
Chapter 3.6 Functions of Several Random Variables :

Transformations

1 General Comments on Transformations and Distributions

This section studies how to find the distribution of Y = g(X), where Y may be of dimension 1 or

higher and X may be of dimension 1 or higher.

The function

g : D 7→ E

has domain and range D,E. In particular the goal is to find the distribution of Y , in terms of the

given information which is the distribution of X.

Properties of the solution depend on properties of the function g, in particular its domain and its

range. Depending on the properties of g, the r.v. Y may be continuous or discrete, or possibly neither

(partly continuous and partly discrete). The domain D will usually be the same as the support of X,

but it may also be the case that the support of X may be a subset of D. This is needed as otherwise

there will be outcomes of X for which g(X) is not defined.

If X is a d dimensional random vector then the cases we are usually interested in are that Y is of

dimension 1 or d. In Chapter 6 we are also interested in another example where Y is of dimension 2.

In the case that d > 1 and Y is of dimension 1, it is not possible that g is 1 to 1, and hence it

cannot have an inverse. In most, but not all, of the examples when X and Y are of the same dimension

the function g is a 1 to 1 function.

Some examples of g are

1. g : Rd 7→ Rd given by g(x) = Ax+ b for an invertible matrix A, This is an invertible and hence

1 to 1 mapping.

2. g : R2 7→ R2 given by g(x, y) = (min(x, y),max(x, y)). This is not a 1 to 1 mapping, since it is

a many to 1 mapping. It does not have an inverse.
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3. g : R+ × R+ 7→ R+ × R+ given by g(x, y) = (x, x2 + y2) is a 1 to 1 mapping. If instead the

domain changes, g : R×R 7→ R×R then g is no longer 1 to 1.

4. g : R2 7→ R given by g(x, y) = x+ y is not 1 to 1

5. g : R2 7→ R where g(x, y) = I(x ≤ y) is not a 1 to 1 function.

As we have seen in the 1D case the methodology and tools depend on whether X is multivariate

discrete or continuous, and the domain and range of the function g. The simplest case is when X

is discrete as we can then easily calculate the pmf of g(X), although this may be tedious. If X is

continuous then we need to examine if g is many to one or one to one. Further we need to pay

attention to whether g is differentiable.

Indicator random variables are interesting. One such example, which could also be discussed in

Chapter 2, is the following.

X is a continuous r.v. with pdf f and cdf F . The r.v., for a fixed value of x

Y = I(−∞,x](X)

is a special case of a Bernoulli r.v.. The r.v. Y takes on the value 1 if X is less than or equal to the

specified number x, and is 0 otherwise. It just counts up the number of successes in this one trial of the

event that X falls into the set (−∞, x]. In fact we can determine its distribution as Bernoulli(F (x)),

that is a Bernoulli distribution with probability of success p = F (x). This r.v. will come up again in

our discussion of the law of large numbers. If X1, . . . , Xn are iid from the continuous cdf F we also

have that

Yi = I(−∞,x](Xi)

are then iid Bernoulli(F (x)) r.v.s. A natural question is to determine the distribution of Y1 + . . .+Yn.

In this section we are concerned however with functions of several random variables, often n = 2

r.v.s but sometimes more general n. Further files and handouts describe some of the details and will

be posted later on the course web page.

2 Sums and Ratios

These types often come up in statistics. The discrete case is straightforward, and the continuous case

requires some additional steps.
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2.1 Discrete Case

Since X,Y are bivariate discrete then Z = X + Y is discrete and W = Y/X is discrete, as long as

P (X = 0) = 0.

Consider the event {Z = z}. As always with discrete settings this can be partitioned into a

countable union of disjoint events

{Z = z} = {X + Y = z} = ∪x,y:x+y=z{X = x, Y = y} = ∪x{X = x, Y = z − x}

where the union is over a countable set of x, namely those for which P (X = x) > 0.

