
Chapter 3.3 Continuous RV and 3.4 Independent Random

Variables

1 Continuous Multivariate Distributions

As in the discrete case we have a CDF for the d random variables X1, . . . , Xn. It is a function that

maps Rd into [0, 1]. The CDF is given by FX1,...,Xd
where

FX1,...,Xd
(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) .

We say that (X1, . . . , Xd) is continuous, or more specifically its distribution is continuous, if and only

if

1.
∂dFX1,...,Xd

(x1, . . . , xd)

∂x1∂x2 . . . ∂xd
= fX1,...,Xd

(x1, . . . , xd)

and

2.

FX1,...,Xd
(x1, . . . , xd) =

∫ x1

−∞
. . .

∫ xd

−∞
fX1,...,Xd

(y1, . . . , yd)dyd . . . dy1

We also have for sets A ⊂ Rd that

P ((X1, . . . , Xd) ∈ A) =

∫
. . .

∫
A

fX1,...,Xd
(y1, . . . , yd)dyd . . . dy1 .

Recall one can change an integrand function at a given point, or lower dimensional segment, thus we

have the same difficulties with pdfs as in the 1 dimensional case. Thus we typically make the pdf

piecewise continuous, so it is well defined except possibly at boundaries of their support.

Marginal distributions can be obtained. Below we derive the marginal pdf of X1.

FX1(x) = P (X1 ≤ x)

= P (X1 ≤ x,X2 < ∞, . . . , Xd < ∞)

1
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=

∫ x

−∞

{∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,...,Xd

(y1, . . . , yd)dyd . . . dy2

}
dy1

=

∫ x

−∞
h(y1)dy1

where h is the function given in the curly brackets. Thus we have an expression of the form for which

the Fundamental Theorem of Calculus applies. Thus FX1 (or equivalently X1) has a pdf which is

given by

fX1(x) =
dFX1(x)

dx

= h(x) using the Fundamental Theorem of Calculus

=

∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,...,Xd

(x, y2, . . . , yd)dyd . . . dy2

Notice what we end with is the result that the marginal pdf is the joint pdf with the remaining d− 1

variables integrated out.

This same type of result will hold for any marginal of dimension 1 or higher, that is one integrates

out the remaining variables.

These notions of writing the distribution of rv’s in terms of their CDF or an equivalent form means

that we can calculate probabilities of falling into sets or events without having to carefully write an

appropriate sample space. Of course we can also work with a sample space and probability on its

events, but the use of distributions lets us make the same calculations without needing to find a sample

space.

2 Independence of RVs

The definition of independence of random variables is in terms of independence of sets. Recall from

Chapter 1 the definition of independence of events.

Definition Random variablesX1, . . . , Xd are independent if and only if the events {X1 ∈ A1}, {X2 ∈

A2}, . . . , {Xd ∈ Ad} are independent, where A1, A2, . . . , Ad are intervals on the real line. These inter-

vals may be bounded, that is of the form (a, b], or of the form (−∞, b].

End of Definition

Remark : It is sufficient to do this only for intervals. We will not discuss this further in this course.

If we are given the distribution of X1, . . . , Xn how can we check independence? In principle this

is done through the cdf. Consider the events {X1 ∈ (−∞, a1]}, . . . , {Xn ∈ (−∞, an]}. We have

P ({X1 ∈ A1} ∩ . . . ∩ {Xn ∈ An}) = FX1,...,Xn(a1, a2, an) .
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Recall also that

P ({Xk ∈ (−∞, ak]}) = FXk
(ak) .

We then have to check if the cdf, and all marginals of dimensions 2 to n obey the product rule for

independence of events.

Can one check for independence without resorting to the cdf? Can this be further simplified?

Fortunately independence of rv’s can be equivalently reformulated in terms of the pmf or pdf in

the case of discrete or continuous random variables. This is because these functions determine the

distribution of these random variables for all intervals and Cartesian products of these intervals.

