
Likelihood Ratios

Rice, Chapter 9 discuss hypothesis testing and likelihood ratios.

A hypothesis is a statement about the statistical model, and in the case of parametric models a

statement about parameters. It is not a statement about random variables or a statistics. We have null

hypotheses

H0 : θ ∈ Θ0

and alternative hypotheses

HA : θ ∈ ΘA

The sets Θ0 and ΘA are subsets of Θ, the parameter space. The hypothesis H : θ ∈ Θ∗ is a simple

hypothesis if these θ uniquely determine the distribution of the observable r.v.s. When θ is identifiable,

as is usually the case, then we need Θ∗ to be a set of size 1, and hence knowing that θ satisfies the

hypothesis then determines the distribution of the r.v.s X that are the observable data or r.v.s. When

a hypothesis does not determine the distribution of the observable data then the hypothesis is called

composite. This means that Θ∗ must have more than one element.

Some examples of the use of likelihood ratios and translating or rewriting the rejection region into an

nicer form are given here. The likelihood ratio LR used below is a function of the data X1, . . . , n. It is

also sometimes a function of θ0, a special value in the parameter space and the null hypothesis. Thus the

student should keep in mind that it is a function of the n variables x = (x1, . . . , x). To explicitly denote

this we will sometimes write

LR(x) = LR(x1, x2, . . . , xn)

to emphasis the dependence on the data x. Sometimes we will also write LR(θ0) when we wish to

emphasize the dependence on θ0. Sometimes we may need to emphasize the dependence on both these

quantities and will write LR(θ0,x) to denote this.

In the case of a simple hypothesis H0 : θ = θ0 versus an alternative HA : θ = θ1 (recall θ0 and θ1 are

specific values in the parameter space) we have

LR(x) =
f(x1, . . . , xn; θ0)

f(x1, . . . , xn; θ1)

which is the ratio of the joint pdf (or pmf).

The same type of dependence also occurs for the generalized likelihood ratio (GLR) Λ (see Rice,

section 9.5). Thus we will write in various places

Λ(θ0) , Λ(θ0,x), or Λ(x)

as needed. The GLR is by definition less than or equal to 1. This setting is used to test H0 : θ ∈ Θ0

versus HA : θ ∈ ΘA, where Θ0 and ΘA are specific subsets of Θ.
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Aside : A GLR may be defined as

Λ∗(x) =
maxθ∈Θ0

f(x1, . . . , xn; θ)

maxθ∈ΘA f(x1, . . . , xn; θ)

The rejection region is then of the form

RR = {x : Λ∗(x) < c∗}

for some constant c∗. We may also define

Λ(x) =
maxθ∈Θ0

f(x1, . . . , xn; θ)

maxθ∈Θ0∪ΘA f(x1, . . . , xn; θ)

Calculus tool for solving maximization problems are much easier to apply to Λ than to Λ∗ since typically

the subsets of Θ in Λ∗ have more boundaries. Notice

Λ(x) = min(Λ∗(x), 1)

Thus rejection rules based on Λ∗ are usually the same as those based on Λ and they are always the same

whenever c∗ < 1. The GLR in the form of Λ(x) is normally used as opposed to any other form. In

addition there is a nice limit theorem (see Theorem 9.5A p341 Rice) that makes it easy to obtain an

approximate distribution under H0.

We treat Λ(x) = Λ(x1, . . . , xn) as a function mapping Rn to R+. The rejection region is a set R

(sometimes write as RR or Ac where A is the acceptance region) is a subset of the set of realizations of

X1, . . . , Xn, so that R = RR = Ac ⊂ Rn. The decision rule is of the form : reject H0 and hence accept

HA is (X1, . . . , Xn) ∈ RR, that is reject if the data falls into the rejection region. We then have

P (Type I error) = Pθ0 ((X1, . . . , Xn) ∈ RR)

P (Type II error) = Pθ ((X1, . . . , Xn) ∈ RRc)

= Pθ (Accept H0)

The term P (Type II error) sometimes needs to be made a little more precise, since in the case of a

composite hypothesis there are many possible θ. In this case we take the largest possible value of

P (Type II error) over all relevant θ. The same thing is done for a composite null hypothesis. Most of the

examples in this course are such that this level of detail is not needed, so we do not consider this further

unless necessary.

