
Statistics 3858 : Cramer-Rao and Sufficient Statistics

1 Preliminary Comments

One of the methods to compare estimators is based of Mean Square Errors (MSE)

MSE(θ̂) = Eθ((θ̂ − θ)2) = Var(θ̂) +Bias(θ̂)2

An estimator θ̂ is unbiased if and only if for all θ

Eθ(θ̂) = θ .

Thus for an unbiased estimator θ̂

MSE(θ̂) = Var(θ̂) .

We say an estimator is better (more efficient) than another estimator if and only it has smaller MSE.

In the case of comparing unbiased estimators, the better one has smaller variance. Notice these properties

are for all θ.

2 Cramér Rao Lower Bound

The Cramér-Rao lower bound (named after two famous statisticians early in the history of statistics

Harold Cramér and C. R. Rao) gives a lower bound for the variance of unbiased estimators in the case

of iid sampling. Thus if an estimator is unbiased and has variance equal to this lower bound it is then

impossible to find an unbiased estimator that has smaller variance. In this sense it is the best possible.

We only state the Cramér-Rao lower bound for real parameters, but there is a version for vector

valued parameters. One just needs to interpret the inequality in a valid way for variance matrices, in

terms of the difference of matrices being positive definite.

Theorem 1 Suppose Xi , i = 1, . . . , n are iid with pdf (or pmf) f(·; θ) and that Θ ⊂ R. Suppose that

T = T (X1, . . . , Xn) is an unbiased estimator of θ. Suppose the statistical model satisfies Assumptions I

and II, the regularity conditions for MLE (see earlier notes). Then

Var(T ) ≥ 1

nI(θ)

where I(θ) is Fisher’s information.
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Proof : (done for pdf case)

Let

Z =

n∑
i=1

∂ log (f(Xi; θ))

∂θ
.

Then Z is a random variable with mean 0 and variance nI(θ).

First notice that

∂
∏n
j=1 f(xj ; θ)

∂θ
=

n∑
i=1

∂ (f(xi; θ))

∂θ

n∏
j=1;j 6=i

f(xj ; θ)

=

n∑
i=1

∂ (f(xi; θ))

∂θ

1

f(xi; θ)

n∏
j=1

f(xj ; θ)

=

n∑
i=1

∂ log (f(xi; θ))

∂θ

n∏
j=1

f(xj ; θ)

Therfore

Cov(Z, T ) =

∫
R

. . .

∫
R

T (x1, . . . , xn)

n∑
i=1

∂ log (f(xi; θ))

∂θ

n∏
j=1

f(xj ; θ)dxn . . . , x1

=

∫
R

. . .

∫
R

T (x1, . . . , xn)
∂
∏n
j=1 f(xj ; θ)

∂θ
dxn . . . , x1

=
∂

∂θ


∫
R

. . .

∫
R

T (x1, . . . , xn)

n∏
j=1

f(xj ; θ)dxn . . . , x1


=

∂θ

∂θ
= 1

Therefore

1 = (Cov(Z, T ))
2 ≤ Var(T )Var(Z) = Var(T )nI(θ) .

End of Proof

Recall our earlier discussion of comparing estimators. In that we used properties of the sampling

distribution to decide which estimator is better, and in particular if estimators had a normal or ap-

proximately normal distribution, and if they were unbiased then the one with smaller variance is more

efficient.

Examples : see text section 8.7

For a nontrivial example consider Xi iid Poisson λ. Two possible unbiased estimators are

X̄ =

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
.
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The student should find a calculation or carry out an appropriate calculation to verify that the sample

variance in this case is an unbiased estimator; this was actually done earlier in the course.

Which is better? For this in principle we need to find Var(S2). The student should consider how to

calculate this.

The student should verify that Var(X̄) equals the expression for the Cramér-Rao lower bound; do

this at home. Thus we know without any calculations that

Var(S2) ≥ 1

nI(λ)
= Var(X̄) .

Thus X̄ is more efficient (or at least as efficient) as S2.

Notice that the Cramér-Rao Lower Bound Theorem allows us to make this conclusion without the

need to calculate the variance of the second estimator. Of course lower bound would not be helpful if the

estimators were biased.