Notice for intervals of the form (−∞, b] this translates into a property of CDFs. Thus X1, . . . , Xd

are independent if and only if their cdf equals the product of their one dimensional cdf’s. Specifically

these rv’s are independent if and only if

FX1,...,Xd
(x1, . . . , xd) =

d∏
i=1

FXi(xi) for all x1, . . . , xd . (1)

Since in practice we often work with a pmf or pdf this property of independence can be written in

an equivalent condition.

2.1 Independence in Terms of PMF

Suppose X1, . . . , Xd are multivariate discrete r.v.s. Their joint pmf is pX1,...,Xd
. Then X1, . . . , Xd are

independent if and only if the joint pmf function is the same as the function that is the product of

the d marginal pmf’s, that is

pX1,...,Xd
(k1, . . . , kd) =

d∏
j=1

pXj (kj) for all k1, . . . , kd .

In fact if the above product formula holds then the corresponding product form will hold for all

marginals of dimensions 2 up to d− 1.

In order to understand how this works, consider d = 2 and integer valued rv’s. For an integer k

and an interval (k − 1
2 , k + 1

2 ], this interval contains only one integer, namely k. For r.v.s X,Y then

P (X = k, Y = ℓ) = P

({
X ∈

(
k − 1

2
, k +

1

2

]}
∩
{
Y ∈

(
ℓ− 1

2
, ℓ+

1

2

]})
.

If X,Y are independent then

P (X = k, Y = ℓ) = P (X = k)P (Y = ℓ) . (2)
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If this product formula holds for all k, ℓ then X,Y are independent. Thus two discrete r.v.s X,Y are

independent if and only if (iff) (2) holds for all (k, ℓ). In practice this will have to hold for all (k, ℓ) in

the support of the pX()̇pY ()̇, or equivalently in the Cartesian product support(pX) × support(pY ).

This type of condition for checking independence in terms of the PMFs for n discrete r.v.s also

holds.

2.2 Independence in Terms of PDF

Suppose X1, . . . , Xd are multivariate discrete r.v.s. Their joint pdf is pX1,...,Xd
. Then X1, . . . , Xd are

independent if and only if the joint pdf function is the same as the function that is the product of the

d marginal pdf’s, that is

fX1,...,Xd
(x1, . . . , xd) =

d∏
j=1

fXj (xj) for all x1, . . . , xd

except possibly on the boundaries of the supports of these pdf’s. This result follows from (1) by taking

d derivatives. In fact if the above product formula holds then the corresponding product form will

hold for all marginals of dimensions 2 up to d− 1.

In order to see how this follows consider the case d = 2. X and Y are independent if and only if

for all half line intervals (−∞, x], (−∞, y] we have

P ({X ∈ (−∞, x]} ∩ {Y ∈ (−∞, y]}) = P ({X ∈ (−∞, x]})P ({Y ∈ (−∞, y]}) .

Rewriting these in terms of cdfs we have

FX,Y (x, y) = FX(x)FY (y) for all x, y .

Differentiating both side twice, once with respect to x and once with respect to y, we then must have

their derivatives being equal, that is X,Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y) (3)

except possibly where these derivatives might not exist. Recall the discussion for 1D pdf’s. Finally if

the product form holds for the pdf’s the it will necessarily hold for their integrals, that is for the cdf’s.

In applications of this, thus we need the product property holding at points except on the boundaries

of the supports.

Two continuous r.v.sX,Y are independent iff (3) holds for all arguments (x, y), except for a few. In

practice this means that we check for all (x, y) that are not on the boundary of the relevant supports.

This will be the case since pdf’s are continuous on their support and 0 elsewhere. In particular

this means that we check for (x, y) in the Cartesian product support(fX) × support(fY ) but not on

support(fX,Y ).
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3 Additional Properties

One additional and important topic in the discussion of independent random variables is that functions

of different independent random variables are also independent.

Here we consider only a special case of the form given below.

Definition 1 The sets of random variable {X1, . . . , Xn} and {Y1, . . . , Ym} are independent iff (if and

only if) for all intervals I1,1, I1,2, . . . , I1,n and I2,1, I2,2, . . . , I2,m the event events

A = ∩n
i=1{Xi ∈ I1,i} and B = ∩m

j=1{Yj ∈ I2,j}

are independent.

