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1. a) What are the properties of a pdf?

Is f(x) = e−x a pdf? If yes then verify this and if no verify this.

b) State the definition of convergence in distribution.

In the special case of Yn and Y integer valued r.v.s state an equivalent method, in

terms of their pmfs, to prove convergence in distribution of Yn to the distribution of

Y .

c) State the definition of convergence in probability of a sequence of random variables

Xn to a constant a.

d) State the Central Limit Theorem (CLT), stating specifically the type of convergence.

State an example where the CLT may be used in statistics or probability.
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e) Suppose Xi are iid exponential parameter λ r.v.s and that Yi = X2
i . Verify that the

Cental Limit Theorem (CLT) applies to the r.v.s Yi. Then find the limit distribution

of √
n(Ȳn − a)

b

where a, b are the mean and standard deviation of Yi. Also find the values of a, b in

terms of the parameter λ.

f) State Chebyshev’s inequality.

g) State the Continuity Theorem. Discuss in one of two sentences why this theorem in

useful in our course.
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2. Suppose that Xi, i ≥ 1 is a sequence of iid random variables, each with a Bernoulli(p)

distribution.

a) Find the moment generating function (mgf) for the Bernoulli distribution.

b) Let Yn = X1 + . . .+Xn. Find the mgf of Yn and give the distribution of Yn. State

relevant properties or theorems of expectation and mgfs that you are using in your

calculations

c) Use the MGF to obtain the mean and variance of Yn.
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d) Suppose now that Yn ∼ Binomial(n, pn) (that is a different pn for each n), and that

limn→∞ npn = λ > 0. Show that, for integers k ≥ 0,

lim
n→∞

P (Yn = k) =
λke−λ

k!
.

What is the limit distribution of Yn? Specifically give the name and parameter of

this limit distribution.

e) For the remainder of this question p is the same for each n. Let

Wn =
√
n
(
Ȳn − p

)
where Ȳn = Yn

n .

Find the moment generating function of Wn, say Mn.

Find limn→∞ log(Mn(t)).

f) From the calculation in the previous part determine the limit distribution for Wn,

stating where, if anywhere, that you use the continuity theorem. Give the limit

distribution.

The space below and the back side of this page gives space for the answer

to parts e) and f).
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3. Consider the joint pdf f of r.v.s (X,Y ) given by

f(x, y) =

{
60x2(1− y) if 0 < x < y < 1

0 otherwise.

a) Suppose that U1, . . . , U5 are iid Uniform(0,1) r.v.s. Show that the pdf f above is the

joint pdf of (U(3), U(4)).

b) Sketch the region of the support of f for which also x < y
2 . Find P (X < Y

2 ).

c) Find the distribution of W = XY . Hint : You may do this by finding the cdf

(cumulative distribution function) of W or by completing the transformation.
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4. The normal distribution and its related distributions are used in many applications in

statistics.

a) Suppose that X,Y have a bivariate normal distribution (see formula sheet).

• Obtain the marginal distribution of X.

• Obtain the conditional pdf of Y given that X = x. Using this obtain the r.v.

E(Y |X).

• What is the distribution of E(Y |X) in this case?
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b) Suppose X1, . . . , Xn are iid N(µ, σ2).

In this part of the problem you may use the following properties.

• X̄ ∼ N(µ, σ
2

n )

• 1
σ2

∑n
i=1(Xi − X̄)2 ∼ χ2

(n−1)

• the r.v.s in the two parts immediately above are independent.

• If Z ∼ N(0, 1) and Y ∼ χ2
(m) are independent then

T =
Z√
Y/m

∼ t(m)

that is the student’s t distribution with m degrees of freedom.

• A χ2
(m) distribution is also a Gamma(m2 ,

1
2) distribution.

Use these properties as needed to answer the following :

i) derive the distribution of √
n(X̄ − µ)

S

where

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 .

ii) Use Chebyshev’s inequality to prove that S2 converges in probability to σ2.

Hint : Recall Question 1 where you stated Chebyshev’s inequality. Determine

how to apply this inequality in this problem.
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c) Suppose that X,Y are independent r.v.s and that X ∼ χ2
(k) and Y ∼ χ2

(ℓ). Consider

the r.v. W = Y/ℓ
X/k .

Find the pdf of W .
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5. Suppose that N is a random variable with a geometric, p, distribution, that is N has pmf

(probability mass function)

P (N = n) = (1− p)n−1p , n = 1, 2, 3, . . .

and P (N = n) = 0 for all other n.

Suppose that Xi ∼ Bernoulli(θ) are iid, i = 1, 2, . . . and the Xi’s are independent of N .

Let

S =
N∑
i=1

Xi .

a) Derive the moment generating function of the geometric distribution (above).

b) Find the formula E(etS |N = n) for integers n ≥ 1. Give the conditional expectation

E
(
etS |N

)
. Using this find the MGF of S, say MS . State which properties of

conditional expectation you are using to obtain this.
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c) Using the function MS from (b) obtain E(S) and E(S2).


