
Statistics 3858b : Bayesian Methods

So far in our course we have viewed parameters as given numbers in a parameter space and the

distribution of the observable random variables as coming from a distribution f(·; θ) for one fixed value

of θ. This makes sense in most types of experiments and observational studies.

Another approach to estimation is the so called Bayesian method or approach. In this we view Θ as

a random variable on the parameter space; note the change in notation so we will need a new name for

the parameter space when it is needed. In this setting we treat the conditional distribution of X given

Θ = θ as f(·|θ). When X1, . . . , Xn are conditionally iid, given Θ = θ this conditional distribution is

fX1,...,Xn(x1, . . . , xn|θ) =

n∏
i=1

fX|Θ(xi|θ)

where fX|Θ is interpreted as the conditional pdf or pmf of Xi given Θ = θ.

There is a prior or initial distribution of Θ which we write as fΘ. From this and the rule of total

probability we can calculate the marginal distribution of X1, . . . , Xn as either

fX1,...,Xn(x1, . . . , xn) =

∫
fX1,...,Xn(x1, . . . , xn|θ)fΘ(θ)dθ

in the case of continuous r.v.s or

fX1,...,Xn(x1, . . . , xn) =
∑

fX1,...,Xn(x1, . . . , xn|θ)fΘ(θ)

in the case of discrete r.v.s. The corresponding integral or sum is over the set of possible values of the

r.v. Θ. We can also calculate the joint distribution of X1, . . . , Xn,Θ, written as

fX1,...,Xn,Θ(x1, . . . , xn, θ)

Sometimes we need to mix discrete X with continuous Θ or the other way round. Even though our course

has not covered this the analogous and natural formula will hold. This means for the first formula we

integrate over θ even if the r.v.s X1, . . . , Xn are discrete, so the LHS is a pmf or pdf accordingly. For

the second formula we sum over the discrete support of θ, and the resulting LHS is a pmf (if X’s are

discrete) or pdf (if the X’s are continuous).
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Can this type of statistical model make sense? One data type, of many types of natural data types,

is the following. Different counties or regions of the province have local environmental variation. For a

given region let X be the lifetime of a randomly chosen person (animal, insect . . . ). If we let Θ be the

random environment then X has lifetime distribution, conditional on Θ = θ given by f(·|θ). We can then

take iid observations from this region.

In some animal (usually mice or rates) experiments, an inbreed line of mice have a genetic characteristic

(eg resistance to disease) determined by a random variable Θ. For randomly chosen mice from this genetic

line the r.v. X (lifetime or disease effect) conditional on Θ = θ has a distribution f(·|θ). Different lines

of mice will have a different enivornmental or genetic effect.

Another setting for which this Bayesian method is appropriate is the following. For a binomial

experimental setting, one observes r.v.s Yi, . . . , Xn iid Bernoulli, θ, or Y =
∑n
i=1Xi ∼ Binomial(n, θ). If

n is not large, there is a large change that θ̂ = Y
n equals 0 or 1. If we consder estimation of θ using for

example MLE the estimate θ̂ (observed value of the MLE) is then 0 or 1. Is this estimate good. Yes, but

is it physically meaningful or believable? Based on many previous similar experiments this may not be

a reasonable result, in the sense that it may be physically impossible for θ to be 0 or 1. It is physically

more believable that θ ∈ (0, 1). One way to deal with this is to use a Bayesian framework and a prior

distribution on a r.v. Θ.

We caan just view the Bayes estimators as another estimator, usually different from either the method

of moments estimator or the MLE.

In this Bayesian framework, we have r.v.s X1, . . . , Xn,Θ. We have a statistical model giving the

conditional distribution of X1, . . . , Xn given Θ = θ, and prior distribution on Θ. We can then obtain the

marginal distribution of X1, . . . , Xn and the conditional distribution of Θ given X1 = x1, . . . , Xn = xn.

We can also calculate, using Bayes Theorem, the conditional distribution of Θ given X1 = x1, X2 =

x2, . . . , Xn = xn as

fΘ|X(θ|x1, . . . , xn) =
fX1,...,Xn,Θ(x1, . . . , xn, θ)

fX1,...,Xn(x1, . . . , xn)

∝ fX1,...,Xn,Θ(x1, . . . , xn, θ)

This is called the posterior distribution of Θ given the data X1 = x1, . . . , Xn = xn. In the first line of

the formula above for fΘ|X(θ|x1, . . . , xn) the denominator is also the number (depending of the data that

we are conditioning upon) so this formula or function integrates (or sums) to 1. It is the normalizing

constant to make this a pdf or pmf. Recall this notion from earlier in the previous semester. This is

sometimes useful if for example we recognize the function in the numerator as the kernel of a known

distribution. The kernel is the pdf or pmf except for the normalizing constant. When this happens and

we recognize it as a kernel we then may know the normalizing constant without having to go through
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the integration.

To elaborate on this point a little consider the function

cfX1,...,Xn,Θ(x1, . . . , xn, θ)

where we treat θ are the argument and consider (x1, . . . , xn) as depending on the given numbers x1, . . . , xn.