Aside In the proof of the Cramér-Rao lower bound we used an identity based on correlation ρ.

1 ≥ ρ2 =
Cov2(X,Y )

Var(X)Var(Y )

Therefore

Cov2(X,Y ) ≤ Var(X)Var(Y ) .

This is also called the Cauchy-Schwarz inequality, but it is actually a special case of the Cauchy-Schwarz

inequality in advanced probability (or in real analysis in pure mathematics).

3 Various Properties of Estimators : MLE Is Asymptotically

Efficient and Other Properties of Estimators

Suppose that the statistical model satisfies the two regularity Assumptions I and II; review these. Recall

that in this case
√
n(θ̂n − θ)→ N

(
0,

1

I(θ)

)
as n→∞. However from the Cramér-Rao Lower Bound Theorem we also have for an unbiased estimator

Var
(√

n(θ̂n − θ)
)

=
1

I(θ)

Thus the limiting normal variance is the smallest possible.

Another term is also used and we just give its definition here but do not use it much in this course.

An estimator θ̂n is said to be asymptotically unbiased if E(θ̂n) → θ as n → ∞. (This is actually a

property of the sequence of estimators). While this may be a nice property this by itself is not always

useful.
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Example : Xi iid, say normal. Let

µ̂1,n = X1 and µ̂2,n =
1

n

n∑
i=1

Xi = X̄n .

Verify that both of these estimators are unbiased, and hence asymptotically unbiased. The first is not

consistent, but the second is consistent.

Consider the sample variance and the MLE for σ2 in this example. One is unbiased and one is biased.

However both are asymptotically unbiased and both are consistent.

This is also an appropriate place to discuss some further properties for normal approximations.

Specifically this is useful for method of moments estimators and for functions of estimators. For the

later if we estimate the Poisson parameter λ, then how can we estimate P (X = 0) = f(0;λ), where

P (X = k) = f(k;λ). A natural estimator of P (X = 0;λ) is

P̂ (0) = f(0; λ̂) = e−λ̂ ≡ g(λ̂) .

Here we take g(x) = e−x.

Recall √
n(λ̂n − λ)⇒ N(0, I−1(λ)) ≡ N(0, τ2)

which is one of the conditions to apply the delta method. Here we use the notation ⇒ to denote

convergence in distribution. If the function g is also differentiable at λ, with non-zero derivative at λ,

then the second condition for the delta method is satisfied. Therefore by the delta method

√
n
(
g(λ̂n)− g(λ)

)
= g′(λ)

√
n(λ̂n − λ)⇒ N(0, [g′(λ)]2τ2) .

Now we apply the delta method to our estimator P̂ (0) above. g′(x) = −e−x. Therefore since

√
n(λ̂− λ)⇒ N(0, I−1(λ)) = N(0, λ)

then √
n(P̂ (0)− P (0))⇒ N(0, (g′(λ))2I−1(λ)) = N(0, λe−2λ)

as n→∞.

4 Sufficient Statistics

This section introduces a special tool that is very useful for calculation and the simplification of work-

ing with maximum likelihood estimators, namely the notion of sufficient statistics. The setting is for

parametric models and we continue the same notation as before.

Definition 1 A statistic T (X1, . . . , Xn) is said to be a sufficient statistic if and only if the conditional

distribution of X1, . . . , Xn given T = t (for any possible t) does not depend on θ.

This definition means that the conditional distribution is algebraically independent of θ, or equiva-

lently θ does not appear in the expression for this distribution. There are only a few cases where we can
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verify that T is a sufficient statistic by directly verifying that it satisfies the definition. Shortly we will

see there is an equivalent but easier to use property, called the Factorization Theorem.

Example : Poisson

Xi, i = 1, . . . , n are iid Poisson. Let T = X1 + X2 + . . . + Xn. The student should show that

T ∼ Poisson, nλ.

Do this by using the convolution formula and mathematical induction or using a moment generating

function method and an appropriate property of MGFs.

Thus

Pλ(X1 = x1, . . . , Xn = xn|T = t)

=
Pλ (X1 = x1, . . . , Xn = xn, T = t)

Pλ(T = t)

=
1

Pλ(T = t)
Pλ (X1 = x1, . . . , Xn = xn) I (x1 + x2 + . . .+ xn = t)

=
t!

