1986) and described by 
them at greater length later (Webster and McBratney, 
1989). 

The Akaike Information Criterion (AIC) is defined 

A = -2 In (maximized likelihood) + 
2 x (number of parameters) 

and it is estimated by 

A= nln - + n + 2  +nlnRSS+Zp, (33){ I(l:> 
where n is the number of individuals, i.e. the number 

parisons, M, that contribute to the estimates, and of lags at which the semi-variance is estimated, p is the 
these are the ones most widely used. More elaborate number of parameters and RSS is the residual sum of 
schemes weight the estimates, either instead or in squares. The quantity in curly brackets is constant for 
addition, by some inverse function of the estimates a given set of data, and so models can be compared by 
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computing n In RSS+2p only, and choosing that 
model for which this quantity is least. If all models 
have the same number of parameters then minimizing 
the AIC is equivalent to minimizing RSS. ~ f ,however, 
RSS is diminished only by increasing then the AIC 
might actually increase: the AIC contains the penalty 
for adding t o  the complexity. 

CONCLUSION 

Regionalized variable theory provides a concise, 
coherent and useful body of theory physical geogra- 
phers can use t o  describe spatial variation in 
phenomena over the earth's surface. The theory 
provides quantitative tools for estimation and inter- 
polation, and for planning efficient sampling. In the 
second part of the paper w e  describe examples to  
demonstrate the effectiveness of the techniques in the 
earth sciences. 
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