
Statistics 3657 : Convergence

Definition 1 Let Xn be a sequence of r.v.s. We say Xn converges in probability to a constant a if and

only if for any ε > 0

P (|Xn − a| > ε)→ 0

Theorem 1 Suppose Xi is a sequence of iid random variables with mean µ and variance σ2. Let

X̄n =
1

n

n∑
i=1

Xi

Then X̄n converges in probability to µ.

Proof Notice that Var(X̄n) = σ2

n . Therefore Chebyshev’s inequality applies and X̄n has finite mean and

variance. Thus by Chebyshev’s inequality

P (|X̄n − µ| > ε) ≤ VarX̄n

ε2

=
σ2

nε2

→ 0 as n→∞
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Convergence 2

Convergence in Distribution

Definition 2 Let Xn be a sequence of r.v.s. with cdfs Fn. We say Xn converges in distribution to (the

distribution with the cdf) F if and only if for all x such that F is continuous at x the following holds

Fn(x)→ F (x) as n→∞

We often write or state this as Xn converges in distribution to X iff and

Fn(x)→ F (x) as n→∞

at all continuity points of F , and where F is the cdf of X.

The convergence is required only at continuity points of the limit cdf F . Convergence in distribution

is a property about convergence of the cdfs.

In the special case where Xn and the limit cdf are both discrete and have support the integers there

is an equivalent form of convergence in distribution. We state it without showing they are equivalent.

If Xn are all integer valued r.v.s and F also has support being the integers, then Xn converges in

distribution to F if and only if all the point probability masses converge, that is

P (Xn = k)→ P (X = k) .

Aside : There is an analogous result for discrete random variables as long as the support of all the Xn

and X is the same. For example this can be used to describe convergence to other discrete distributions

such as multinomial.
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Convergence of binomial to Poisson

Suppose Xn has Binomial( n, pn) distribution. Suppose also that npn → λ > 0. ThenXn converges in

distribution to Poisson, λ. We verify this by the definition. Fix an integer k ≥ 0. We study the sequence

P (Xn = k).

P (Xn = k) =

(
n

k

)
(1− pn)

n−k
pkn

=
n(n− 1) . . . (n− k + 1)

k!
(1− pn)

n−k
pkn

=
1

k!
(1− pn)

n−k
(npn) ((n− 1)pn) . . . ((n− k + 1)pn)

=
1

k!

{(
1− npn

n

)n}{
(1− pn)

−k
}
{(npn) ((n− 1)pn) . . . ((n− k + 1)pn)}

In this last expression the first term is a constant, 1 over k!, the second term converges to e−λ, the third

term converges to 1−k = 1, and the fourth term converges to λk.

Recall from introductory calculus that if we consider a product of terms anbn, and an → a and bn → b,

then anbn → ab.

Thus for each integer k ≥ 0

P (Xn = k)→ 1

k!
e−λλk =

λk

k!
e−λ

This limit is the pmf of a Poisson λ distribution. Thus Xn converges in distribution to Poisson λ.

In Chapter 2 this result is given for pn = λ
n .

Remark Usually we cannot find the limit pmf or cdf so easily. Instead there is another method that

can be used to show or prove convergence in distribution. It is a result called the Continuity Theorem.

We state it but do not proof this result as it is beyond the mathematical tools we have at this stage.

See the Rice text, Section 5.3, Theorem A.

Theorem 2 (Continuity Theorem) Suppose Fn is a sequence of cdfs, each with moment generating

function (mgf), and let Mn be the mgf corresponding to cdf Fn. Let F be a cdf with mgf M . If Mn(t)→
M(t) for all t in this open interval about 0, then Fn converges in distribution to F .

Remark Theorem 2 gives us another tool to show that a sequence of random variables, or equivalently

their sequence of cdf-s converge in distribution, that is Fn converges to F in the sense of Definition 2.

Sometimes this calculation of working with the mgf is much easier than the cdf Fn directly. We may

not even be able to easily calculate the cdf Fn easily, for example in the case of the cdf of
√
n
(
X̄n − µ

)
that comes up in the Central Limit Theorem.

Example This is a continuation of the example of above. Suppose Xn has Binomial( n, pn) distribution.

Suppose also that npn → λ > 0. ThenXn converges in distribution to Poisson, λ.
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First recall that the Poisson mgf is obtained as follows. Suppose Y ∼ Poisson λ.