(nλ)
t
e−nλ

λx1+x2+...+xne−nλ∏n
i=1 xi!

I (x1 + x2 + . . .+ xn = t)

=
t!

(nλ)
t

λt∏n
i=1 xi!

I (x1 + x2 + . . .+ xn = t)

=
t!

nt
∏n
i=1 xi!

I (x1 + x2 + . . .+ xn = t)

Thus the conditional pmf does not depend on λ (is algebraically independent of λ) therefore by definition

T is a sufficient statistic for λ.

Another sufficient statistic is the n dimensional vector T = (X1, . . . , Xn). However it is not typically

interesting as it does not do any data reduction. Another not so interesting sufficient statistic in this

problem is

T =

(
n∑

i=1:i odd

Xi ,

n∑
i=1:i even

Xi

)
.

End of Example

Aside : The student should review the Binomial formula. Do we know that the conditional pmf in

the example above is indeed a pmf? It is non negative but does it sum to 1, summing over all possible n

tuples x1, . . . , xn? There is a multinomial formula that extends the Binomial formula, and the student

should look this up.

Notice that if T is a sufficient statistic, then T1 = g(T ) for a 1 to 1 (and hence invertible) function

g is also a sufficient statistic. Thus in the Poisson example X̄ is also a sufficient statistic. All sufficient

statistics are 1 to 1 mappings of another equivalent sufficient statistic. Due to this property we often use

terms such as the sufficient statistic even though there are many. For the Poisson all minimal sufficient

statistics are in a 1 to 1 correspondence with T =
∑n
i=1Xi. In particular X̄,

√
X̄ and exp X̄ are each

the sufficient statistic. 1/X̄ is not a sufficient statistic, since for any finite n, P (X̄ = 0) > 0 and so 1/X̄

is not even a finite valued random variable.
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A minimal sufficient statistic is one that is of smallest possible dimension. In practice this is what

we always will look for and try to obtain. In practice the minimal sufficient statistic will of the same

dimension as θ.

Why is the notion of sufficient statistic useful? It is most useful if we can make T of as small of a

dimension as possible, that is a minimal sufficient statistic.

Consider the likelihood function L(θ). It is, for t = T (x1, . . . , xn),

L(θ) = Pθ(X1 = x1, X2 = x2, . . . , Xn = xn)

= Pθ(X1 = x1, X2 = x2, . . . , Xn = xn|T = t)Pθ(T = t)

= h(x1, x2, . . . , xn)Pθ(T = t)

where

h(x1, x2, . . . , xn) = Pθ(X1 = x1, X2 = x2, . . . , Xn = xn|T = t)

which is algebraically independent of θ. Also h is positive and hence

argmaxθ∈ΘL(θ) = argmaxθ∈ΘPθ(T = t) .

This means that for the purpose of calculating, algebraically or numerically, the MLE we may work with

Pθ(T = t) or something proportional to Pθ(T = t), or equivalently the log of Pθ(T = t). This makes the

algebra and the coding of algorithms much easier as the dimension of t does not change as n changes.

Finally from this we also see that the MLE θ̂ is a function of T , and this may then simplify obtaining

the distribution of the MLE or an approximation to the distribution of the MLE.

Finding and verifying sufficient statistics by direct application of the definition is not very easy. Thus

it is helpful if we can have an easy way to obtain sufficient statistics. The following theorem is generally

quite easy to use in applications.

Theorem 2 (Factorization Theorem) A necessary and sufficient condition for T (X1, . . . , Xn) to be

a sufficient statistic is that the pdf (or pmf) of X1, . . . , Xn is of the form

f(x1, x2, . . . , xn; θ) = h(x1, x2, . . . , xn)g(T (x1, x2, . . . , xn), θ)

for appropriate functions h and g.

Remark : Appropriate here means functions with domains that are relevant so that the notation

makes sense in terms of the number of arguments and the sets to which these arguments belong. The

function g has arguments (t, θ), so that in the Theorem the argument t is replaced by a function of the

xi, in particular T (x1, x2, . . . , xn). The Theorem is called the Factorization Theorem since the pdf or

pmf has to be able to factor into the product of two functions of the required types.

