
Statistics 3657 : Independent Events

Recall the definition of independence from class.

Definition of (statistical) independence of events

1. Events A1, A2, . . . , An are said to be be independent if and only if for every subset
J ⊂ {1, 2, . . . , n}

P (∩i∈JAi) =
∏
i∈J

P (Ai)

2. A collection of events A is said to be a collection of independent events if and only
if for every finite sub collection of events A1, . . . , An ∈ A, the events A1, . . . , An are
independent.

end of definition

Note that when the subset J of the indices is a set of size 1, that is a single element, the
product formula is automatically and trivially true. Similarly the product formula is trivial
if J = ∅. Thus it is really only of interest to check these products when |J |, the cardinality
of the set J or the number of elements in the set J , is at least 2.

Consider two events A,B. There is only one condition, so A and B are independent if
and only if

P (A ∩B) = P (A)P (B) .

If we consider 3 events, A1, A2, A3, then there are
(3
2

)
= 3 pairs to check and

(3
3

)
= 1 triple

to check, that is 4 conditions to check. Is it okay to just check the single triple condition?
An example below shows that in general this is not true.

What happens if there are n events. Then to check independence there are 2n conditions,
although the

(n
1

)
= n singleton sets and J = ∅ are trivial. Thus there are 2n − n − 1 actual

conditions to check.

Fortunately if we start with independence, these 2n product conditions are automatically
true. We will have some results about this later.

In our course we refer to statistical independence more simply as independence. There
are other notions of independence such as linear independence. We will only use the the
qualifying term statistical with dependence when the context requires this extra clarification.
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If events A1, A2 and A3 are pairwise independent are they (mutually) independent?

This means, supposing that P (Ai∩Aj) = P (Ai)P (Aj) for every distinct pair i, j ∈ {1, 2, 3}
is it true that P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3)?

Somewhat surprisingly the answer is no. A simple game of tossing coins will furnish a
counterexample.

A Coin Tossing Game Example

Consider tossing two fair coins. Consider the following events.

• A1 = event that the first coin is a head (H)

• A2 = event that the second coin is a H

• A3 = event that the number of heads is odd, that is the number of heads is 1.

Verify that for each of these events P (Ai) =
1
2 .

Verify that for each pair of these events we have

P (Ai ∩Aj) =
1

4
=

1

2
× 1

2
= P (Ai)P (Aj) .

Verify that A1 ∩A2 ∩A3 is the empty set, so that

P (A1 ∩A2 ∩A3) = 0 ̸= P (A1)P (A2)P (A3) =
1

8
.

For this game it may be easier to understand if we had proceeded using a sample space.

Take Ω = {00, 01, 10, 11} so that

• A1 = {10, 11}

• A2 = {01, 11}

• A3 = {10, 01}

Also we have the probability measure P (ω) = 1
4 for each ω ∈ Ω. The student should

now verify this sample space example really has the properties above, so that it is the formal
example of non independence but pairwise independence.

Similar examples can be constructed with n events. In particular it is possible to construct
examples of n events, A1, A2, . . . , An such that for any n−1 these n−1 events are independent,
but all n together are not (mutually) independent.
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More about independence

If we perform an experiment with n independent trials, then events Ai from the i-th
trial are independent. Therefore the Ai’s obey the product formula conditions for all subsets
J ⊂ {1, 2, . . . , n}, that is all subsets of the indices 1, . . . , n.

How can this be done? If we perform physically independent experimental trials, then each
trial is also statistically independent. For this reason the notion of statistical independence
results from physically independent trials in an experiment. This is what is often done
in scientific experiments. It is also guaranteed by many of the commonly used sampling
mechanisms, such as used for random samples in an opinion poll.

Some other consequences

If A and B are independent events then Ac and B are independent events.

Proof :

P (B) = P ((A ∩B) ∪ (Ac ∩B))

= P (A ∩B) + P (Ac ∩B) using axiom 3

= P (A)P (B) + P (Ac ∩B) by independence of A and B

Therefore

P (Ac ∩B) = P (B)− P (A)P (B) = (1− P (A))P (B) = P (Ac)P (B)

and therefore by the definition of independence Ac and B are independent events.

End of Proof.

Can you prove that if A1, A2, A3 are independent then A1, A2, A
c
3 are independent?
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Circuit Example

This example is similar to circuit examples in the problems at the end of Chapters 1 and
3.

A circuit in Figure 1 consists of two subcircuits, the upper one consisting of components
A and B, and the lower one consisting of components C and D.

In our example we suppose each of the basic components are independent. What is
the probability of the circuit system working? This means that a message (electricity, water,
email, etc) is able to pass from the left end to the right end. We think of the basic components
as essentially lift bridges, that is a message passes over or through it if the component is
working and not if the component fails or is not working.

Call the top subcomponent SC1 and bottom subcomponent SC2. Suppose the basic
components A,B,C,D are independent and each has probability p of working and probability
q = 1− p of failing.

A B

C D

Figure 1: Circuit Diagram
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Below we use set notation when convenient and needed to explicitly remind one that we
are dealing with events. Notice here we have not explicitly written out the sample space, but
are still using subset notation to help us in our careful logical calculation.

Thus

P ({SC1 fails}) = 1− P (S1 works)

= 1− P ({A works} ∩ {B works})
= 1− p2

Similarly
P (SC2 fails) = 1− p2 .

P ({circuit works}) = 1− P ({circuit fails})
= 1− P ({SC1 fails} ∩ {SC2 fails})
= 1− P ({SC1 fails})P ({SC2 fails})
= 1− (1− p2)(1− p2)

= 2p2 − p4 .
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One could also solve this using an appropriate sample space. This method is summarized
in the following table. The first column gives all possible elementary outcomes, and hence the
sample space. The second column gives an indicator to tell us if the circuit works, indicated
by 1. The third column gives the probability for each of these elementary outcomes. Since
the events which are the singleton sets of each of the elementary outcomes are disjoint, the
Axioms of Probability tell us that P (Circuit works) is equal to the sum of the probabilities of
the elementary outcomes, summed over all elementary outcomes for which the circuit works.

The student should verify this gives the same answer as the method above.

elementary outcome ABCD circuit works probability

0000 0
0001 0
0010 0
0011 1 q2p2

0100 0
0101 0
0110 0
0111 1 qp3

1000 0
1001 0
1010 0
1011 1 qp3

1100 1 p2q2

1101 1 p3q
1110 1 p3q
1111 1 p4

The difference in the two methods is that the second uses an explicit sample space. The
first method relies on properties of combining more complicated independent events. The
later method is often easier once these properties are recognized. However method 1 is often
useful when it is not clear what these corresponding more complicated events are and how
they are related.

Finally we remind students of some helpful notation. For any event A, P (A) is a number.
Thus for events A,B it makes sense to consider A ∩ B or A ∪ B. However ∩ and ∪ do not
apply to real numbers. For example if A and B are independent events we can write

P (A ∩B) = P (A)P (B)

makes sense.

It does not make sense to write

P (A ∩B) = P (A) ∩ P (B) .

Why not? If it did, and for example P (A) = 1
2 and P (B) = 1

3 then we would need to make
sense of

1

2
∩ 1

3
.
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The operations ∩ and ∪ apply to sets. Also arithmetic operations apply to numbers but not
sets, unless some specific meaning can be defined for such operations.
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