Thus

P (Z = z) = P (∪x{X = x, Y = z − x})

=
∑
x

P ({X = x, Y = z − x})

=
∑
x

P (X = x, Y = z − x) .

If in addition X,Y are independent then this last formula simplifies even further to give

P (Z = z) =
∑
x

P (X = x)P (Y = z − x) .

This last formula is the discrete convolution formula.

Example : Suppose X,Y are independent and that X ∼ Poisson, λ1 and Y ∼ Poisson, λ2. The

student should find the distribution (in terms of the pmf) of X + Y .

Example : Suppose X,Y are independent and that X ∼ Binom(n, θ) and Y ∼ Binom(m, θ). Note

it is the same θ for both distributions. The student should find the distribution (in terms of the pmf)

of X,Y .

The student should now derive the pmf of W .

Example : Consider two independent die rolls, X, Y with fair dice. Then the distribution of X

and Y are both the same, in particular the Uniform({1, 2, 3, 4, 5, 6}) distributions. Let S = X + Y be

the sum of the two die rolls.

The event {S = 4} is

{S = 4} = {(X,Y ) ∈ {(1, 3), (2, 2), (3, 1)}} .



Transformations on Rd 4

Thus

P (S = 4) = P ({(X,Y ) ∈ {(1, 3), (2, 2), (3, 1)}})

= P ({(X,Y ) = (1, 3)} ∪ {(X,Y ) = (2, 2)} ∪ {(X,Y ) = (3, 1)})

= P ((X,Y ) = (1, 3)) + P ((X,Y ) = (2, 2)) + P ((X,Y ) = (3, 1))

=
1

36
+

1

36
+

1

36

=
1

12

The above is more careful than we typically need to be in terms of notation, but is done here to help

us recall that the above is just using properties of the three axioms of probability. We could also have

shortened these steps by using the discrete convolution formula and the independence of X,Y .

The student should complete this problem and find the pmf of S.

The student should use the above type of careful argument to show that in the discrete case for

the r.v. W we require P (X = 0) = 0 and then

P (W = w) =
∑
x

P (X = x, Y = wx) .

The sum is over all possible value of x, such that (x,wx) is in the support of the bivariate pmf of

X,Y . In case X,Y are independent this formula simplifies to

P (W = w) =
∑
x

P (X = x)P (Y = wx) .

Here the sum is over all possible values of x, but there is a constraint that wx must be in the support

of the pmf of Y .

When calculating this there is not any particular shortcut, as we have already seen is the case for

functions of a single r.v.
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2.2 Continuous Case

Since X,Y are bivariate continuous then Z = X + Y is continuous and W = Y/X is continuous.

Notice that x = 0 may be in the support of fX , but this does not matter in this bivariate continuous

case, since P (X = 0) = 0. Let f be the joint pdf.

Since the mappings are both many to one, therefore not one to one, we need to proceed in the

usual indirect fashion, that is first try to find the CDF and from this derive the pdf formula. It is

interesting that we will not actually have to calculate the joint CDF of X,Y , but instead just use

integration and the Fundamental Theorem of Calculus to obtain the formula for the marginal pdf of

interest.

First note that

P (Z ≤ z) = P ((X,Y ) ∈ A)

where

A = {(x, y) : x+ y ≤ z}

is a subset of R2. Thus in terms of the original bivariate pdf we have

FZ(z) =

∫ ∫
A

f(x, y)dydx .

Next we need to manipulate this integral.

FZ(z) =

∫ ∞
−∞

∫ z−x

−∞
f(x, y)dydx

=

∫ ∞
−∞

∫ z

−∞
f(x, u− x)dudx changing variable in the inner integral u = y + x

=

∫ z

−∞

∫ ∞
−∞

f(x, u− x)dxdu interchanging the order of integration

=

∫ z

−∞

{∫ ∞
−∞

f(x, u− x)dx

}
du

This is now exactly in the form for which the Fundamental Theorem of Calculus applies; the student

should review this Theorem again to see this is the case.

