
Statistics 3858 : Likelihood Ratio for Multinomial Models

SupposeX is multinomial onM categories, that isX ∼ Multinomial(n, p), where p = (p1, p2, . . . , pM ) ∈
A, and the parameter space is

A = {p : pj ≥ 0,

M∑
j=1

pj = 1 }

The dimension of this parameter space is M − 1. It is a simplex of dimension M − 1.

The likelihood function is

L(p) = c(n,X1, . . . , XM )

M∏
j=1

p
Xj

j

where the data is X = (X1, X2, . . . , XM ). Notice that Xj ≥ 0 and X1 +X2 + . . .+XM = n and

c(n, x1, . . . , xM ) =

(
n

x1 . . . xM

)
=

n!

x1!x2! . . . xM !

is the multinomial coefficient. The MLE is easily found using the log-likelihood and Lagrange multipliers

and is

p̂ =

(
X1

n
, . . . ,

XM

n

)
A special multinomial model in certain models is of the form

p = p(θ) = (p1(θ), . . . , pM (θ))

where the components are of a functional form of some other parameter. For example in the Hardy-

Weinberg model with M = 3

p = ((1− θ)2, 2θ(1− θ), θ2)

where θ ∈ Θ = (0, 1). We can view this as a particular 1 dimensional subset or sub-manifold, say A0 of

the M − 1 dimensional simplex A that is the general parameter space for multinomials on M categoriess.

This section constructs the generalized likelihood ratio (GLR) statistic for

H0 : p ∈ A0
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versus

HA : p ∈ AA = A \ A0

We often write the alternative as HA : p is not in A0 or simply refer to is as the general alternative (in

this context).

Let θ̂ be the MLE of θ. Then the MLE of p(θ) is given by p(θ̂). Since AA ∪A0 = A, the denominator

for the GLR is the likelihood evaluated at the general or unrestricted MLE of p. Thus the GLR is

Λ(X) =

∏M
j=1 pj(θ̂)

Xj∏M
j=1 p̂

Xj

j

The rejection region is of the form

Λ(x) < c

where c is determined by

α = P0(Λ(X) < c)

By Theorem 9.4A c is obtained as c1 = −2 log(c) where

α = P0 ( −2 log(Λ(X)) > c1 = −2 log(c) )

The constant c1 is approximately the upper 1 − α quantile of a χ2
(d) distribution where the degrees of

freedom is d = M − 1− dim(A0).

For the Hardy-Weinberg model this is

M − 1− dim(A0) = 3− 1− 1 = 1

A size α = .05 test will have c1 = (1.96)2 = 3.84 and c = e−3.84/2 = e−1.92 = 0.146.

Consider the function g : R+ 7→ R given by

g(y) = y log(y/y0)

where y0 is a given number. The first two derivatives are

g′(y) = log(y/y0) + y
1

y

= log(y/y0) + 1

g′′(y) =
1

y

and

g(y0) = y0 log(y0/y0) = 0

g′(y0) = log(y0/y0) + 1 = 1

g′′(y0) =
1

y0
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When we take the negative 1 times the log of the GLR Λ(X) we see, after gathering up some common

terms, that it contains

− log(pj(θ̂)) + log(p̂j) = log

(
p̂j

pj(θ̂)

)
.

Aside : We are interested in a negative number times the log GLR, since the GLR ≤ 1, and this will

result in the negative log being positive. If one were to define the GLR with the ratio reversed this would

not be the case, but by convention GLR is defined as this ratio. Some text books unfortunately do not

follow this convention.

Thus for a given j, taking y0 = pj(θ̂) and y = p̂j

g(p̂j) ≈ g(pj(θ̂)) + g′(pj(θ̂))
(
p̂j − pj(θ̂)

)
+

1

2
g′′(pj(θ̂))

(
p̂j − pj(θ̂)

)2
=

(
p̂j − pj(θ̂)

)
+

(
p̂j − pj(θ̂)

)2
2pj(θ̂)

Below consider gj to be the function g above with y0 = pj(θ̂).

It then follows that

−2 log (Λ(X)) = −2

M∑
j=1

Xj log(pj(θ̂)/p̂j)

= 2n

M∑
j=1

Xj

n
log(p̂j/pj(θ̂))

= 2n

M∑
j=1

p̂j log(p̂j/pj(θ̂))

= 2n

M∑
j=1

gj(p̂j)

≈ n

M∑
j=1

2
(
p̂j − pj(θ̂)

)
+

(
p̂j − pj(θ̂)

)2
pj(θ̂)


= 2n

M∑
j=1

{
p̂j − pj(θ̂)

}
+

M∑
j=1

n2
(
p̂j − pj(θ̂)

)2
npj(θ̂)

= 2n (1− 1) +

M∑
j=1

(
np̂j − npj(θ̂)

)2
npj(θ̂)
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=

M∑
j=1

(
np̂j − npj(θ̂)

)2
npj(θ̂)

This last expression is often written as np̂j = Xj = Oj where Oj is the observed counts in the j-th

category, and npj(θ̂) = Êj (or sometimes Ej) as the expected counts for the best fit for the statistical

model with parameter θ, that is the restricted multinomial model that corresponds to the null hypothesis.

When doing this we obtain

χ2 =

M∑
j=1

(
np̂j − npj(θ̂)

)2
npj(θ̂)

=

M∑
j=1

(
Oj − Êj

)2
Êj

This last formula is called the Pearson’s chi-squared statistic.

Thus in this multinomial setting the Pearson’s chi-squared statistic is equivalent to the generalized

likelihood ratio test. It also has a very natural property of comparing the observed and fitted model.

We reject if the GLR Λ is very small, or equivalently when −2 log(Λ) = χ2 is very large. This of course

is a measure which is large if Oj is far from the expected counts for the best fitted model in the null

hypothesis.

In order to assess when the observed value of χ2 is large, we need to compute for a given α the critical

value so that

α = P0(χ2 > c)

By Theorem 9.4A (Rice) when the statistical model is one according to the null hypothesis, the sampling

distribution of χ2 converges to χ2
(d) where the degrees of freedom is d = M − 1− dim(A0).

In the Hardy-Weinberg example, M = 3 and the null hypothesis is that p ∈ A0 in the notation at the

beginning this handout, thus the degrees of freedom is 3 − 1 − 1 = 1. The size α = .05 critical value to

determine the rejection region is thus c = 3.84. The decision rule is thus to reject if

Λ(X) ≤ e−3.84/2 = 0.146

or equivalently if

χ2 =

3∑
j=1

(
Oj − Êj

)2
Êj

> 3.84
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Alternatively we could observe the corresponding statistic and calculate the p-value. If we observe

χ2
Obs then the p-value is

p-value = P (Y > χ2
Obs) .

Remark : This is of course the value of the critical constant c so that χ2
Obs falls on the boundary of the

rejection region.
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