
Integrals Over (−∞,∞)

A =
∫ ∞

−∞
f(x)dx = lim

a→−∞,b→∞

∫ b

a

f(x)dx

For A to be well defined we need the same limit over any sequence an → −∞ and bn → ∞. In
particular for the integral to be well defined it is sufficient for

∫ ∞

−∞
|f(x)|dx < ∞

Consider the following example f(x) = xg(x) where

g(x) =
{

1
4 if |x| ≤ 1
1

4x2 if |x| > 1

This is the pdf of the ratio of independent Uniform(-1,1) r.v.’s as discussed in an earlier example.
For a < −1, b > 1

∫ b

a

f(x)dx =
∫ 1

−1

x

4
dx−

∫ |a|

1

1
4x

dx +
∫ b

1

1
4x

dx =
1
4

log(b/|a|)

Let α ∈R be an arbitrary number. Choose sequences an → −∞, bn → ∞ such that an < −1,
bn > 1 and

1
4

log(bn/|an|) = α .

This says that
an = −bne−4α .

Consider now n sufficiently large so that an < −1.
Then

An =
∫ bn

an

f(x)dx

=
1
4

log(b/|a|)
= α

For such a sequence we obtain lim An = α which can be any real number we wish. That is there is no
well defined limit A for this integral. In such a case we say that

∫∞
−∞ f(x)dx does not exist.

Another example for which the intergral is undefined is
∫ ∞

−∞
x

1
π(1 + x2)

dx

so that we say a Cauchy distribution does not have a finite expectation (or first moment).
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Finiteness of an Integral
How can we tell if an integral is finite. This is a topic that is studied in first year calculus, usually

using an integral test of some form. The student should review this material, perhaps by going to the
library and reviewing an introductory calculus text.

Here we will consider only a specific example. Otherwise in this course we will take the finiteness
of certain integrals for granted. This example is given to remind the student of these methods, which
then can be referred to in class and left for a student to determine if certain integrals discusses in
class are finite.

Related to the normal distribution we will be interested in showing that
∫ ∞

0

xke−
x2
2 dx < ∞ and

∫ 0

−∞
|x|ke−

x2
2 dx < ∞ .

For simplicity we now only consider the first of these two, and only for the case k = 1.
Consider the function g(x) = xe−x2/2. Notice that

g′(x) = (1− x2)e−
x2
2

so that g increases from 0 to 1 and then decreases. Next consider the ratio

g(x)
e−x

= xe−
1
2 x2+x

The exponent part is

−1
2
x2 + x = −x(

x

2
− 1)

≤ −x(
4
2
− 1) if x ≥ 4

= −2x

Thus for x ≥ 4 we have
g(x) ≤ xe−2x .

Thus
∫ ∞

0

xe−
1
2 x2

dx =
∫ 4

0

xe−
1
2 x2

dx +
∫ ∞

4

xe−
1
2 x2

dx

≤
∫ 4

0

xdx +
∫ ∞

4

xe−2xdx

using the bound above for the second integral and using the fact that exp{−x2/2} ≤ 1 on [0, 4]. We
then obtain

∫ ∞

0

xe−
1
2 x2

dx ≤ 42

2
+

∫ ∞

0

xe−2xdx

= 8 +
1
4

∫ ∞

0

ue−udu

= 8 +
1
4
Γ(2)

= 8 +
1
4

Thus ∫ ∞

0

xe−
1
2 x2

dx < ∞ .
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