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We showed under the regularity conditions, f being pdf (or pmf and sum-
mation accordingly)
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Notice the integration is done with respect to θ0, and this final statement is
therefore true for all θ0. Thus in our statement we can also write∫

R

[
∂ log (f(x; θ))

∂θ

]
f(x; θ)dx = 0 (1)

for all θ.
Define I(θ) in both the 1-D and higher dimensional parameter case, that is

as a matrix.
Re : Lemma 8.5.2 A proof.
Remark : Equation (1) is true for all θ but it is not true that

∂Λ(θ)

∂θ
= Eθ0
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∂θ
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]
f(x; θ0)dx

is equal to 0 for all θ. In each integral the integrand is a product of two func-
tions, one with parameters θ and θ0 (not necessarily matching) and in the other
integral with parameters θ and θ (necessarily matching). If we calculate the
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derivative is this second integral, which is valid, it is not the case that the
derivative is equal to 0. However if we differentiate (1) with respect to θ, it is
the case that this derivative is equal to 0.

The correct method is therefore to differentiate (1).
For real θ

∂

∂θ
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This last line is not true if we calculate

Eθ0

[
∂ log (f(X; θ))

∂θ

]
=

∫
R

[
∂ log (f(x; θ))

∂θ

]
f(x; θ0)dx

even though the differentiation is valid.
Remark : A variance matrix (also called a variance-covariance or covariance

matrix) for the vector X is given by

var(X) =


Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xd)
Cov(X2, X1) Cov(X2, X2) . . . Cov(X2, Xd)

...
Cov(Xd, X1) Cov(Xd, X2) . . . Cov(Xd, Xd)


If we have a row vector X = (X1, X2, . . . , Xd) (a 1 × d matrix) then XtX is
a d × d matrix. The variance matrix is thus the component or element wise
matrix of expectations of (X − µ)t(X − µ) where µ is the row vector of means
of Xi, that is

var(X) = E
[
(X − µ)t(X − µ)

]
.

If one interprets X as a column vector then one has to interpret

var(X) = E
[
(X − µ)(X − µ)t

]
so one needs to be consistent with the interpretation of row or column random
vectors.
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Comments on calculation of Fisher’s information matrix
In the asymptotic normality of the MLE we use the property that

1

n
ℓ′′(θ0) → −I(θ0)

Thus we interpret, after taking expectations, in the iid case,

−I(θ) = lim
n→∞

1

n
E(ℓ′′(θ))

= lim
n→∞

1

n

n∑
i=1

E

(
∂2log(f(Xi; θ)

∂θ2

)
= E

(
∂2log(f(X; θ)

∂θ2

)
This is the interpretation that we wish to use. It is also the one that makes

Theorem 8.5B page 277 Rice correct.
The later interpretation of

−I(θ) = lim
n→∞

1

n
E(ℓ′′(θ)) (2)

is the one that that is actually correct, but in the iid case this simplifies to the
definition given in Rice. In the case of Binomial(n, θ) we need to use (2).

To help us with this clarification consider the following example.

Example : Bernoulli and Binomial MLE
Consider the following two related models and sampling from these

• Bernoulli parameter θ ∈ [0, 1] and iid sampling Y1, . . . , Yn

• Binomial, sample size n and parameter θ ∈ [0, 1] and one observation X

In both there is a sample size n, but in the binomial there is only one
observation X. However Y1 + . . .+ Yn and X both have the same distribution,
Binomial(n, θ). Below for the Bernoulli model data we also write X = Y1 +
. . .+ Yn.

The pmf’s are

• Bernoulli :
f1(k; θ) = (1− θ)1−kθk , k = 0, 1 .