We only prove this Theorem in the case of discrete r.v.s, that is for pmf’s. The continuous and more

general cases require a deeper understanding of the role of derivatives, a topic called Radon-Nikodym

derivatives in measure theory, and a topic which is needed for a complete description of conditional

expectations. Also notice Theorem 2 is a necessary and sufficient condition statement, so that a proof

must be done in both directions.



Cramer-Rao and Sufficient Statistics 7

Proof of Theorem 2

1. Suppose that T (X1, . . . , Xn) is a sufficient statistic. Then by definition

Pθ(X1 = x1, X2 = x2, . . . , Xn = xn|T = t) = h(x1, x2, . . . , xn)

for some function h, and in particular the RHS does not involve θ. Notice that in principle there should

be n+ 1 arguments on the RHS, but t is determined by the values of x1, . . . , xn.

Therefore the marginal pmf of X1, . . . , Xn is given by the function

f(x1, x2, . . . , xn; θ) = h(x1, x2, . . . , xn)P (T = t, θ)I (T(x1, x2, . . . , xn) = t)

and we take

g(t, θ) = PT (t; θ) = P (T (X1, . . . , Xn) = t; θ)

is the marginal pmf of T . For simplicity of notation we leave out the indicator function.

2. Suppose the pmf of (X1, . . . , Xn) is of the form

f(x1, x2, . . . , xn; θ) = h(x1, x2, . . . , xn)g(T (x1, x2, . . . , xn), θ) .

We need to verify that T (X1, . . . , Xn) is a sufficient statistic.

P (T = t; θ) =
∑

x1,...,xn:T (x1,...,xn)=t

f(x1, x2, . . . , xn; θ)

= g(t, θ)
∑

x1,...,xn:T (x1,...,xn)=t

h(x1, x2, . . . , xn)

Therefore

Pθ(X1 = x1, . . . , Xn = xn|T = t)

=
1

g(t, θ)
{∑

y1,...,yn:T (y1,...,yn)=t h(y1, y2, . . . , yn)
}g(t; θ)h(x1, x2, . . . , xn)I (T(x1, x2, . . . , xn) = t)

=
1{∑

y1,...,yn:T (y1,...,yn)=t h(y1, y2, . . . , yn)
}h(x1, x2, . . . , xn)I (T(x1, x2, . . . , xn) = t)

Thus the conditional distribution of X1, . . . , Xn given T = t is algebraically independent of θ.

End of Proof

In general for a parametric model of with d dimensional parameter the sufficient statistic is of dimen-

sion d.

Example Xi ∼ Unif(0, θ) where θ > 0. Then

f(x1, . . . , xn; θ) =
1

θn

n∏
i=1

I(0 ≤ xi ≤ θ)

Here we take h = 1 and

g(t, θ) =
1

θn
I(0 ≤ t ≤ θ) .
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Thus if we define T (x1, . . . , xn) = max{x1, . . . , xn} = x(n) then

f(x1, . . . , xn; θ) = g(x(n), θ)h(x1, . . . , xn) .

Thus X(n) is the (minimal) sufficient statistic. End of Example

The student should find the minimal sufficient statistic for the iid N(µ, σ2) sampling model and show

that it is equivalent (1 to 1 correspondence) to

T =

(
n∑
i=1

Xi,

n∑
i=1

X2
i

)
.

In particular the student should show that an equivalent form for the sufficient statistic in this problem

is

T ′ =
(
X̄, S2

)
the sample mean and sample variance.

Example

Gamma(α, λ)

L(θ) ≡ L(α, λ)

=

n∏
i=1

f(xi;α, λ)

=

n∏
i=1

λαxα−1
i

Γ(α)
e−λxi

=
λnα

Γ(α)n

{
n∏
i=1

xi

}α−1

e−λ
∑n

i=1 xi

If we set h(x1, . . . , xn) = I(x1 > 0, . . . , xn > 0) and

g(t1, t2, θ) =
λnα

Γ(α)n
{t1}α−1

e−λt2

then we see that L(θ) = h(x1, . . . , xn)g(T1, T2, θ) when we set

T1 =

n∏
i=1

Xi , T2 =

n∑
i=1

Xi .