Consider random variables

U = g(X1, X2, . . . , Xn) and V = h(Y1, Y2, . . . , Ym)

for appropriate functions g, h.

Theorem 1 If {X1, . . . , Xn} and {Y1, . . . , Ym} are independent then U V are independent.

Proof : We prove this Theorem only in the case n = 1 and m = 1, and in the discrete case.

Thus we consider X and Y independent and U = g(X) and V = h(Y ).

We need to show for all u, v that P (U = u, V = v) = P (U = u)P (V = v).

P (U = u, V = v) = P (g(X) = u, h(Y ) = v)

= P (X ∈ {x : g(x) = u} and Y ∈ {y : h(y) = v})

=
∑

x:g(x)=u

∑
y:h(y)=v

P (X = x, Y = y)

=
∑

x:g(x)=u

∑
y:h(y)=v

P (X = x)P (Y = y)

=

 ∑
x:g(x)=u

P (X = x)


 ∑

y:h(y)=v

P (Y = y)


= P (U = u)P (V = v)

Some immediate application of this result are that if X,Y are independent r.v.s the so are X2, Y 2.

This idea will also be useful for simulation based calculations. Consider a r.v. X and a function h

so that E(h(X)) is finite. The following is a typical setting, with an application of the Law of Large
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Numbers : X1, X2, . . . is an iid sequence of r.v.s each with the same distribution as X. h is a function

(for example a payoff function in mathematical finance or insurance). Then the r.v.s Yi = h(Xi) are

iid. If h(Xi) has a finite mean, then the law of large numbers applies to the sequence Yi = h(Xi).

Thus

1

M

M∑
i=1

h(Xi) → E(h(X)) as M → ∞ .

Here the convergence is in the sense of convergence in probability. This notion will be discussed later

in the course.

This means that as long as well have a good statistical model of the underlying asset, life length etc,

we can then simulate (once we know how) the statistically independent r.v.sXi and hence approximate

the expected payoff.
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4 Copulas

There are many continuous multivariate distributions.

For bivariate and multivariate normal distributions see a separate handout.

In actuarial science and in mathematical finance a topic called copula distributions are sometimes

used. We briefly describe these now. Note these are just some particular multivariate distributions.

Here we only discuss bivariate copulas.

Let C (the copula distribution) be the cdf of a bivariate distribution with support for its density

[0, 1]× [0, 1] with marginals being Uniform(0,1). That is the function C satisfies

C(u, 1) = u for 0 ≤ u ≤ 1

C(1, v) = v for 0 ≤ u ≤ 1

as well as all other properties of a bivariate cdf.

If we cave two 1D marginal continuous distributions with cdfs F1 and F2 then

H(x, y) = C(F1(x), F2(y))

is a bivariate cdf on R×R and with marginal distributions being F1 and F2.

Farlie-Morgenstern

For 0 ≤ u, v ≤ 1 let

C(u, v) = uv (1 + α(1− u)(1− v))

where −1 ≤ α ≤ 1 is a parameter.

The student should verify that this is a bivariate cdf (you will need to think about what is C for

u, v not in the unit box).

Now if F1, F2 are respectively exponential cdf with parameters λ1, λ2 then

H(x, y) = F(x)F2(y) (1 + α(1− F1(x))(1− F2(y)))

= (1− e−λ1x)(1− e−λ2y)
(
1 + αe−(λ1x+λ2y))

)
if x > 0, y > 0

What is H for other x, y?

What is the density (pdf) of H? This density will have support x > 0, y > 0. Find the formula

for this density?
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This is a particular bivariate distribution in which the marginals are both exponential. This

distribution has three parameters α, λ1, λ2. The parameter

(α, λ1, λ2) ∈ [−1, 1]×R+ ×R+ .

There are many other copulas, that is there are many different choices of C that are used in

actuarial science and finance.