M(t) = E(etY )

=

∞∑
k=0

etk
λk

k!
e−λ

=

∞∑
k=0

(etλ)k

k!
e−λ

= eλe
t

e−λ

= eλ(e
t−1)

Xn has mgf

Mn(t) =
(
1− pn + pne

t
)n

=
(
1 + pn(et − 1)

)n
We need to show for each t in an open neighbourhood of 0, that Mn(t) → M(t). Since Mn and M are

defined for all t, we just show for each t that Mn(t)→M(t).

Mn(t) =
(
1 + pn(et − 1)

)n
=

(
1 +

npn
n

(et − 1)
)n

=

(
1 +

npn(et − 1)

n

)n

Since for sequences an → a we have (
1 +

an
n

)n
→ ea

and using the property that

npn(et − 1)→ λ(e1 − 1)

we then obtain

Mn(t)→ eλ(e
t−1) = M(t)

Thus by the Continuity Theorem (Theorem 2) Xn converges in distribution to Poisson λ.

Remark This is only a little easier than the direct method.

End of Example

Example Refer back to the handout on moment generating function, specifically the last calculation.

There we considered the example of Xi iid mean 0 and variance 1, and then considered the random

variable

Zn =
√
nX̄n =

1√
n

n∑
i=1

Xi

If X has mgf MX then Zn has mgf

Mn(t) =

(
MX(

t√
n

)

)n
We also showed that

Mn(t)→ e
1
2 t

2
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Recall that the standard normal distribution has mgf M(t) = e
1
2 t

2

. Thus we showed that Mn(t)→M(t).

Therefore by the Continuity Theorem we conclude that Zn converges in distribution the standard normal

distribution.

End of Example

Theorem 3 (Central Limit Theorem) Suppose that Xi are iid random variables with mean µ and

variance σ2. Let

Zn =

√
n
(
X̄n − µ

)
σ

Then Zn converges in distribution to N(0, 1).

Remarks Zn is the standardized random variable obtained from X̄n. Let

Sn = X1 +X2 + . . . Xn .

Then Zn can be rewritten in equivalent forms.

Zn =

∑n
i=1Xi − nµ√

nσ2

=
Sn − nµ√

nσ2

=
1√
n

n∑
i=1

Xi − µ
σ

Proof of Theorem 3 : Let MCX be the moment generating function of the standardized Xi, that is

the mgf of Xi−µ
σ . Let Mn be the mgf of Zn. Then using the calculation in the previous example we have

Mn(t) =

(
MCX(

t√
n

)

)n
→ e

1
2 t

2

Note also that M(t) = e
1
2 t

2

is the mgf of the N(0, 1) distribution. Therefore by the the Continuity

Theorem (Theorem 2) Zn converges in distribution to N(0, 1).

End of Proof

We could also have worked the proof by studying

Mn(t) = E

(
exp{ t√

nσ
(X − µ)}

)n
=

(
M

(
t√
nσ

)
e
− tµ√

nσ

)n
.

Thus we would then have to study the limit, as n→∞, of the expression

log (Mn(t)) = n log

(
M

(
t√
nσ

))
− n tµ√

nσ

Using the l’Hôpital’s method as we did in class we have

lim
n→∞

log (Mn(t)) = lim
n→∞

{
n log

(
M

(
t√
nσ

))
−
√
n
tµ

σ

}
= lim

n→∞
n

{
log

(
M

(
t√
nσ

))
− 1√

n

tµ

σ

}
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= lim
n→∞

1
1
n

{
log

(
M

(
t√
nσ

))
− 1√

n

tµ

σ

}
= lim

θ→0

1

θ2

{
log

(
M

(
θ
t

σ

))
− θ tµ

σ

}

The student should finish this at home. Notice that one cannot separate the two terms in the numerator

and take limits separately as these individual limits do not exist. For the second of these we would have

lim
θ→0

θ tµσ
θ2

= lim
θ→0

tµ
σ

θ

and this last limit does not exist.
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Example

In order to help the student understand this calculation of working with the MGF of the standardized

sum consider the case of Xi being iid Gamma(α, λ). Recall this distribution has MGF

MX(t) =

(
λ

λ− t

)α
.

From this we obtain

E(X) =
α

λ
, Var(X) =

α

λ2
.