Thus applying the Fundamental Theorem of Calculus we obtain

fZ(z) =
∂FZ(z)

∂z
=

∫ ∞
−∞

f(x, z − x)dx (when substituting z in place of the argument u) .

Thus we have derived the pdf of Z.
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Example :

Suppose X,Y are iid Unif(0,2) r.v.s. Thus they both have the pdf

f(x) =
1

2
I(0,2)(x) .

Consider the r.v. T = X + Y . Let fT be the pdf of T . Then by the convolution formula

fT (t) =

∫ ∞
−∞

f(y)f(t− y)dy =

∫
At

f(y)f(t− y)dy

where the set

At = {y : 0 < y < 2, 0 < t− y < 2} .

After some work we find

At =


∅ if t ≤ 0 or t ≥ 4

[0, t] if 0 < t ≤ 2

[t− 2, 2] if 2 < t < 4 .

The pdf of T is then found to be

fT (t) =


t
4 if 0 < t ≤ 2

4−t
4 if 2 < t ≤ 4

0 otherwise .



Transformations on Rd 7

Deriving the formula for the pdf of W , the ratio, requires a bit more care. First note that

P (W ≤ w) = P ((X,Y ) ∈ A)

where

A =
{

(x, y) :
y

x
≤ w

}
is a subset of R2. As before we need to work with

FW (w) =

∫ ∫
A

f(x, y)dydx

and manipulate it to obtain the pdf fW . Our goal will be to manipulate the expression till we get it

into a form for which the Fundamental Theorem of Calculus applies.

Partition A into the positive and negative parts involving x, that is

A = A− ∪A+

where

A− =
{

(x, y) :
y

x
≤ w, x < 0

}
= {(x, y) : y ≥ wx, x < 0}

and

A+ =
{

(x, y) :
y

x
≤ w, x > 0

}
= {(x, y) : y ≤ wx, x > 0} .

Notice that x = 0 does not belong to either of these subsets of R2.

P ((X,Y ) ∈ A−) =

∫ ∫
A−

f(x, y)dydx

=

∫ 0

−∞

∫ ∞
wx

f(x, y)dydx

=

∫ 0

−∞

{∫ w

−∞
|x|f(x, ux)du

}
dx inner integral - change variables u = y/x

notice it is a monotone decreasing transform in the inner integral

=

∫ w

−∞

∫ 0

−∞
|x|f(x, ux)dxdu

Also

P ((X,Y ) ∈ A+) =

∫ ∫
A−

f(x, y)dydx

=

∫ ∞
0

∫ wx

−∞
f(x, y)dydx

=

∫ ∞
0

{∫ w

−∞
|x|f(x, ux)du

}
dx inner integral - change variables u = y/x

notice it is a monotone increasing transform in the inner integral

=

∫ w

−∞

∫ ∞
0

|x|f(x, ux)dxdu



Transformations on Rd 8

Therefore

FW (w) = P ((X,Y ) ∈ A)

=

∫ ∫
A−

f(x, y)dydx+

∫ ∫
A+

f(x, y)dydx

=

∫ w

−∞

∫ 0

−∞
|x|f(x, ux)dxdu+

∫ w

−∞

∫ ∞
0

|x|f(x, ux)dxdu

=

∫ w

−∞

{∫ 0

−∞
|x|f(x, ux)dx+

∫ ∞
0

|x|f(x, ux)dx

}
du

=

∫ w

−∞

{∫ ∞
−∞
|x|f(x, ux)dx

}
du

Now we may apply the Fundamental Theorem of Calculus and obtain the pdf

fW (w) =

∫ ∞
−∞
|x|f(x,wx)dx .

This simplifies if X and Y are independent. In this case we obtain

fW (w) =

∫ ∞
−∞
|x|fX(x)fY (wx)dx .