There is however one topic where this is necessary, namely the power function. It is a function β

given by

1− β(θ) = Pθ ((X1, . . . , Xn) ∈ RR)

which is thus the probability of rejecting H0 when θ is in the alternative set of θ. Notice that

β(θ) = Pθ ((X1, . . . , Xn) ∈ RRc)

so that for θ satisfying the alternative hypothesis we have

β(θ) = Pθ (Accept H0)

that is the probability of type II error for this particular θ ∈ ΘA.
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1 Normal Examples

Xi, i = 1, . . . , n is an iid sample from a N(µ, σ2) distribution.

1.1 Normal Example, σ known. Simple null hypothesis H0 : µ = µ0 versus the

simple alternative HA : µ = µA

The likelihood ratio is

LR =

∏n
i=1

1√
2πσ2

exp
{
−(Xi − µ0)2/(2σ2)

}∏n
i=1

1√
2πσ2

exp {−(Xi − µA)2/(2σ2)}

= exp

{
− 1

2σ2

(
n∑
i=1

(Xi − µ0)2 −
n∑
i=1

(Xi − µA)2

)}

Consider a rejection region of the form R = {x : LR(x) < c}, for some constant c, to be determined

by the size of the test. Question for the student : Why does the rejection region have to be of this form?

The rejection region R is

R = {x : LR(x) < c}

= {x :

n∑
i=1

(xi − µ0)2 −
n∑
i=1

(xi − µA)2 > c1 = −2σ2 log(c)}

= {x :

n∑
i=1

x2
i − 2nx̄µ0 + nµ2

0 −
n∑
i=1

x2
i + 2nx̄µA − nµ2

A > c1}

= {x : 2nx̄(µA − µ0) > c2 = c1 + n(µ2
A − µ2

0)}

If µA > µ0 then the rejection region is of the form

R = {x : x̄ > c3}

and if µA < µ0 then the rejection region is of the form

R = {x : x̄ < c3}

where c3 is a constant (that is it is not random).

There is an interesting property in this simple alternative example. The constant c3 is chosen to make

the size of the test some specified value α. Since the r.v X̄n has a normal distribution, when the null

hypothesis is true, that is

X̄n ∼ N(µ0,
σ2

n
)

we can then determine c3 by solving ( in the case that µA > µ0)

Pµ0(X̄n > c3) = α
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Writing zα to denote the upper α critical value, or equivalently the 1− α quantile, we obtain

√
n(c3 − µ0)

σ
= zα

or equivalently

c3 = zα
σ√
n

+ µ0

Notice this critical value, and hence the rejection region, is the same no matter what is the value of µA,

subject to µA > µ0. In this sense the rejection region is the same for any alternative HA : µ = µA,

subject to µA > µ0.

Since this test is most powerful, we can also say it is uniformly most powerful for all alternatives

HA : µ = µA, subject to µA > µ0.

1.2 Simple null hypothesis H0 : µ = µ0 versus the composite alternative HA :

µ > µ0 and σ known

Here we need to use the generalized likelihood ratio statistic. There is only one parameter µ to be

estimated. Thus

Θ0 = {µ : µ = µ0}

ΘA = {µ : µ > µ0}

Θ0 ∪ΘA = {µ : µ ≥ µ0}

The generalized likelihood ratio is

Λ(X) =
maxµ∈Θ0

`(µ)

maxµ∈Θ0∪ΘA`(µ)
(1)

where ` is the likelihood function

`(µ) =
(
2πσ2

)−n/2
exp

{
−
∑n
i=1(Xi − µ)2

2σ2

}
In the numerator of Λ = Λ(X) we have `(µ0), and in the denominator we have

`(µ0) if X̄ ≤ µ0

`(X̄) if X̄ > µ0

The student should think about why this is so.

Thus the rejection region is (recall c < 1)

R = {x : Λ < c}

= {x :

n∑
i=1

(xi − µ0)2 −
n∑
i=1

(xi − x̄)2 > c1 = −2σ2 log(c) , and x̄ > µ0}

= {x :

n∑
i=1

(xi − x̄+ x̄− µ0)2 −
n∑
i=1

(xi − x̄)2 > c1 , and x̄ > µ0}
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= {x :

n∑
i=1

(xi − x̄)2 + n(x̄− µ0)2 −
n∑
i=1

(xi − x̄)2 > c1 , and x̄ > µ0}

= {x : n(x̄− µ0)2 > c1 , and x̄ > µ0}

= {x :
√
n(x̄− µ0) > c2 =

√
c1 , and x̄ > µ0}

The constant c2 (or c1 or c) is then chosen so the size of the test is α.