Notice we effectively treating x1, . . . , xn as parameters for this function with argument θ. We are then

looking for the number c, which depends on the values of the parameters, in this case (x1, . . . , xn)

so that c = c(x1, . . . , xn), and this function integrates (or sums) to 1. We used this property when

constructing examples of pdf’s. We also used this in obtaining moments and the MGF for Gamma

distributions, moments for the Beta distribution and also for obtaining the conditional distributions for

bivariate normals.

There is a question of how to choose the prior distribution. For our purposes we will take this as given

in a problem and postpone that question till later. In some cases, including the only ones we consider

here, there is a family of prior distributions on the parameter Θ, called the conjugate prior which makes

the calculation of the posterior relatively easy, in the sense that the normalizing constant is easy to

determine as mentioned above. In an numerical example later we will consider a non-conjugate prior,

but will also see there is not easy algebraic way to obtain the normalizing constant.

Conjugate priors are related to the conditional joint distribution of X1, . . . , Xn given Θ = θ, in that

the prior and posterior are of the same family of distributions. This means that the calculation of the

posterior is done by simply finding the update rule for the parameters for this family of distributions.

Examples with Conjugate Priors

Poisson Example :

Xi, given Λ = λ are iid Poisson, λ.

Suppose that Λ has Gamma(α, ν) distribution, that is

fΛ(λ) =
να

Γ(α)
λα−1e−νλI(λ > 0) . (1)

The values α, ν are specified, for example (1, 1
2 ), so that Λ has a specific distribution, in this case with

mean 2, and variance 4. If Λ we “known” more precisely with mean 2 we might choose (α, ν) = (3, 3
2 ),

so the mean variance of Λ are 2 and 3 ∗ (4/3)2 = 4
3 .

The marginal distribution of X1, . . . , Xn is

fX1,...,Xn(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn)



Stat 3858 : Bayesian Methods 4

=

∫ ∞
0

n∏
i=1

{
λxi

x!
e−λ

}
να

Γ(α)
λα−1e−νλdλ

=
να

Γ(α)
∏n
i=1 xi!

∫ ∞
0

λα+
∑n

i=1
xi−1e−(ν+n)λdλ

This can be simplified, since the integrand is actually a Gamma pdf except for the normalizing constant.

Given data Xi = xi, i = 1, . . . , n the posterior distribution of Λ is given by

fΛ|X(λ|x1, . . . , xn) ∝ fX1,...,Xn,Λ(x1, . . . , xn, λ)

∝
n∏
i=1

{
λxi

x!
e−λ

}
να

Γ(α)
λα−1e−νλ

∝ λα+
∑n

i=1
xi−1e−(ν+n)λ

Notice this last expression has argument λ, and since the support is λ > 0, it is the kernel of a Gamma

distribution with parameters

α′ = α+

n∑
i=1

xi , ν
′ = ν + n . (2)

Thus without doing the integration to find the marginal distribution of X1, . . . , Xn we know the posterior

distribution of Λ given data X1 = x1, . . . , Xn = xn is Gamma with parameters given by (2). That means

that the posterior of Λ is

fΛ(λ|X1 = x1, . . . , Xn = xn)

=
(ν′)(α′

Γ(α′)
λα

′−1e−ν
′λI(λ > 0)

=
(ν + n)(α+t(x))

Γ((α+ t(x)))
λ(α+t(x))−1e−(ν+n)λI(λ > 0)

where t(x) =
∑n
i=1 xi.

Aside : If we change the prior (1) to anything else we would not have a conjugate prior. If we knew

for certain that 0 < λ < 100 and used the prior

fΛ(λ) =
να

Γ(α)
λα−1e−νλI(0 < λ < 100)

then normalizing constant to obtain the posterior is no longer so simple, as it would now involve an

incomplete Gamma function instead of the Gamma function.

If we used a prior with support (,∞), such as the distribution of the absolute value of a normal, then

we would not have a conjugate prior.



Stat 3858 : Bayesian Methods 5

Normal Conjugate Prior

For normal we use conjugate prior : µ , σ2 independent Normal and Gamma distributions

Aside : Ξ and ξ are the Greek letters capital lower case of xi.

Example : Normal, mean =0, variance = σ2. For a more convenient notation we write ξ = 1
σ2

Prior for Ξ : Gamma(α, λ)

Data X1, . . . , Xn conditionally upon Ξ = ξ are iid N(0, 1
ξ )

Posterior

fΞ|X1,...,Xn(ξ|x1, . . . , xn) ∝ ξn/2e−
ξ
2

∑n

i=1
x2
i ξα−1e−λξ

∝ ξα+n
2−1e−(λ+ 1

2

∑n

i=1
x2
i )ξ

We can recognize this is the kernel for a Gamma distribution with parameters

α′ = α+
n

2
and λ′ = λ+

1

2

n∑
i=1

x2
i

and thus

fΞ|X1,...,Xn(ξ|x1, . . . , x) =

(
λ+ 1

2

∑n
i=1 x

2
i

)α+n
2

Γ(α+ n
2 )

ξα+n
2−1e−(λ+ 1

2

∑n

i=1
x2
i )ξ

Bernoulli or Binomial with Conjugate Prior

For Binomial we use conjugate prior : Θ having a Beta distribution

X|Θ = θ ∼ Binomial(m, θ)

pmf is

f(x|θ) =

(
m

x

)
(1− θ)m−xθx

If we use a Beta(α, β) prior the posterior is

fPosterior(θ|X = x) ∝
(
m

x

)
(1− θ)m−xθx(1− θ)α−1θβ−1

∝ (1− θ)α+m−x−1θβ+x−1

∝ (1− θ)α
′−1θβ

′−1
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where

α′ = α+m− x , β′ = β + x .