2.3 One to One Invertible Differentiable Transformations on Rd

In this topic g : D 7→ E, with domains D ⊆ Rd, E ⊆ Rd, and g is one to one invertible and

differentiable. g has an inverse say g−1. If we consider a set A ⊆ D then

B = {y ∈ E : y = g(x) for some x ∈ A}

is a subset of E. This is also more conveniently written as B = g(A). Also

A = g−1(B) = {x : x = g−1(y) for some y ∈ B} .

Integrals have another interesting property. Suppose h1 and h2 are two functions that are non-

negative. Recall pdf’s have this property. If for all sets B (there are some technical constraints on B

but for our purposes this is all B) ∫
B

h1(y)dy =

∫
B

h2(y)dy (1)

then for nearly all (in the same sense that a pdf is derivative of a cdf except at a few points or

segments) y then h1 = h2, that is the two integrands are equal. Here for notational convenience we

have written this as a single integral but it also applies to multiple integrals.
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Now suppose that X is a d dimensional random vector and Y = g(X). Thus Y is also a d

dimensional random vector. We will use property (1) to derive the relation between the pdf of Y , fY ,

and the pdf of X, fX . We will study

P (Y ∈ B) =

∫
. . .

∫
B

fY (y1, . . . , yd)dyd . . . dy1 (2)

and use some results from multivariate or advanced calculus to manipulate this integral. The integral

is a d-fold integral.

We now start with B ⊆ E. Using properties of g we then have A = g−1(B) ⊆ D. Then

P (Y ∈ B) = P (X ∈ A) = P (X ∈ g−1(B)) .

Here the student should review the change of variables theorem in advanced calculus and the role

of the Jacobian in this theorem.

P (Y ∈ B) = P (X ∈ A)

=

∫
. . .

∫
A

fX(x1, . . . , xd)dxd . . . dx1

=

∫
. . .

∫
g(A)

fX(g−1(y))|det(J(y))|dyd . . . dy1 change variables x 7→ y = g(x)

=

∫
. . .

∫
B

fX(g−1(y))|det(J(y))|dyd . . . dy1

where J(y) is the Jacobian of the change of variables in the integral. It is the matrix of partial

derivatives of x with respect to y. Symbolically this is

J(y) =
∂x

∂y
=
∂g−1(y)

∂y
.

Notice the function g−1(y) is Rd valued, that is it is a vector of d functions, each with argument

y = (y1, y2, . . . , yd).

Remark : Some texts refer to J as the Jacobian matrix and some texts refer to |det(J(y))| as

the Jacobian. This terminology is not universal. In any case it is the absolute value of the matrix of

partial derivatives that comes into this integral.

This equation above gives two expressions for P (Y ∈ B), so that∫
. . .

∫
B

fY (y1, . . . , yd)dyd . . . dy1 =

∫
. . .

∫
B

fX(g−1(y))|det(J(y))|dyd . . . dy1

for all sets B. Thus by (1) we conclude that

fY (y1, . . . , yd) = fX(g−1(y))|det(J(y))| .
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3 Examples for Continuous X

These are posted on the course web page. They are helpful as they lead the student through the steps

to solution.

• ratio-unif : Deals with ratio of continuous r.v.s. This example requires careful work to find the

limits of integration.

Following this example the student should try to find the pdf of the ratio of iid Unif(0,1) r.v.s.

• t-ratio : complete the transformation example; this works as we can extend the transformation

to include a second variable so that the bivariate transformation is one to one, invertible and

differentiable, which then allows us to find the marginal of interest.

• bivariate normal sum

• sec3-6-eg2

• Ratio of iid N(0, 1).

• orderstats : find 1 or 2 dimensional marginals. It is a many to one mapping and so uses special

methods. It also introduces another method to exploit properties of pdf and its relation to

probabilities, and some appropriate limit argument.

In the ratio of Unif(−1, 1) and iid N(0, 1) examples we will see later the expected value of this

ratio does not exist.