α = P0

(√
n(X̄ − µ0) > c2

)
= P0

(√
n(X̄ − µ0)/σ >

c2
σ

)
Therefore

c2 = zασ

where zα is the upper α quantile, or equivalently the 1− α-quantile of the standard normal distribution.

Notice that we could unravel this series of constants to obtain c1 and then c. We could obtain

c = exp{−1

2
z2
α} .

For example if α = .05 then zα = 1.645.
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1.3 Composite null hypothesis H0 : µ = µ0 versus the composite alternative

HA : µ > µ0 and σ unknown

In this case both the the null hypothesis and alternative are composite. The null hypothesis is

H0 : θ = (µ, σ2) ∈ Θ0 = {(µ, σ2) : µ = µ0, σ > 0}

The alternative hypothesis is

HA : θ = (µ, σ2) ∈ ΘA = {(µ, σ2) : µ > µ0, σ > 0}

The generalized likelihood ratio is

Λ =
maxµ∈Θ0

`(µ, σ2)

maxµ∈Θ0∪ΘA`(µ, σ
2)

(2)

where ` is the likelihood function

`(µ, σ2) =
(
2πσ2

)−n/2
exp

{
−
∑n
i=1(Xi − µ)2

2σ2

}
The numerator and denominator are maximized separately. In the numerator the maximization is

over the set Θ0, which has one free variable σ2. The denominator is maximized over Θ0 ∪ΘA, which is a

proper subset of Θ. Thus when we use the calculus tool to do this maximization we need to pay attention

to whether or not the solution of
∂`(µ, σ2)

∂(µ, σ2)
= 0

falls in the interior of Θ0∪ΘA or it does not fall in the interior, that is if X̄ > µ0 (the interior) or X̄ = µ0

(the boundary of Θ0 ∪ΘA) or X̄ < µ0 (the exterior of Θ0 ∪ΘA).

For the numerator of (2) we are maximizing over the set of possible values of σ2. For this we obtain

the argmax as

σ̂2
0 =

1

n

n∑
i=1

(Xi − µ0)2

Thus the numerator is

`(µ0, σ̂
2
0) =

(
2πσ̂2

0

)−n/2
exp

{
−
∑n
i=1(Xi − µ0)2

2σ̂2
0

}
=
(
2πσ̂2

0

)−n/2
e−

n
2

For the denominator we have various cases to deal with. Let (µ̂1, σ̂
2
1) be the argmax over the set

Θ0 ∪ΘA.

• If X̄ > µ0 then

µ̂1 = X̄ , σ̂2
1 =

1

n

n∑
i=1

(Xi − X̄)2

The student should think about why this is so.

Therefore

`(µ̂1, σ̂
2
1) =

(
2πσ̂2

1

)−n/2
exp

{
−
∑n
i=1(Xi − X̄)2

2σ̂2
1

}
=
(
2πσ̂2

1

)−n/2
e−

n
2

The student should also verify that σ̂2
1 < σ̂2

0 . Hint : In the formula for σ̂2
0 add and subtract X̄n

and expand.
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• If X̄ ≤ µ0 then

µ̂1 = µ0 , σ̂
2
1 =

1

n

n∑
i=1

(Xi − µ0)2 = σ̂2
0

The student should think about why this is so.

Therefore in this case

`(µ̂1, σ̂
2
1) =

(
2πσ̂2

0

)−n/2
exp

{
−
∑n
i=1(Xi − µ0)2

2σ̂2
0

}
=
(
2πσ̂2

0

)−n/2
e−

n
2

Thus we find

Λ =

 1 if X̄n ≤ µ0(
σ̂2
1

σ̂2
0

)n/2
if X̄n > µ0

Recall the rejection region is of the form

R = {x : Λ(x) < c}

and that c < 1. Recall also this requires in this particular problem that x̄n > µ0.

Aside : Why can we not have c = 1? (or c > 1?).

In the calculation below the sample variance S2
n is also given by

S2
n =

1

n− 1

n∑
i=1

(
Xi − X̄

)2
=
n− 1

n
σ̂2

1 .

x ∈ R ⇔ σ̂2
1

σ̂2
0

< c1 = c2/n and x̄ > µ0

⇔ σ̂2
1

σ̂2
1 + (x̄n − µ0)2

< c1 and x̄ > µ0

⇔ 1

1 + (x̄n−µ0)2

σ̂2
1

< c1 and x̄ > µ0

⇔ (x̄n − µ0)2

σ̂2
1

> c′2,1 =
1− c1
c1

and x̄ > µ0 student : why is c2 positive

⇔ (x̄n − µ0)2

n
n−1 σ̂

2
1

> c2 =
n− 1

n
c′2,1 and x̄ > µ0 student : why is c2 positive

⇔ (x̄n − µ0)

Sn
> c3 =

√
c2 student : why positive square root?