Since 0 < θ < 1 we see this is the kernel of a Beta distribution with parameters α′, β′. Thus (see

AppendixA3 or formula sheet given with the exams)

fPosterior(θ|X = x) =
Γ(α′ + β′)

Γ(α′)Γ(β′)
(1− θ)α

′−1θβ
′−1 .
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Bayes Estimator and Bayes Estimate

In our Bayesian calculations we obtain the posterior distribution

fΘ|X1=x1,...,Xn=xn(θ) = fΘ|X1,...,Xn(θ|x1, . . . , xn) = fΘ|X(θ|x) .

The Bayes estimator is

Θ̂ = E(Θ|X) = E(Θ|X1, . . . , Xn)

which is the conditional expectation of Θ conditional on X = (X1, . . . , Xn). It is sometimes referred to

as the posterior mean, that is the Bayes estimator is the posterior mean.

The Bayes estimate is the observed value of this r.v. with the obsered data x1, . . . , xn. Notice we will

in general have to calculate this integral (or sum). It is

Θ̂ = E(Θ|X) = E(Θ|X1 = x1, . . . , Xn = xn) .

Normal with Conjugate Prior continued

The posterior is a Gamma distribution, with parameters

α′ = α+
n

2
and λ′ = λ+

1

2

n∑
i=1

x2
i .

We of course have earlier calculated the mean of a Gamma distribution and using this can easily obtain

the Beayes estimator or Bayes estimate.

The Bayes estimate or posterior mean is therefore

Ξ̂Bayes =
α+ n

2

λ+ 1
2

∑n
i=1 x

2
i

=
2α
n + 1

2λ
n + 1

n

∑n
i=1 x

2
i

.

How does this compare with the MLE, which we studied earlier? If we consider the corresponding

MLE in our classical or frequentist method, we have

Ξ̂MLE =
1

1
n

∑n
i=1 x

2
i

=
1

µ̂2,n

It then follows that

Ξ̂MLE − Ξ̂Bayes = − 1

n

2α
2λ
n + µ̂2,n

Thus the two estimators are the same up to a difference of order 1
n .
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Return to the Poisson example

See also R code for this example

Conjugate Prior Gamma : α = 2 and ν = α
2 , so that EPrior(Λ) = 2.

Plot this pdf

Now suppose that the “observed” or given value of Λ is λgiven = 3. The posterior of Λ is Gamma

with parameters given by (2), that is

α′ = α+

n∑
i=1

xi , ν
′ = ν + n .

The Bayes estimate is

EPosterior(Λ) =
α′

ν′
=

α
n + x̄n
ν
n + 1

Take a sample of size n = 2. Plot the posterior pdf, and see it is similar to the prior.

Now consider the same experiment with a sample of size n = 50. Now the posterior is quite different

from the prior and is centred much closer to λgiven = 3. Here the posterior is a Gamma with shape

parameter α′ = α +
∑n
i=1 xi; recall it is a conditional distribution, conditioned upon the given data

X1 = x1, . . . , Xn = xn.

Aside : In the fall semester we used moment generating functions to study the distribution of Y ∼
Gamma(α′, ν′), specifically a limit distribution of the normalized sequence from Y . Using MGF, and

properties from the LLN so that conditional upon λgiven = 3, we will obtain as an approximation for the

posterior distribution

√
n

(Λ− λgiven)√
λgiven

→ N(0, 1) in distribution as n→∞

This tells us the posterior distribution of the r.v. Λ is approximately normal and centred at the unknown

given value λgiven = 3 at the beginning of the experiment. This is a conditional Central Limit Theorem,

and is somewhat different form the CLT studied in the previous term.

We can use the posterior distribution to give a prediction interval of the random variable Λ. This is

the standard prediction interval idea from the fall semester or introductory statistics courses. This is a

different notion than confidence intervals which are a consistency of parameter values with respect to the

observed data.

If Θ has posterior distribution fΘ|Xn=x then we may find the central 1− α region, that is find α
2 and

1− α
2 quantiles, say qα

2
and q1−α2 , for this posterior distribution. The 1− α prediction interval for Θ is
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then given by

qα
2
≤ Θ ≤ q1−α2

For some posterior distributions it may be easier to work Θ−EPosterior(Θ) and so we would find quantiles

for this centred distribution. Interpreting qα
2

and q1−α2 accordingly then we obtain our prediction interval

from

qα
2
≤ Θ− EPosterior(Θ) ≤ q1−α2

or equivalently

EPosterior(Θ) + qα
2
≤ Θ ≤ EPosterior(Θ) + q1−α2 .


