
Law of Large Numbers and Central Limit Theorem

1 Convergence in Probability and Law of Large Numbers

Definition 1 A sequence of r.v.s Xn , n = 1, 2, 3, . . . is said to converge to Y if and only if for every

ϵ > 0 then

P (|Xn − Y | > ϵ) → 0 .

In this course we usually are only interested in the limit being a constant, say a. We then say (the

sequence) Xn converges to a in probability if and only if

P (|Xn − a| > ϵ) → 0 .

(also write Xn → a).

In our Law of Large Numbers application we have the following setting : Yi are iid with mean µ and

variance σ2. We then consider r.v.s

Xn =
1

n

n∑
i=1

Yi = Ȳn .

Law of Large Numbers : Suppose Xi are iid r.v.s with finite mean E(Xi) = µ and finite variance

Var(Xi) = σ2. Then

X̄n =
1

n

n∑
i=1

Xi → µ in propbability as n → ∞ .

2 Law of Large Numbers: Some Applications

Example Estimate of π.

Suppose that U1, U2 are iid Unif(-1,1). This pair of random variables is uniformly distributed over

the square [−1, 1]× [−1, 1]. Consider the circle of radius 1, centred at (0,0). Define the random variable

X =

{
1 if U2

1 + U2
2 ≤ 1

0 otherwise

Then X ∼ Bernoulli(p) with p = π
4 . Using a pseudo random number generator, we could simulate n pairs

of Uniform(-1,1) random variables, (Ui,1, Ui,2) and then obtain Xi as above. Then Xi, i = 1, . . . , n are

iid Bernoulli(p = π
4 ) r.v.’s. Since X has a finite variance, then by the Law of Large Numbers (LLN)

X̄n =
1

n

n∑
i=1

Xi →
π

4
.
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Figure 1: Running Average for Estimate of π

Thus we could use 4X̄n as an estimate of π. This is shown in Figure 1 for n = 10000.
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The example above is interesting as it relates to other applications in finance and actuarial science.

The underlying random variable is a two dimensional random vector (U1, U2). The LLN is not applied

directly to this but to a function of this random vector, something of the form Y = h(U1, U2). Since the

random vectors (Ui,1, Ui,2) are iid random vectors then Yi = h(Ui,1, Ui,2) are iid; the student should recall

or review our material study of independence of r.v.s and in particular the theorem about functions of

collections of independent r.v.s.

This same idea applies to topics such as the Monte Carlo method to approximate the expected payoff of

a stock option. The stock process to model stock prices from time 0 to T is a random vector (S0, . . . , ST ).

The payoff for an option is a random variable Y = h(S0, . . . , ST ). In the special case of a European

option this function has only one argument and the payoff r.v. is Y = h(ST ).

If we have a stochastic (statistical) model to simulate an m-th sample path (Sm,0, . . . , Sm,T ), and

the simulated paths are independent, then Ym = h(Sm,0, . . . , Sm,T ) are iid. If we need to condition on

an initial value then we require that the sample paths are conditionally independent given these initial

conditions, then the Ym are conditionally independent given the initial conditions. As long the LLN

applies then

ȲM =
1

M

M∑
m=1

Ym =
1

M

M∑
m=1

h(Sm,0, . . . , Sm,T ) → EP (h(S0, . . . , ST ) | initial conditions)

as M → ∞. In this last expression the subscript P on the expectation sign is to indicate that this

expectation is with respect to the model that we are using for the simulation. In terms of the mathematics

of option pricing this may be the so called historical measure or it may be the so called risk neutral

measure.

In an actuarial example we would wish to model and simulate the random process to produce the r.v.

that is the payoff for a particular policy.
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Example Cauchy Example

What happens when there is no first moment. Such an example is the Cauchy distribution. It can

be shown (but beyond this course) that if Xi, i ≥ 1 are iid Cauchy, then X̄n does not converge in

distribution to any constant. In fact X̄n ∼ Cauchy. This is illustrated in Figure 2. We see this plot gives

not indication of X̄ settling in on any particular value. The plot every once in a while takes big jumps.
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Figure 2: Running Average Cauchy Sample Mean

The fact that X̄n has a Cauchy distribution can be studied by the convolution formula. However to

evaluate, that is obtain a formula for this integral even in the case n = 2 requires complex integration

and the residue theorem from complex variables.
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Example Monte Carlo Integration

Suppose we wish to evaluate an integral
∫ b

a
f(x)dx. There are various numerical ways of doing this.