⇔ (x̄n − µ0)

Sn
> c3 =

√
c2 student : why positive square root?

⇔
√
n(x̄n − µ0)

Sn
> c4 =

√
nc3

Notice this means that the test statistic is

t =

√
n(X̄n − µ0)

Sn



Likelihood Ratios 8

and decision rule is to reject H0 in favour of HA iff

√
n(X̄n − µ0)

Sn
> c4

Moreover, under the null hypothesis, the test statistic has a Student’s t distribution with n − 1 degrees

of freedom. The critical value c4 is thus calculated using the Student’s t distribution with df n− 1.

The the generalized likelihood ratio test is equivalent to the Student’s t test. This is the justification

for using the Student’s t statistic in this one sided alternative hypothesis test problem.

1.4 Composite null hypothesis H0 : µ = µ0 versus the composite alternative

HA : µ 6= µ0 and σ unknown

The student should follow the previous section and develop the generalized likelihood ratio test for this

problem. In particular show that it is equivalent to the usual two sided t test.

For a different type (non normal) of example see handout EpnonetialLikelihoodRatio.pdf

2 Multinomial GLR

See the handout MultinomialLikelihoodRatio for details of this example.

One very useful limit theorem, that is as the sample size n → ∞, is given by Theorem 9.4A Rice,

Third Edition, p 341. The proof is beyond the mathematical tools we study up to this level of course.

The conditions for this Theorem are that Assumptions I and II for the regularity conditions for MLE are

satisfied. Thus this Theorem will apply whenever we have MLE for which the score function and Fisher’s

information are also applicable or valid.

Theorem 1 (Rice Theorem 9.4A) Suppose the regularity assumptions I and II for the regular MLE

case are satisfied. Consider the hypothesis H0 : θ ∈ Θ0 versus the hypothesis HA : θ ∈ ΘA and consider

the Generlized Likelihood Ratio (GLR) test Λ. Under the assumption that θ ∈ Θ0 (that is the null

hypothesis is true) then

−2 log(Λ(X))⇒ χ2
(d)

where the convergence is in distribution as n→∞ and

d = dim(Θ0 ∪ΘA)− dim(Θ0)

This Theorem makes it easy to obtain an approximation to the critical values for the GLR, the test

statistic, when the assumptions are satisfied and the sample size n is large. We use this critical value to

obtain the rejection region. It is usually applied in the case ΘA = Θc
0.
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3 Hypothesis Testing and Confidence Intervals or Confidence

Sets

There is a one to one correspondence between confidence intervals and hypothesis testing with two sided

or general alternatives.

Consider the hypothesis H0 : θ = θ0 versus the alternative HA : θ 6= θ0. Let Tn,θ0(X) be a test

statistic and consider a size α test. Consider the following set

A = {θ0 : θ0 is not rejected at size α}

The set A is a 100(1-α)% confidence set for θ, that is the set of possible values that are not rejected at

level α. We may also consider as the set of possible parameter values that consistent with the observed

data, in the sense these are the parameter values that are not rejected by our hypothesis test. The

confidence set is then the possible values of θ0 which fall into the acceptance regions for each possible null

hypothesis above. One may construct these sets for a parameter θ ∈ Θ ⊂ Rd or one may construct these

for a component of a parameter, for example µ being one of the components of (µ, σ2) in the normal case,

or one of the components in the parameter for a Gamma distribution.

Often in the case of real parameters these confidence sets are intervals and we call the result a

confidence interval.

Remark : The confidence set (or interval) is a random set, in that it is a set valued function of the

random variables that are observable. As usual there are two forms that are of interest to us (i) as a

random object so that we can calculate probabilities of some functions of the confidence set A and (ii) as

an observed confidence set (or interval) after data has been observed from an experiment. The later is

useful as it then tells us which possible parameters are consistent with the observed data. In particular

if some special value θ∗ is not in the observed confidence interval then at level α this value θ∗ is rejected

and so there is evidence (at this significance level) that θ∗ is not a reasonable choice for θ.