• Binomial :

f2(k; θ) =

(
n

k

)
(1− θ)n−kθk , k = 0, 1, . . . , n .
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We will use a subscript 1 and 2 to distinguish these two models and relevant
calculations below. Notice in the Bernoulli sampling, the sample size n is re-
flected in the increasing number of observations, that is Y1, . . . , Yn. However in
the Binomial sampling game, there is only one observation X and the sample
size n is hidden in the pmf of X. For the iid Bernoulli sampling the number
of r.v.s observed Y1, . . . , Yn tends to infinity. For the Binomial sampling exper-
iment there is only one r.v., so the number of r.v.s does not tend to infinity.
As such we need to interpret the limit distribution or the approximate normal
distribution accordingly.

The log likelihood functions are

• Bernoulli :

ℓ1(θ) =

n∑
i=1

{(1− Yi) log(1− θ) + Yi log(θ)} = (n−X) log(1−θ)+X log(θ)

• Binomial : omitting the terms that do not involve θ, that is
(
n
X

)
ℓ2(θ) = (n−X) log(1− θ) +X log(θ)

Thus we see these two models and data have essentially the same log likelihood,
and both yield the MLE

θ̂n =
X

n
= X̄n .

In both cases we would obtain by the Central Limit Theorem, or more specifi-
cally by the method of Moment Generating Functions used in the proof, that

√
n(θ̂n − θ) → N(0, θ(1− θ))

in distribution as n → ∞.
For the Bernoulli model the student should verify that Fisher’s information

is

I1(θ) =
1

θ(1− θ)

Now consider the Binomial model. There is only 1 observation of X. The
second derivative of the log pmf is is exactly the same the as the second derivative
of the log lilkelihood.

ℓ′′2(θ) =
∂2 [(n−X) log(1− θ) +X log(θ)]

∂θ2

= − (n−X)

(1− θ)2
+ n

X

θ2

This has expectation

Eθ(ℓ
′′
2(θ)) = − n

θ(1− θ)

and hence

Eθ

(
∂2f2(X; θ)

∂θ2

)
= − n

θ(1− θ)
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• Bernoulli :
Eθ(ℓ

′′
1(θ)) = − n

θ(1− θ)
= −nI1(θ)

• Binomial :
Eθ(ℓ

′′
2(θ)) = − n

θ(1− θ)

Thus we interpret

I2(θ) =
1

n

n

θ(1− θ)
=

1

θ(1− θ)
.

This make the limiting normal distribution with variance 1 over Fisher’s infor-
mation correct.

End of Example

The problem in getting the correct Fisher’s information, in the sense of the
correct variance for the Normal approximation, is that for the Binomial sampling
model the sample size n is hidden in the pmf of X. For all other iid sampling
models the marginal pmf or pdf does not include the sample size n.

The actual definition of Fisher’s information may also be written as

nI(θ) = −Eθ(ℓ
′′
1(θ))

This calculation will be correct for all statistical models of the type in our course.
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Following the discussion above another useful property is used in many sta-
tistical packages. In the regular case the MLE is calculated by solving

∂ℓ(θ)

∂θ
= 0

This may be done for example by the Newton-Raphson iterative method

θ̂(k+1) = θ̂(k) −

(
∂2ℓ(θ̂(k))

∂θ2

)−1
∂ℓ(θ̂(k))

∂θ

where θ̂(k) is the k-th term in the iterative solution approximation for θ̂.
The matrix of second order partial derivatives

H(θ) =
∂2ℓ(θ)

∂θ2

is called the Hessian matrix. It may be output by such a package, specifically
the matrix H(θ̂kEND ), that is evaluated at the end point of the iteration. Then,
based on some additional property of convergence for random variables, related
to the Law of Large Numbers,

− 1

n
H(θ̂kEND

) ≈ I(θ̂).

Thus the iterative method, when it outputs the Hessian, also yields an approxi-
mation to Fisher’s information. This is particularly useful when the expectation
calculation is not easily obtained.

Another useful method to approximate Fisher information is to use the so
called observed Fisher’s information, that is replace θ by θ̂ in the formula for
Fisher’s information. The observed Fisher’s information, or observed informa-
tion, is given by I(θ̂).


