
Chapter 3.5 Conditional Distributions

1 General Remarks

While this setting deals with multivariate r.v.s we will consider only simpler cases, usually involving

only two random variables. From the context we will see how it works more generally, and will deal

with this only a little.

There are three settings for bivariate r.v. (i) bivariate discrete, (ii) bivariate continuous and (iii)

some special cases of bivariate with one component discrete and one continuous.

Conditional distributions are (i) distributions and hence with all these corresponding properties

(eg sum or integrate to 1) and (ii) the distributions are random, that is they depend on other random

variable upon which we are conditioning.

2 Discrete Case

As is usual the bivariate discrete case is the easiest to consider, as we can proceed directly using the

axioms probability and properties of distributions or pmf’s.

Consider bivariate (X,Y ). Suppose y is such that P (Y = y) > 0. Then since {X = x} is an event

we have from the definition of conditional probability that

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

Now consider, for a fixed value y.

q(x) = P (X = x|Y = y) .

This function, treating y as fixed and x as the argument, obeys all the properties of a probability

mass function (pmf), but of course in general it is a different function for different y.

Notation : Let

pX|Y=y(x) = P (X = x|Y = y) .
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This is called the conditional pmf of X given the event Y = y, or more simply the conditional pmf

of X given Y = y. This notation is helpful as it reminds us that x is the argument of this function.

Other notations are often used, for example as in the Rice text pX|Y (x|y), but then one needs to be

careful as to the role of x and y, as y is not an argument of this function. The particular value of y

specifies which of these particular conditional distributions one is using.

As with any pmf we can now calculate

P (X ∈ A|Y = y) =
∑
x∈A

pX|Y=y(x) .

The observation that pX|Y=y(x) is a pmf will be very helpful when we define the notion of condi-

tional expectation.

Formal definition : The conditional probability distribution of X given Y = y is given by pX|Y=y

where

pX|Y=y(x) =
P (X = x, Y = y)

P (Y = y)

if P (Y = y) = pY (y) > 0 and

pX|Y=y is undefined if pY (y) = 0 .

The undefined case is not important, in the sense that in practice if we wish to calculate P (X ∈ A)

then

P (X ∈ A) =
∑
x∈A

pX(x)

=
∑
x∈A

∑
y

pX,Y (x, y)

=
∑
x∈A

∑
y

pX|Y=y(x)pY (y) .

Notice in this last line for those y such that pY (y) = 0, it does not matter what value is assigned to

pX|Y=y(x), one still has the same answer for P (X ∈ A), as 0 times any number still gives 0.

3 Continuous Case

In the bivariate continuous case we cannot proceed directly from the Axioms of probability. There are

some other technical issues that we cannot deal with in this course, so we proceed more informally by

analogy with the discrete case.

Define the conditional pdf of X given Y = y as

fX|Y=y(x) =
fX,Y (X = x, Y = y)

fY (y)
.
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Again this notation is helpful to remind us that the argument of this function is x and that y plays

a different role. One may also use an alternate notation as in the Rice text, such as fX|Y (x|y). The

same comments pertaining to the role of y in the case of conditional pmfs also applies to conditional

pmfs. The particular value of y specifies which conditional pdf one uses, and hence the corresponding

support etc.

The conditional pdf has all the properties of any pdf, that is it non-negative and integrates to 1

and for intervals or other appropriate sets A

P (X ∈ A|Y = y) =

∫
A

fX|Y=y(x)dx .

This property also is used when we discuss conditional expectation.

Using conditional pdf’s one can calculate

P (X ∈ A) =

∫
A

fX(x)dx

=

∫
A

∫ ∞

−∞
fX,Y (x, y)dydx

=

∫
A

∫ ∞

−∞
fX|Y=y(x)fY (y)dydx .

As in the discrete case notice that for y in the complement of the support of fY (so that fY (y) = 0)

these values only contribute 0 to the integral. Thus we have a more formal definition.

Formal definition : The conditional probability distribution of X given Y = y is given by fX|Y=y

where

fX|Y=y(x) =
fX,Y (X = x, Y = y)

fY (y)

if fY (y) > 0 and

fX|Y=y is undefined if fY (y) = 0 . (1)

In principle the value that we assign in the undefined case (1) does not change the value of the

integral in the calculation of P (X ∈ A) above. The so called undefined case is never used in such the

probability calculation.

4 A Special Case

A useful special case is whenX is continuous and Y is discrete, usually integer valued. If P (Y = y) > 0

then we have to define the conditional pdf of X given Y = y as fX|Y=y(x) implicitly so that it satisfies

FX|Y=y(x) =

∫ x

−∞
fX|Y=y(x)dx .
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Usually in the context the marginal pmf of Y and the conditional pdf fX|Y=y(·) are given so one may

calculate conditional probabilities. This is used in particular to describe mixture models and some

types of loss models.

Example : In an insurance model there are two types of customers, low and high accident prone

customers. In a financial model there are two periods of finance, low and high volatility periods.

Let Y take values 1 and 2 to represent these. Let FX|Y=1 and FX|Y=2 represent the cdf’s (and

correspondingly their pdf’s with similar notation) in these two cases. For example they might be

exponential distributions with different means, or two normal distributions with different variances.

With this information we are now able to calculate the marginal distribution of X.

FX(x) = P (X ≤ x)

= P (X ≤ x, Y = 1) + P (X ≤ x, Y = 2)

= P (X ≤ x|Y = 1)P (Y = 1) + P (X ≤ x|Y = 2)P (Y = 2)

= FX|Y=1(x)P (Y = 1) + FX|Y=2(x)P (Y = 2)

From this and differentiation we then obtain the marginal pdf of X as

fX(x) = fX|Y=1(x)P (Y = 1) + fX|Y=2(x)P (Y = 2) .

In particular since Y only takes two values let α = P (Y = 1). Then the marginal pdf of X is

fX(x) = fX|Y=1(x)α+ fX|Y=2(x)(1− α) .

This is an example of a so called finite mixture distribution.

5 Additional Comments

Suppose X,Y have pdf or pmf f or fX,Y (using whichever notation will be more convenient in the

context). Since

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

we then have in the case that X,Y are independent that

fX|Y=y(x) =
fX(x)fY (y)

fY (y)
= fX(x) .

Thus

• if X and Y then the conditional pdf fX|Y=y is equal to the marginal distribution fX no matter

what the value of y happens to be
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• if the conditional pdf fX|Y=y is not the same function for all y (ie is different for some distinct

values of y) then X and Y must be dependent

• X and Y are independent iff and only if

fX,Y = fX × fY

Notice this means the two functions are equal, that is they must be equal for all relevant

arguments. In the case of pmf’s this means for all arguments. In the case of pdf’s this means

for all arguments except possibly on the boundaries of the supports.

To check for dependence or independence we may use either of these ideas, depending on what

calculations we have already made or on what information we are given.

If we are given the relevant marginal and conditional pmf or pdf then we can calculate the joint

pmf or pdf by

fX,Y (x, y) = fX|Y=y(x)fY (y) .

Again one should notice these must be the same functions on both sides of the = sign, so they must

be equal for all relevant (x, y).