End of Remark

Typically our test statistic will be of the form

Tn =

√
n(θ̂n − θ0)

vn

where θ̂n is an estimator of θ and vn is either a population variance of an estimate of the standard

deviation of
√
n(θ̂n − θ0). For the hypothesis test the size α rejection region is the complement of the

acceptance region which is

cL ≤
√
n(θ̂n − θ0)

vn
≤ cU

where cL and cU are the appropriate lower and upper quantiles or critical values for Tn as calculated

under the null hypothesis. After solving for θ0 satisfying these inequalities we obtain a formula for the

confidence interval for θ0 as {
θ0 : θ̂n − cU

vn√
n
≤ θ0 ≤ θ̂n − cL

vn√
n

}
We often write this in a simpler or more convenient notation as[

θ̂n − cU
vn√
n
, θ̂n − cL

vn√
n

]
.
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In some cases we cannot easily calculate the critical values cL and cU since the distribution of Tn may

not be easy to find. The we may be able to calculate cL and cU from an approximation such as normal

approximation.

Depending on the assumptions we typically calculate the critical values c as follows

• iid normal sampling, σ2 known : vn = σ and c is calculated from a standard normal distribution

• iid normal sampling, σ2 not known, vn =
√
S2
n and c calculated from student’s t

• most other cases :

– sampling distribution of T is approximated by a normal distribution. If v2
n is the the limiting

variance of
√
n(θ̂n − θ0) under the null hypothesis assumption, then T has an approximate

standard normal distribution under H0 and c is calculated from the standard normal distribu-

tion

– the sampling distribution of T may be obtained numerically by a Monte Carlo method, such

as parameter bootstrap or another useful method called the non parametric bootstrap

• there are a few other special cases where the sampling distribution of T may be known exactly

(that is without approximation) and we may discuss some of these if time permits in the course

Example : iid normal. The test statistic of H0 : µ = µ0 versus HA : µ 6= µ0 is

Tn =

√
n(µ̂n − µ0)

Sn

where µ̂n = X̄n and S2
n is the sample variance. Tn has, under the null hypothesis assumption, a student’s

t distribution with degrees of freedom n− 1. Then

cU = t(n−1),α2
, cL = −t(n−1),α2

where t(n−1),α2
is the upper α

2 critical value, that is the 1− α
2 quantile.

Example : In a regular model the MLE has a normal limit distribution, or asymptotic normal distri-

bution √
n(θ̂n − θ0) ≈ N(0,

1

I(θ0)
)

and after some further manipulation we obtain√
nI(θ̂0)

(
θ̂n − θ0

)
≈ N(0, 1)

where I(θ̂n) is the observed Fisher’s information. Our upper and lower critical values are then obtained

from the standard normal distribution, that is for a 100(1 - α) confidence interval we use

cU = zα
2
, cL = −zα

2

where zα
2

is the upper α
2 critical value of the standard normal distribution.

In some cases, but not too many, the test statistic is of the form

T =
θ̂n
θ0
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One example of this type is in the case of iid normal sampling where we have (see Rice Chapter 6, or

Stat 3657 examples from Chapter 3)

T =

∑n
i=1(Xi − X̄n)2

σ2
0

=
(n− 1)S2

n

σ2
0

∼ χ2
(n−1)

In this case we obtain the confidence interval in the form{
σ2

0 : cL ≤
(n− 1)S2

n

σ2
0

≤ cU
}

where cL and cU are the corresponding α
2 and 1− α

2 quantiles from a χ2
(n−1) distribution. This confidence

interval is usually written as [
(n− 1)S2

n

cU
,

(n− 1)S2
n

cL

]
.
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In our examples above often we can rewrite the rejection region (the subset of the sample space for

which we reject the null hypothesis in favour of the alternative) in order to find a simpler or more intuitive

form of the rejection region. Sometimes this is not possible.

In this case we can find, in the regular models case, an approximation theorem to the sampling

distribution of the test statistic. Instead of working with the r.v. Λ(X) we instead work with the r.v.

−2 log(Λ(X)) .

Theorem 9.4A (Rice) : Suppose the statistical model satisfies the regularity (smoothness) Assumptions

I and II. Then under the assumption that H0 holds then

−2 log(Λ(X))⇒ χ2
(d)

(converges in distribution) as n → ∞, where the degrees of freedom d for the limiting chi-square distri-

bution is given by

d = dim(Θ0 ∪ΘA)− dim(Θ0) .

end of theorem

We will not prove this Theorem. However in the case of the iid exponential statistical model, we will

use a Taylor’s expansion or order 1 to examine −2 log(Λ(X)). See that handout.