Notice also that

Zn =

√
n
(
X̄n − α

λ

)√
α
λ2

=
λ√
α

√
nX̄n −

λα√
αλ

√
n

=
λ√
α

1√
n

n∑
i=1

Xi −
√
α
√
n

The MGF of Zn is Mn given by

Mn(t) = E
(
etZn

)
=

(
MX

(
t
λ√
α

1√
n

))n
e−t
√
α
√
n

Next notice that

MX

(
t
λ√
α

1√
n

)
=

(
λ

λ− t λ√
α

1√
n

)α

=

(
1

1− t√
α

1√
n

)α

We now study the natural log of the MGF Mn, and take limits as n→∞.

logMn(t) = −nα log

(
1− t√

α
√
n

)
− t
√
α
√
n

= −αn
{

log

(
1− t√

α
√
n

)
+

t√
α
√
n

}
= −α 1(

1√
n

)2 {log

(
1− t√

α
√
n

)
+

t√
α
√
n

}

Notice this is of the form where, as n→∞, the numerator and the denominator both converge to 0.

Thus we can embed the limit into the form of a limit in terms of θ → 0, where θ corresponds to 1√
n

, and

then use L’Hopital’s Rule to evaluate the limit in terms of θ → 0.

Aside: Review the use of this technique in the handout on MGFs. In the calculation below we will

use L’Hopital’s Rule in the third and fourth lines.
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Thus

lim
n→∞

logMn(t) = −α lim
n→∞

1(
1√
n

)2 {log

(
1− t√

α
√
n

)
+

t√
α
√
n

}

= −α lim
θ→0

1

θ2

{
log

(
1− t√

α
θ

)
+

t√
α
θ

}
= −α lim

θ→0

1

2θ

{(
1− t√

α
θ

)−1
(−1)

t√
α

+
t√
α

}

= −α lim
θ→0

1

2

{(
1− t√

α
θ

)−2
(−1)3

(
t√
α

)2
}

= α
t2

2α

=
t2

2

Thus

logMn(t)→ t2

2
and hence

Mn(t)→ e
t2

2 .

Since the limit is the MGF of the standard normal distribution, therefore by the Continuity Theorem Zn

converges in distribution to N(0, 1).

End of Example

In the above example we used L’Hopital’s Rule to obtain the limit. We can also use Taylor’s formula.

This Taylor’s formula will involve the expansion of g(x) = log(1− x) about the value x0 = 0. Notice this

is because we have to work with

log

(
1− t√

α
√
n

)
and for large n the function g is evaluated at 1√

α
√
n

, that is a value near 0. Next notice that we have to

study

n log(1− 1√
α
√
n

) = ng

(
1√
α
√
n

)
.

Thus for the Taylor’s approximation formula we will need to go out to order high enough, that is to

degree k so that the terms we ignore or drop in our approximation are small, that is k so that

n

(
1√
α
√
n

)k+1

converges to 0 as n→∞. Notice that when k = 2 and so k + 1 = 3, then this term is

1
√
α
3/2

1√
n
→ 0 as n→∞ .

Thus we will need to use k = 2, and hence use a Taylor’s formula or Taylor’s approximation of degree 2.

We have

g′(x) = − 1

1− x

g′′(x) = − 1

(1− x)2
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Therefore the second order Taylor’s approximation for g about x0 = 0 is

g2(x) = g(0) + g′(0)x+
1

2
g′′(0)x2

= −x− 1

2
x2

Therefore

−nα log

(
1− t√

α
√
n

)
− t
√
α
√
n

≈ −nα
{
− t√

α
√
n
− 1

2

t2

αn

}
− t
√
α
√
n

= t
√
α
√
n+

t2

2
− t
√
α
√
n

=
t2

2

Thus

Mn(t)→ e
1
2 t

2

as n→∞ .

Remark : Taylor’s approximation is mathematically more insightful in studying these limits than L’Hopital’s

Rule, but is does require a little more care. In particular this is the case if one were to show that the

remainder term in the approximation converges to 0 as n→∞, but we not consider this step in detail in

this course. It is also worth remarking here that the type of Taylor’s analysis above is one of the problems

on the first assignment.
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How many games will the Toronto Maple Leafs win this season?

Let Xi be a Bernoulli random variable, 1 if the Leafs win the i-th game, and 0 if they loose the game.

There are n = 82 games. Suppose that Xi are iid Bernoulli with parameter θ. Base on the CLT the 0.95

prediction interval for
∑n
i=1Xi is obtained by solving

0.95 = P

(
−a ≤

∑n
i=1Xi − nθ√
nθ(1− θ)

≤ a

)

giving a = 1.96. Thus with probability 0.95

−1.96 ≤
∑n
i=1Xi − nθ√
nθ(1− θ)

≤ 1.96

If we know θ then with probability 0.95

Xn ∈
[
nθ − 1.96 ∗

√
nθ(1− θ), nθ + 1.96 ∗

√
nθ(1− θ)

]
This notion is called a prediction interval or prediction set.