This means that we can find the MLE by maximizing g(t1, t2, α, θ) with respect to theta = (α, λ) and

substituting the observed values for t1, t2 or correspondingly maximizing

log (g(t1, t2, α, λ)) .

If we choose to work with log(g) then it is more convenient to use an equivalent sufficient statistic,

that is

(T ′1, T
′
2) =

(
n∑
i=1

log(Xi),

n∑
i=1

Xi

)
.
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End of Example

Remark : In coding this MLE example above we only need to work with a function L(θ) and treat

t1, t2 as two given numbers (the role of a parameter for this maximization problem).

Example Consider the exponential parameter λ model. The student should verify that T =
∑n
i=1Xi is

the sufficient statistic. Thus when we are maximizing the log likelihood we are working with the function

L(λ) = n log(λ)− λt

where t =
∑n
i=1 xi or even more simply

1

n
L(λ) = log(λ)− λ t

n
.

One can maximize this analytically and plot the function and find various nice properties of this function.

End of Example

5 Rao-Blackwell Theorem

This theorem is very interesting in that it tells us that any estimator that is not a function of a sufficient

statistic can be replaced by another that is a function of a sufficient and that this new estimator has

smaller mean square error. Therefore when we construct an estimator it is always best to use one that

is a function of the minimal sufficient statistic, such as the maximum likelihood estimator. In practice

again we always look for an estimator that is a function of the minimal sufficient statistic.

Theorem 3 (Rao-Blackwell Theorem) Let θ̂ be an estimator of θ and suppose E(θ̂2) <∞. Suppose

also that T is a sufficient statistic for θ. Let θ̃ = E(θ̂|T ) be the conditional expectation of θ̂ given T .

Then

E

[(
θ̃ − θ

)2
]
≤ E

[(
θ̂ − θ

)2
]
.

The inequality is strict unless θ̂ = θ̃.

Remarks : θ̂ = θ̃ if and only if θ̂ = E(θ̂|T ), which happens when θ̂ is a function of T . In this case

conditioning does not change anything. Otherwise there is a strict improvement. In particular if one

conditions on a minimal sufficient statistic and θ̂ is not a function of this minimal sufficient statistic then

the new estimator has smaller mean square error. Therefore it is always best to use an estimator that is

a function of the minimal sufficient statistic. The MLE satisfies this.

The above remark makes the Rao-Blackwell Theorem one of great theoretical importance. However

in practice it is very difficult to calculate the conditional expectation θ̃, so in general we cannot make use

of this when the estimator is not a function of the minimal sufficient statistic. Thus in general we try to

find such estimators if possible.

End of Remarks

Proof of Rao-Blackwell Theorem
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E(θ̃) = E
(

E(θ̂|T )
)

= E(θ̂) .

Also

Var(θ̂) = Var(E(θ̂|T )) + E
(

Var(θ̂|T )
)
.

Therefore

Var(θ̂) > Var(θ̃)

unless E
(

Var(θ̂|T )
)

= 0 in which case

Var(θ̂) = Var(θ̃) .

Since Var(θ̂|T ) ≥ 0 with probability 1, then E
(

Var(θ̂|T )
)

= 0 if and only if Var(θ̂|T ) = 0 with probability

1, which happens if and only if θ̂ is constant with respect to T , that is it is a function of T .

If Var(θ̂|T ) > 0 with positive probability then

E

[(
θ̃ − θ

)2
]

= E

[(
θ̃ − E(θ̃) + E(θ̃)− θ

)2
]

= E

[(
θ̃ − E(θ̃)

)2
]

+
[
E(θ̃)− θ

]2
= Var(θ̃) +

[
E(θ̂)− θ

]2
< Var(θ̂) +

[
E(θ̂)− θ

]2
= E

[(
θ̂ − θ

)2
]
.

This last line is obtained by a calculation similar to the reverse of the first few lines.

This completes the proof.

End of Proof

The student should return to find the form of the method of moments estimator for the Gamma

family. Notice these estimators are functions of the first to sample moments, and therefore they are not

functions of the minimal sufficient statistic. Thus the method of moments estimator can be improved.

On the other hand the MLE is a function of the minimal sufficient statistic, and cannot be improved.

Unfortunately the Rao-Blackwell Theorem does not say how these two estimators compare, it only says

if they can be improved.


