Theorem. Transformation Theorem for Double Integrals. If

- (i) T is a one-to-one transformation between open sets Ω in the uv-plane and $\Psi = T(\Omega)$ in the xy-plane, defined by continuously differentiable functions x = x(u, v) and y = y(u, v);
- (ii) the Jacobian $J(u, v) = \frac{\partial(x, y)}{\partial(u, v)}$ is nonzero throughout Ω ;
- (iii) R and S are bounded sets in the xy-plane and uv-plane, respectively, whose closures are subsets of Ψ and Ω , respectively $(\overline{R} \subset \Psi, \overline{S} \subset \Omega)$, such that R = T(S);
- (iv) f(x, y) is defined over R and $g(u, v) \equiv f(x(u, v), y(u, v))$;

then

- (v) R has area if and only if S has area;
- (vi) assuming R and S have area, f is integrable over R if and only if g|J| is integrable over S, and in case of integrability

(5)
$$\iint\limits_R f(x,y) \ dA = \iint\limits_S g(u,v) |J(u,v)| \ dA.$$

(Cf. Fig. 1315.)

A similar theorem holds for multiple integrals of any number of variables.

FIG. 1315