However one particularly useful method is Monte Carlo integration. Suppose that X ∼ Unif(a, b). Then

E(f(X)) =
1

b− a

∫ b

a

f(x)dx .

Thus if we generate Xi, i = 1, . . . , n iid Uniform(a, b) r.v.’s, then by the Law of Large Numbers

(b− a)
1

n

n∑
i=1

f(Xi) →
∫ b

a

f(x)dx .

Consider f(x) = sin(x), and evaluate the integral
∫ 4

0
f(x)dx. This particular example can be evaluated

analytically giving ∫ 4

0

f(x)dx = 1− cos(4) = 1.65364

Here we use a = 0, b = 4. This is illustrated in Figure 3.
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Example Empirical Distribution Function (EDF)

Suppose that Xi, i = 1, 2, 3, . . . are i.i.d. with cdf F . Consider the (random) function Fn which maps

R 7→ [0, 1] and is given by

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi)

Notice that Fn obeys all the properties of being a cdf. It is called the empirical distribution function of

the data X1, X2, . . . , Xn.

Notice that, for a fixed x, Yi = I(−∞,x](Xi), i = 1, 2, 3, . . . are i.i.d. Bernoulli(p) with p = F (x).

For given x, y the random variables Yi = I(−∞,x](Xi) and Wi = I(−∞,y](Xi) are dependent r.v.’s. Thus

(Yi,Wi) are i.i.d. bivariate random variables.

The LLN applies to the sequence of r.v.’s Yi = I(−∞,x](Xi) and thus we have

Fn(x) → F (x) in probability as n → ∞

This result is fundamental to the reason that statistical inference works. With an infinite amount of

iid data we can then calculate F (x) exactly for an argument x. Another aspect of statistical inference

deals with the question of how can one estimate distributions or parameters with finite amounts of data

from iid experiments.



Law of Large Numbers and Central Limit Theorem 7

3 Central Limit Theorem: Some Applications

The Central Limit Theorem (CLT) applies to i.i.d. sequences with finite mean and variance.

Theorem 1 (Central Limit Theorem) Suppose that Xi, i ≥ 1 is an i.i.d sequence of r.v.’s with finite

mean µ and finite variance σ2 > 0. Let

Zn =

√
n
(
X̄n − µ

)
σ

be the standardized variable obtained from

X̄n =
1

n

n∑
i=1

Xi .

Then Zn ⇒ N(0, 1) (Zn converges in distribution to standard normal) as n → ∞.

For a given q ∈ (0, 1) let zq = Φ−1(1 − q) be the 1 − q quantile of the standard normal distribution.

If the CLT applies then

1− q = P (Zn ≤ x)

→ Φ(x)

and so x satisfies (approximately) 1−q = Φ(x). Hence x = zq to the accuracy of this approximation. Thus

we can use the CLT to obtain approximate quantiles for the distribution of Zn. With some straightforward

manipulations we can then also obtain approximate quantiles for the distribution of X̄n or of
∑n

i=1 Xi.

Application : Asymptotic (or Approximate) Prediction Intervals and Confidence Intervals

First let us consider the exact confidence interval for a population mean. In this part we are only

dealing with distributions with finite means and variances. Specifically consider Xi, i = 1, . . . , n iid from

from a distribution, say F . Consider the r.v. X̄n. The 95% confidence interval for µ = E(X1) is given by

{
µ | a ≤ X̄n − µ ≤ b

}
where a, b are the 0.025 and 0.975 quantiles of the distribution of X̄n. How can we calculate these values?

For this we need to obtain the distribution of X̄n, which requires an n − 1 dimension integral (or sum)

or n− 1 iterations of convolution formulae. However we can approximate these quantiles as follows.

