Introductory Examples

Rice, Section 10.2, page 378, gives a data set of the melting point of beeswax. This data is in the file
Chapter 10, beeswax.txt. Figure 1 gives a relative frequency histogram of the data. The histogram has

the general shape of a normal distribution.

Consider the family of probability density functions (pdf)’s

1 (x—mw)?
F = {f L flasp,0?) = m67 22 where y €R, 0% > 0}

This is a family of distributions, with parameter space © = {(u,0?) : u € R,0? > 0}. Thus for an

appropriate choice of some f € F, or equivalently an appropriate choice of u,o? in the parameter space,
one can obtain a good description or fit of the data with this particular distribution.

Figure 1 is produced using the R program in the file bees.r
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Figure 1: Beeswax Melting Point with Normal Overlay.

Another example of parametric modeling is the modeling of Illinois rainfall data. This data is described
in Rice, page 414, problem 42. In this handout the rainfall from the 5 years is combined into one data

set. Figure 2 gives a histogram of this data. Overlaid on the histogram is a fitted Gamma distribution.

Here the family of distributions is

L Naga—le=Az  if 45

F = {f:f(a;;)\,a): l 5(0‘)

] , where A > 0, >0
otherwise

The parameter space is © = {(A\, @) : A > 0, > 0}. Using A = 1.90 and o« = .44 gives a good fitting
Gamma distribution to the histogram.
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Natural questions are which values of the parameters are reasonable and does any member of the

parametric family fit the data well.
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Figure 2: Illinois Rainfall with Gamma Density Overlay
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A statistic is a function of the observable data. Often the observable data is X, ..., X,, where these

are an observed random sample from an experiment.

As an example consider the following calculated from the beeswax data, in particular the melting

point.

n = 59

mean = 63.58881

s2 = 0.1205624
mu.3 = 257146.4
median.x = 63.53

sum.log = 244.9930

Notice also that the choice of the value of the parameter estimates in the above examples is also a
statistic. Often a statistic is a single real valued object, but sometimes it is natural to think of these as
a vector valued random variable. For example consider the random variable (5\, &) calculated from the
rainfall data.
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Using the Michelson’s alpha particle data in section 8.2 we can also obtain the following data, and
hence statistic. We obtain from the sample of size n = 1207 the value A = 0.8354598. Thus for each
10 second interval the count will be, according to the model, an observation from a Poisson distribution
with parameter § = 10 * \. We can estimate 6 by 6 = 8.35. The table below gives the estimated counts,
based on the fitted model.

$note [1] "Alpha particle counts in 10 second intervals"
$lam.hat [1] 0.83545
$chi.sq [1] 8.975796

$table

counts Prob  expected Chisq

0-2 18 0.0104 12.5692  2.3465
3 28 0.0229 27.6043 0.0057

4 56 0.0478 57.6557 0.0475

5 105 0.0798 96.3381 0.7788

6 126 0.1111 134.1443 0.4945

7 146 0.1326 160.1031 1.2423

8 164 0.1385 167.1997 0.0612

9 161 0.1286 155.2096 0.2160

10 123 0.1074 129.6713 0.3432

11 101 0.0816 98.4865 0.0641

12 74 0.0568 68.5680 0.4303

13 53 0.0365 44.0660 1.8113

14 23 0.0218 26.2967 0.4133

15 15 0.0121 14.6465 0.0085

16 0.0063 7.6479  0.2391
17+ 0.0056 6.7931  0.4733

The observed x? value is 8.98. The R output for this analysis gives 8.975796, but how many digits are
worth keeping? The construction and meaning of the Pearson’s x2 test is discussed later in the course as
an application of generalized likelihood ratio tests. So what does this observed number mean? Later we
find this gives supporting evidence to the assumption that a Poisson model is a reasonable and good model
for this experiment. Specifically the data is consistent with the assumption that the data is generated by

a Poisson distribution.
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Sometimes it is not always clear which statistical model to use. We may have positive random variables

with a large mean. We may wish to use the Gamma family to model these, or perhaps a normal family.

For ar.v. X that is positive (non-negative) with probability 1 we have P(X > 0) =1 (P(X > 0) =1).
However if X ~ N(u,0?) then P(X > 0) < 1 # 1. However if u large, relative to appropriate o2, then
P(X < 0) ~ 0 and so the normal may still be reasonable.

Specifically if X ~ Gamma(a, A) we have the following approximation. Recall X has moment gen-
erating function M. We will want to study this for large «, so that we will study this limit as o — oc.

Denote the dependence of the mgf on « as M,,. Therefore

Now consider the centred random variable

1 o}
Yo= (X - 7) .
Va A
Notice we are dividing by \/a instead of standardizing the y/Var(X) = /a/v/X. Let M, be the mgf of
Y.

Ma(t) =

Therefore

log (M) = {log(1) ~ log(1 - 1) - =

The student should verify that
1

aler;o log (M, (t)) = ﬁtz .
Therefore by the Continuity Theorem, Y, converges in distribution to N (0, )\1—2) as a — oo. Thus a
Gamma distribution with large shape parameter « is very close to a normal distribution. Thus in this
setting if a Gamma distribution with large shape parameter is a good fit, then so will a normal distribution
be a good fit. This has a practical implication that sometimes there may be different models that may
fit data equally well. Thus there may be more than one good answer, at least in terms of model selection

or model choice.

As an example we can look at the plot of the beeswax hydrocarbon data. Figure 3 gives the histogram
of this data along with a normal and gamma fitted model. The two fitted densities are nearly identical

on this plot.
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Histogram for Hydrocarbon Data
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Figure 3: Beeswax Hydrocarbon data with Normal and Gamma Overlay.
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When are statistical inferences valid? How do compare estimators or determine properties of an

estimator?

With improved computing power can one make use of it for statistical estimation and statistical
inference? A recent method to take advantage of this the so called bootstrap method, both in a parametric

and non-parametric form. What are these?