{µ | a ≤ x̄− µ ≤ b} =

{
µ |

√
na

σ
≤

√
n (x̄− µ)

σ
≤

√
nb

σ

}
By the CLT

P

(√
n (x̄− µ)

σ
≤ z

)
→ Φ(z) ≡ P (Z ≤ z)

as n → ∞. Since solving P (Z ≤ z) = 0.975 gives solution z = 1.96 we thus have approximately

√
nb

σ
= 1.96 .

Similarly we can approximate a.
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Below we consider this a bit more generally.

As an example, consider for a given α ∈ (0, 1/2), solve for x in P (|Zn| > x) = α. Then by the CLT

x = zα/2. For example if α = .05 we obtain x = z.025 = 1.96. Thus with probability approximately 1−α

−zα/2 ≤ Zn ≤ zα/2 ⇔ −zα/2 ≤
√
n

(
X̄n − µ

σ

)
≤ zα/2

⇔ −zα/2
σ√
n
≤ X̄n − µ ≤ zα/2

σ√
n

From this we can then construct

1. central 1− α probability intervals for X̄n

2. (central) 100(1− α)% confidence intervals for µ (provided σ is known.

The probability 1− α prediction interval for X̄n is[
µ− zα/2

σ√
n
, µ+ zα/2

σ√
n

]
This means that X̄n is in this interval with probability 1− α.

The 100(1− α)% confidence interval for µ is the set of µ which belongs to the set{
µ : −zα/2

σ√
n
≤ X̄n − µ ≤ zα/2

σ√
n

}
Rewriting this set we obtain {

µ : X̄n − zα/2
σ√
n
≤ µ ≤ X̄n + zα/2

σ√
n

}
or in equivalent form [

X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n

]
. (1)

The observed value of this confidence interval is then the interval with the observed value of X̄n, say

X̄
n,obs, obtained from our data substituted in place of X̄n.

There is another theorem related to the CLT. The proof is beyond what we can study in this course.

Theorem 2 Suppose that Xi, i ≥ 1 is an i.i.d sequence of r.v.’s with finite mean µ and finite variance

σ2 > 0. Let

X̄n =
1

n

n∑
i=1

Xi

and

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄n

)2
be the sample mean and sample variance respectively. Let

Zn =

√
n
(
X̄n − µ

)
sn

Then Zn ⇒ N(0, 1) (Zn converges in distribution to standard normal) as n → ∞.
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Notice this Theorem looks exactly like the CLT except that the sample variance is substituted in place

of the population variance.

Using Theorem 2 we can then construct a (central) 100(1−α)% confidence interval for µ. Notice that

we can do this based on the observed data since X̄n and s2 are values we can calculate after a sample of

data is observed. In this case we have as our asymptotic 100(1− α)% confidence interval for µ{
µ : X̄n − zα/2

√
s2n√
n

≤ µ ≤ X̄n + zα/2

√
s2n√
n

}

or in equivalent form [
X̄n − zα/2

√
s2n√
n

, X̄n + zα/2

√
s2n√
n

]
. (2)

The confidence intervals (1) and (2) are random intervals. These are studied in mathematical statistics,

under the topic of statistical inference.

Remark : Why would we use an approximation if an exact (no approximation) can be used? Of course

we not. There is one very important special case where there is an exact result. It applies in the case

where we observe iid random variables Xi, i = 1, . . . , n from a normal population, that is Xi ∼ N(µ, σ2).

Surprisingly it turns out that these results will hold no matter what the specific values of the parameters

µ, σ2 happen to be.

Notice this confidence interval formula is obtained from an asymptotic (that is when n → ∞) approx-

imation to the sampling distribution of Zn. If additional knowledge is available sometimes we a known

or exact form for this distribution and can use that. For example if Xi, i = 1, . . . , n are iid N(µ, σ2) then

Zn =

√
n
(
X̄n − µ

)
sn

∼ t(n−1) .

This may then be used to obtain an exact confidence interval. The main difference is that different critical

values are used. However the coverage probability is now exactly 1− α.


